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Abstract
The main objective of the study was to develop a novel expert-based approach in order to construct a landslide susceptibility 
map for the Island of Lefkada, Greece. The developed methodology was separated into two actions. The first action involved 
the construction of a landslide inventory map and the second the exploitation of expert knowledge and the use of fuzzy logic 
to produce a landslide susceptibility map. Two types of movements were analyzed: rapid moving slides that involve rock 
falls and rock slides and slow to very slow moving slides. The landslide inventory map was constructed through an evalu-
ation procedure that involved the use of a group of experts, who analyzed data acquired from remote sensing techniques 
supplemented by landslide records and fieldwork data. During the second action an expert-driven model was developed for 
identifying the tendency of landslide occurrences concerning both types of movements. A set of casual variables was selected, 
namely: lithological units, slope angle, slope orientation, distance from tectonic features, distance from hydrographic network 
and distance from road network. The performance and validation of the developed model were compared with models that 
are constructed on the bases of each expert’s judgment. The results proved that the most accurate and reliable outcomes are 
obtained from the aggregated values assigned by the group of experts and not from the individual values assigned by each 
expert. The area under the receiver operating characteristic curves for the models constructed by the expert’s group was 
0.873 for prediction curves of rapid moving slides and 0.812 for prediction rate curves of slow to very slow moving slides, 
respectively. These values were much higher than those obtained by each expert. From the outcomes of the study it is clear 
that the produced landslide susceptibility maps could provide valuable information during landslide risk assessments at the 
Island of Lefkada.
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Introduction

Among the Ionian Islands, Lefkada has repeatedly experi-
ence strong earthquakes that in most cases triggered sec-
ondary damaging and life-threatening phenomena, among 
which landslides were the most common (Earthquake Plan-
ning and Protection Organization 2000; Rondoyanni et al. 
2012; Papathanassiou et al. 2013). The geological setting, 
the steep mountainous relief, the steep slopes that are formed 
along the coast, the large number of settlements that are 
developed all around the island and the presence of a dense 
road network expose Lefkada to a very high landslide risk 
(Rondoyanni-Tsiambaou 1997). However, estimating the 
probability of occurrence of a potentially injurious land-
slide event in a specified time period and in a given area is 
a highly complex and multi-dimensional problem (Carrara 
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et al. 1995). On the other hand, the identification of areas 
susceptible to landslide phenomena, considering only the 
spatial dimension of the problem could be achieved much 
easier. Mapping landslide susceptible areas helps in the 
successful implementation of land-use planning, decision-
making and landslide risk reduction strategies.

According to van Westen et al. (1997), landslide suscepti-
bility analysis involves the preparation of a landslide inven-
tory map, the selection and weighting of landslide-related 
variables and the construction of landslide susceptibility 
maps. Geomorphological and geological field mapping, vis-
ual interpretation of stereoscopic aerial photos, exploitation 
of very-high-resolution digital elevation models, interpreta-
tion and analysis of satellite images including panchromatic, 
multispectral and synthetic aperture radar (SAR) images are 
some of the tools used for preparing a landslide inventory 
map. Particularly, remote sensing has been proven to be a 
useful tool in landslide hazard and risk assessment, espe-
cially in landslide hazard identification, spatial extent pre-
diction and triggering factors detection (Metternicht et al. 
2005; Nikolakopoulos 2012; Nikolakopoulos et al. 2015). 
For rapid moving shallow landslides and debris flows, the 
hazard identification and inventory mapping can be carried 
out using optical imageries by recognizing the removal of 
vegetation from spectral behaviors (Martha et al. 2010), 
while for slow moving landslides, the mass movement can 
be detected through image correlations of sequential high-
resolution optical data (Casson et al. 2003; Delacourt et al. 
2007; Cigna et al. 2013).

Of equal significance is the selection of the appropriate 
method in order to capture the complex, unknown and non-
linear relation between landslide distribution and landslide-
related factors (Aleotti and Chowdhury 1999; Lee et al. 
2003; Neaupane and Achet 2004; Ayalew and Yamagishi 
2005; Pradhan and Lee 2010a; Pourghasemi et al. 2012a; 
Shahabi et al. 2014). These techniques can be classified into 
two major categories: qualitative or expert-driven and quan-
titative or data-driven.

In expert-driven models, there are two types of pro-
cesses: direct and indirect, in which an expert’s judgment 
plays a significant role. In the direct approach, the expert 
estimates the boundaries of landslide-prone areas directly 
in the field, while in the indirect approach experts assign 
to causal factors weights that represent the influence they 
have on landslides. Several methods have been used, such 
as boolean overlay, analytic hierarchy process (Gorsevski 
et al. 2006; Rozos et al. 2011; Yalcin et al. 2011; Pourgha-
semi et al. 2012b), fuzzy logic approach (Tangestani 2004, 
2009; Champati Ray et al. 2007; Alimohammadlou et al. 
2014), multi-class weighting methods (Akgün and Bulut 
2007; Rozos et al. 2008; Wang et al. 2009; Kouli et al. 2010, 
2014) and spatial multi-criteria analysis (Castellanos and 
van Westen 2007).

Concerning data-driven models, they use data from past 
landslides in order to obtain information on the relative 
importance of each factor on a statistical or probabilistic 
base. There are three main approaches: bivariate statistical 
analysis that includes a likelihood ratio model (Lee 2004; 
Pourghasemi et al. 2014; Youssef et al. 2015a); the informa-
tion value method (Yin and Yan 1988; Sarkar et al. 2013) 
and the weight of evidence modeling (Pourghasemi et al. 
2012c; Kouli et al. 2014; Neuhauser et al. 2012; Ilia and 
Tsangaratos 2016; Torizin 2016). Multivariate methods 
that include logistic regression and discriminant analysis 
(Dai and Lee 2003; Guzzetti et al. 2005; Frattini et al. 2008; 
Sabatakakis et al. 2013; Youssef 2015). Data mining tech-
niques include fuzzy logic (Ercanoglu and Gokceoglu 2004; 
Pourghasemi et al. 2012c; Tien Bui et al. 2012a; Yiping et al. 
2014), decision tree models (Nefeslioglu et al. 2010; Yeon 
et al. 2010; Tien Bui et al. 2012b; Pradhan 2013; Youssef 
et al. 2015b; Tsangaratos and Ilia 2016), artificial neural net-
works (Ermini et al. 2005; Caniani et al. 2008; Melchiorre 
et al. 2008; Li et al. 2014; Tsangaratos and Benardos 2014), 
support vector machine (Yao et al. 2008; Yilmaz 2010; Mar-
janovic et al. 2011; Xu et al. 2012; Tien Bui et al. 2012b; 
Pourghasemi et al. 2013; Hong et al. 2015), and neuro-fuzzy 
(Pradhan et al. 2010; Vahidnia et al. 2010; Sezer et al. 2011; 
Oh and Pradhan 2011; Tien Bui et al. 2012c).

Comparing the models of the two categories, the expert-
based models appear subjective and often ignore the fuzzi-
ness of expert judgment. In addition, the accuracy of the 
results depends significantly on the experience and time 
involvement of the expert. However, expert-based mod-
els may provide highly accurate results as they appear to 
be an efficient approach for landslide phenomena that are 
caused by different mechanisms (Ruff and Czurda 2008). 
Data-driven models are influenced by the availability and 
the quality of data, with data of poor quality producing less 
accurate predictive models. It is also known that bivariate 
statistical analysis and multivariate methods work well only 
if certain statistical criteria are satisfied, while data min-
ing methods produce complex and often hard to interpret 
models. Despite their different approach most of these tech-
niques share a common process. They involve the analytical 
examination of the settings of known landslide-prone areas, 
in order to provide information and knowledge regarding 
possible future landslides (Varnes 1984; Guzzetti et al. 1999; 
Aleotti and Chowdhury 1999; Fell et al. 2008).

In this context, the main objective of the present study 
was to develop a two-action evaluation procedure for con-
structing a landslide inventory map and a landslide sus-
ceptibility map for the Island of Lefkada. The construction 
of the inventory map was based on the work of a group of 
experts, which analyzed data acquired from remote sens-
ing techniques complemented by landslide records and field 
data. Two types of movements were analyzed: rapid moving 
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slides that involve rock falls and rock slides and slow to very 
slow moving slides. The construction of the landslide sus-
ceptibility map was achieved by applying methods that are 
based on the concept of fuzzy logic and expert knowledge. 
The computation process was carried out using Microsoft 
Visual Studio 2010 for the estimation of the weights of each 
landslide-related variable and ArcGIS 10.1 (ESRI 2011) for 
the analysis of the data and the production of the landslide 
susceptibility maps.

The study area: general settings

The Island of Lefkada covers about 335 km2 with 117 km of 
coastline (Fig. 1a). Approximately, 70% of the area is char-
acterized as mountainous, with the highest peak, Stavrota 
(1182 m), located in the central part of the island. The west 
side of the island exhibits a very steep morphology and also 
abrupt deepening of the seabed. The coastline is occupied by 
sandy beaches and steep slopes. The east side of the island 
is covered by large flat areas, while the seabed is shallow 
with many islets. Inland there are narrow plateaus, fertile 
valleys, and deep ravines with intense vegetation. Over 30% 
of the area is covered by agriculture and natural vegetation, 
25% covered by sclerophyllous vegetation, 12% by olive 

Fig. 1   a The study area, b the Corine Cover. Corine legend: 111 con-
tinuous urban fabric, 131 mineral extraction sites, 211 arable land, 
222 fruit trees and berry plantations, 223 olive groves, 231 pastures, 
242 complex cultivation patterns, 243 agriculture and natural vegeta-

tion, 311 broad-leaved forest, 312 coniferous forest, 313 mixed forest, 
321 natural grassland, 323 Sclerophyllous vegetation, 324 transitional 
woodland-scrub, 331 beaches, dunes, sands, 332 bare rocks, 421 salt 
marshes, 422 salines, 521 coastal lagoons
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groves and 7% by complex cultivation patterns (Fig. 1b). 
The climate of Lefkada is characterized as Mediterranean, 
with mild summers and mild and very wet winters. The aver-
age monthly temperatures range from 9.9 °C (January) to 
25.3 °C (August). The average annual rainfall (data from 
the Lefkada meteorological station, 38°37′N, 20°43′E for 
the period 1975–1997, 22 years) reaches up to 916.8 mm 
and the average monthly rainfall range from 9.5 mm (June) 
to 198.6 mm (November). From a new meteorological sta-
tion (38°49′50″N, 20°42′ 42″E) operating since August 2009 
(8 years), the average annual rainfall reaches up to 1200 mm.

Geological and tectonic settings

The largest part of Lefkada, mainly the eastern part, belongs 
to the Ionian geotectonic zone, while its western part belongs 
to the Paxos zone. The Paxos zone consists of evaporites 
and limestone formations, covered by Neogene clastic sedi-
ments, mainly marls and Miocene sandstones. The Ionian 
zone includes Paleocene limestones, dolomitic limestones 
and siliceous schist partly covered by flysch formations of 
Oligocene–Middle Miocene age. The Neogene sediments 
consist of conglomerates, sandstones, marls and marly lime-
stones. Opposed to the other Ionian Islands, the Quaternary 
sediments found at Lefkada outcrop to a very limited extent, 
while the Pleistocene marine and lacustrine deposits present 
a larger extent (Rondoyanni et al. 2012) (Fig. 2a). Based 
on their geotechnical behavior, the outcropping formations 
can be grouped as (Fig. 2b) (Bornovas 1964; Rondoyanni-
Tsiambaou 1997): (a) recent alluvial deposits of vari-
ous lithological compositions, consisting mainly of clays, 
sandy silts, sands, pebbles, cobbles and nibbles of various 
grain size dimensions; (b) scree and talus cones, which are 
composed of unconsolidated sediments of cobbles, rubbles, 
sands and sandy clays, found along the mountain slopes and 
torrent outlets; (c) flyschoid sediments, which are character-
ized as clastic sediments, mainly consisting of blue marls, 
sandstones, sandy clays, siltstones and thin micro-brecciated 
limestones; (d) limestones with flat-pebble conglomerates; 
(e) massive limestone formations; (f) dolomite formations 
and (g) schist formations.

Lefkada’s high seismicity, with earthquake surface-wave 
magnitudes values (Ms) ranging between 6.1 and 7.2, is attrib-
uted to the fact that the island holds a key position along the 
140 km-long Cephalonia Transform Fault (CTF), where the 
Hellenic subduction in the South passes to the Adriatic colli-
sion in the North (Papazachos and Papazachou 1989; Louvari 
et al. 1999; Sachpazi et al. 2000; Papadopoulos et al. 2003; 
Kokinou et al. 2006). GPS data indicate onshore shortening 
at a rate of 2–3 mm/year with velocity values decreasing from 
north to south (Ganas et al. 2012). Several active and neotec-
tonic faults, striking N–S and NE–SW, were also located on 

South Lefkada (Fig. 2a), the most important of which can be 
considered the Athani fault (Lekkas et al. 2001; Rondoyanni 
et al. 2012).

Landslide movement types in Lefkada Island

Landslide movements were classified according to the Cruden 
and Varnes Classification (1996) as rock falls and rock slides 
and as rotational or translational slides. Rock fall is considered 
as a landslide that involves the collapse of a mass material 
from a steep slope, whereas a slide is considered as a down-
slope movement of a mass material that occurs along a distinc-
tive surface. If the surface is curved the slide is referred to as 
rotational while if the surface is straight then it is referred to 
as translational or planar (Cruden and Varnes 1996). Most of 
them were located near the island’s road network and coast 
line (Fig. 3). Extended slope failures of all aforementioned 
categories were observed in areas covered by thick-bedded 
limestone formations that form steep slopes and at the toes 
of those slopes when extensive cones of scree materials are 
present. In addition it should be noticed that the presence of 
thin marly horizons within the limestone formation increases 
the likelihood of landslides.

Regarding the triggering mechanism, seismicity and rain-
falls are the two main triggering factors. Considering the 
study area, Rondoyanni et al. (2012) reported that rock falls 
and other landslides, as well as liquefaction phenomena and 
small-scale subsidence, are the main secondary effects due to 
earthquakes. The intensity of landslide events during earth-
quakes is also presented by Papathanassiou et al. (2013). The 
authors produced a landslide inventory map after the 2003 
earthquake event (moment magnitude value Mw = 6.3) inte-
grating pro and post seismic satellite imagery as well as reports 
from field surveys. Similar effects had been observed after the 
November 2015 earthquake event (Mw = 6.4) that caused two 
casualties and numerous reported damages in buildings and 
road network. This earthquake caused a significant amount of 
rock falls and rock mass slides reported mainly Egremni and 
Port Katsiki beaches (Fig. 4a–c) in Dragani villages (Fig. 4d) 
and the road connecting the villages of Tsoukalades and Agios 
Nikitas (Fig. 4e) (Ganas et al. 2015). Concerning the trigger-
ing effect of rainfall, limited records were available for the 
research area. However, based on former experience intense 
rainfall was responsible for the manifestation of the majority 
of the reported rotational and translational slides (Koukis and 
Ziourkas 1991; Koukis et al. 2005).

Data and methods

The developed susceptibility mapping methodology was 
based on a fuzzy additive weighting model that captures 
the knowledge of a group of experts and tackles uncertainty 
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and imprecision by representing experts’ judgment as fuzzy 
numbers. This is the main difference from previous studies 
that utilized expert’s knowledge. Uncertainty and subjectiv-
ity that may follow the implementation of expert knowl-
edge is handled through fuzzy logic. For the methodology 
implementation, the authors of this study played the role of 
experts due to their professional expertise in the fields of 
natural hazards, engineering geology and remote sensing. 
In this context, one expert played the role of coordinator. 
The developed methodology was separated into two main 
actions: the first action involved the construction of the land-
slide inventory map and the second the application of fuzzy 
logic approach to produce a landslide susceptibility map. 

Figure 5 illustrates in detail the flowchart of the developed 
methodology.

Construction of the landslide inventory map

The first action of the developed methodology was the 
production of the landslide inventory map from the group 
of experts. Rapid movements were identified by conven-
tional techniques that involved the examination of satel-
lite images and aerial photos that were included in previ-
ous studies (Rondoyanni-Tsiambaou 1997; Lekkas et al. 
2001; Papadopoulos et al. 2003; Papathanassiou et al. 

Fig. 2   a Geologic map of Lefkada Island (modified from IGME 
1963); al: Holocene alluvial deposits, al–c: Holocene recent scree and 
talus cones, be: Holocene marsh deposits, tr: Holocene Terra rossa, 
dl: Pleistocene scree and old talus cones, dl–c: Pleistocene cohesive 
scree, Pm: Miocene marls, Paxos Zone: e–o: Paleocene limestones, 
K6–8: Upper Cretaceous limestones, J13–K5: Lower Cretaceous 
limestones, Js–D: Upper Jurassic limestones, Js–sh: Upper Jurassic 

schists, Ionian Zone: M: Miocene molassic, G: Miocene evaporites, 
fl: Upper Eocene flysch, e: Paleogene limestones, K8: Upper Senon-
ian limestones, J9–K8: Upper Jurassic–Lower Senonian limestones, 
AR: Lower Jurassic Ammonitico Rosso, limestones, J5–8sh: Lower 
Jurassic schist formations, J4: Domerian limestones, T5–J3: Upper 
Triassic limestones, T5: Lower Norian Dolomite; b unified geological 
formations map
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2005, 2013; Rondoyanni et al. 2012) and extensive field-
work (during the summer of 2014), while for slow to very 
slow movements DinSAR images, processed by applying 
the persistent scatterers interferometry (PSI) technique, 
were used (Fig. 6a, b). Concerning the slow to very slow 
movements, in the scientific literature several studies that 
analyze PSI data (highly reflective point-wise targets, the 
so-called permanent scatterers, PSs) combining the results 
with conventional geomorphological approaches, such 
as aerial photo-interpretation coupled with pre-existing 
landslide inventory maps can be found (Colesanti and 
Wasowski 2006; Greif and Vlcko 2012; Raspini et  al. 
2013, 2014; Tofani et al. 2013). In the current study, three 
data sets of PSI data (one ascending, ERS data acquired 
in 5/11/1995–12/7/1999, and two descending, ERS and 
ENVISAT data, acquired in 19/4/1992–18/1/2000 and 
25/6/2003–23/6/2010, respectively) were provided by 
Tele-Rilevamento Europa. The PSI data were processed 
within the framework of the Terrafirma project, supported 
by the Global Monitoring for Environment and Security 
Service Element Program, promoted and financed by 
European Space Agency. PSI data processing involved the 

analyses of the standard deviation values, σ, of the average 
rate of deformation and the identification of the ground 
displacements trend (Sakkas et al. 2014). PSs points exhib-
iting high σ values were excluded from the data set, while 
PSs declining intensities from the surrounding points were 
initially identified as ground surfaces affected by sliding 
movements.

The next phase during the first action was to produce 
a map illustrating the kernel density of the PSs. The map 
allowed the group of experts to point out sites where slow 
to very slow movements is evident. Kernel Density, an Arc-
Map 10.1 function included in the Spatial Analyst Toolbox, 
was used to calculate the density per unit area of PSs using 
a quadratic kernel function to fit a smoothly tapered surface 
to each PSs dataset.

Finally, each expert constructed a landslide inventory 
map concerning the inventoried number and type of the 
landslides. These maps were later presented to the coordi-
nator. The coordinator compared the results and returned 
a new aggregated landslide inventory map to each expert 
for verification. If the aggregated landslide inventory map 
was approved, the landslide inventory map was finalized. If 

Fig. 3   a Extended complex failure (rock slides and rock falls) in thin 
bedded limestone, W of Kalamitsi Village; b rock falls along a thrust 
and creep movements at the scree materials, thin bedded limestone, 

SW of Kalamitsi Village; c, d over-sized rock falls at the Porto Kat-
siki beach, conglomerate limestone, northern end of the west coast-
line of the island
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not, a second attempt was given (Fig. 5). The process was 
stopped when all experts agreed on the type and number of 
landslide events.

Construction of the landslide susceptibility 
map

Taking into account the objectives of the study, the avail-
ability of the existing resources and data, the extension and 
complexity of the area and also the types of landslides the 
variables used for the landslide susceptibility assessment 
were selected. Specifically, lithology, slope angle, slope 
orientation, distance from tectonic features, distance from 
hydrographic network, and distance from road network were 
among the six variables that were selected for analysis.

Lithology is one of the most important factors, control-
ling ground movements, both rapid and slow (Koukis et al. 
2005). The group of experts, based on field observations as 
well as on their former experience assessed the weights of 
the different formations towards rock fall (rapid) and slide 
(slow) failures susceptibility. The orientation along with the 
angle of slopes plays a very important role in the concept of 
landslide manifestation as causative factors. This is because 
they are expressing the result of the combined influence of 
many parameters, such as the intensity of climatic condi-
tions, the weathering processes, the types and density of 

vegetation and the discontinuity pattern (internal geome-
try) of geological formations (Huma and Radulescu 1978; 
Carrara 1983). Also, slope angle directly affects on shear 
stress and indirectly controls surface water velocity (degree 
of saturation). The degree of saturation of slope forming 
material has significant control over the occurrence of 
landslides. Previous studies have shown that landslides are 
usually abundant on N, NNE and SSW orientated slopes, a 
fact that was attributed mainly to climatic factors (Koukis 
and Ziourkas 1991). In Greece, the SE–SW (135°–225°) 
oriented slopes are affected the most by rainfalls, due to 
the counterclockwise circulation of the clouds, and the 
NNW–NNE (315°–45°) oriented slopes are the most sun-
less. The increase of the slope steepness and the loss of sup-
port along the base of the slopes that is mainly observed 
during the construction of roads may reduce the safety factor 
and increase the possibility of a landslide if mitigation meas-
ures are absent. Faults are the structural features generating 
a zone of weakness, along which landslide susceptibility is 
highest. It has generally been observed that the probability 
of landslide occurrence increases for areas close to faults, 
which not only affect the morphology and the terrain per-
meability, but also contribute to the rock mass fragmenta-
tion and erosion generating a zone of weakness (Kouli et al. 
2010). Several studies have proven that proximity to river 
networks is an important factor controlling the occurrence of 
slides (Gokceoglu and Aksoy 1996). This can be attributed 

Fig. 4   Egremni beach before (a) and after (b) the 2015 earthquake. 
The beach was practically buried under the scree materials; c dam-
aged path to Porto Katsiki cape (Ganas et al. 2015); d over-sized rock 

fall entering a house. It caused the death of a 65–year-old woman; e 
rotational slide along the road connecting Agios Nikitas with Tsouk-
alades (Ganas et al. 2015)
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to the fact that morphological alterations caused by gully 
erosion may influence the initiation of landslides and also 
that maximum infiltration is generally observed on slopes 
that are near river networks. This process is further induced 
when the slopes of certain geological formations present 
increased permeability. Some of the necessary data sets were 
directly digitized from the original thematic maps (eg: geo-
logical maps) while others were derived from spatial GIS 
calculations.

The most essential stage of the implementation is the 
process of dividing each input, into classes. This task was 
performed by the coordinator. Expert knowledge and statis-
tical analysis can be useful means for defining the classes. 
Lithology was classified into seven categories based on the 
geotechnical behavior of the outcropping formations, as previ-
ously described (Fig. 2b). Slope angle was classified into five 
classes (< 15°, 16°–30°, 31°–45°, 46°–60° and > 61°) (Fig. 7a) 
and slope orientation into eight classes (0°–45°, 46°–90°, 
91°–135°, 136°–180°, 181°–225°, 226°–270°, 271°–315°, 

316°–360°) (Fig. 7b). Concerning the tectonic structures influ-
ence, multiple buffer zones (< 100, 101–500 and > 501 m) 
were generated around the fault lineaments taking into account 
the type (normal, uplift) and the activity (active, inactive) of 
the faults (Fig. 8a). A drainage buffer map was produced based 
on stream order and streams were buffered at a distances of 
< 50, 51–100 and > 101 m (Fig. 8b). Finally, a buffer zone of 
50 m to either side of dirt roads was applied, producing two 
classes, while similarly, multiple buffer zones were applied to 
paved roads producing three classes (within a distance of 50, 
51–100 and > 101 m) (Fig. 9). The calculation of the weights 
of the classified variables was conducted by applying a fuzzy 
logic approach, which is described in detail at the following 
paragraph.

Fig. 5   Flowchart of the developed methodology
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Application of a fuzzy logic approach 
for weighting the variables

The present weighting procedure utilizes a group of experts 
that use a fuzzy simple additive weighting model in order to 
weight each subclass as well as the main landslide-related 
variables (Chou et al. 2008; Kabassi 2009). A set of lin-
guistic variables was used for approximate reasoning and to 
represent the original domain set, while the weights of the 
five-level fundamental scales of importance were expressed 
via the trapezoidal fuzzy numbers (Zadeh 1965; Kaufmann 
and Gupta 1991; Zimmermann 2001) (Table 1).

The fuzzy simple additive weighting techniques based on 
the above conceptual model was applied as follows (Chou 
et al. 2008):

Step A Establishment of the group of experts, and selec-
tion of the variables that better express the Landslide Sus-
ceptibility Index.

Step B Determination of the reliability of each expert. 
The comparative importance of each individual expert 
must be considered to enhance the performance. If all the 
experts are considered at same expertise level, the group 
is thought as homogenous otherwise the group is called 
heterogeneous. The degree of reliability, dRt, is based on 
the values presented in Table 2, where dRt ϵ [0,1] and t = 1, 
2, …, k, the number of experts.

The final reliability weight of each expert is calculated 
by the equation:

t = 1, 2, …, k the number of experts.
Step C Introduction of the linguistic weighting variable 

for each expert (taking into account his reliability wdRt) 

(1)wdRt =
dRt

∑k

t=1
dRt

,

Fig. 6   a Classified PSI data sets from the ascending and descending orbits of ERS1/2, b descending orbits of ENVISAT
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in order to assess a variable’s importance and compute the 
aggregated fuzzy weights of individual variables (Table 1).

The calculation of the aggregated fuzzy variable weight 
was conducted as follows:

The W̃jt = (ajt, bjt, cjt, djt) is the fuzzy number of the jth 
variable expressed by the tth expert. The aggregated fuzzy 
variable weight for the jth variable is defined as 
W̃j = (aj, bj, cj, dj)  ,  w h e r e  aj =

�

∑k0

t=1
wdRt × ajt

�

 , 

bj =
�

∑k0

t=1
wdRt × bjt

�

  ,  cj =
�

∑k0

t=1
wdRt × cjt

�

  , 

dj =
�

∑k0

t=1
wdRt × djt

�

.

Step D Defuzzification the weights of individual vari-
ables, according to the centroid method and compute the 
normalized weights. The normalized weights are assigned 
to each variable through certain spatial functions produc-
ing the appropriate weighted raster files.

Landslide susceptibility mapping

The construction of the landslide susceptibility map was 
achieved by combining all the weighted variables according 
to Eq. (2) and the usage of Raster Calculator. Raster Calcu-
lator is a geoprocessing tool for performing raster analysis 
using a Map Algebra expression and is found within the 
Spatial Analyst Toolbox (ESRI 2011):

where n is the number of the landslide-related variables, 
wij the weight factors of the jth class of the ith variable and 
Wi the overall weight of the ith variable, respectively. The 
higher the membership value, the more susceptible is the 

(2)Lsi =
1

n

(

n
∑

i=1

k
∑

j=1

wijxWi

)

,

Fig. 7   Landslide conditioning factors: a slope angle; b slope orientation
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terrain unit to the occurrence of landslides and vice versa. 
The landslide susceptibility map was classified into five 
categories of susceptibility, namely very high susceptibil-
ity (VHS), high susceptibility (HS), moderate susceptibility 
(MS), low susceptibility (LS) and very low susceptibility 
(VLS), using the natural break method for the determina-
tion of the class intervals (Feizizadeh and Blaschke 2013).

Validation of the landslide susceptibility 
map

The final phase was the validation phase. According to 
Guzzetti et al. (2005, 2012), landslide susceptibility assess-
ments are spatial predictive models and should be evaluated 
against the information used to prepare the prediction. Prad-
han and Lee (2010b) considered a reliable validation metric, 
increasing the landslide density ratio when moving from 
low susceptible classes towards high susceptible classes. The 

validation process was performed by comparing the pro-
duced landslide susceptibility map with the actual landslide 
locations using prediction rate methods (Chung and Fabbri 
2003). For each susceptibility map the calculated area under 
curve (AUC) helped in estimating the predictive power of 
the model (Pham et al. 2015, 2016). It should be mentioned 
that all evaluations and comparisons concerning AUC values 
were based on a traditional academic point system (Bozikov 
and Zaletel-Kragelj 2010).

Results

During the first action, the construction of the landslide 
inventory map and specifically the phase of analyzing the 
PSI data, three datasets (one ascending ERS dataset, and two 
descending, ERS and ENVISAT datasets) were evaluated. 
Based on the methodology, PSs that exhibit high σ values 
were excluded from the data set, since they were considered 

Fig. 8   Landslide conditioning factors: a distance to tectonic features; b distance to hydrographic network
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as defective points affected by morphologic or atmospheric 
induced noise. For the ERS data sets, it came out that the PSs 
velocities present a rather uniform pattern all over the island 
with small values ranging from 0.11 up to 0.98 mm/year, for 
the descending data set and from 0.14 up to 1.40 mm/year 
for the ascending 1. A similar pattern was identified for the 

descending ENVISAT data, with values ranging from 0.13 to 
1.58 mm/year. According to the methodology, this indicates 
that all available data could be accepted for further analysis. 
The next phase was to estimate the linear trend of each PS 
by applying kernel density function and to select those that 
present intensive variability of the displacement rate, with 
respect to the surrounding PSs, pointing to slow landslide 
movements. The selected data set consisted of 1745 PSs with 
displacement rates varying from − 23.0 to − 2.0 mm/year. 
Figure 10a illustrates the kernel density map of these points, 
indicating the areas with sliding displacements with respect 
to the surrounding points. Finally, after the evaluation of the 
above described data, the landslide inventory map approved 
by the experts, for both types of landslides, is presented in 
Fig. 10b. A total number of 174 movements were identified, 
with 45 classified as slow to very slow movements and the 
remaining 129 as rapid movements.

As proposed by the developed methodology, during the 
second action, a group of three equally reliable (dR = 1) 
experts assigned to each landslide-related variable (Tables 3, 
4) as well as to each variable’s sub-class (Tables 5, 6) a lin-
guistic value in order to assess the landslide susceptibility. 
Evaluating the final normalized weights, one conclusion is 
that, the most significant variables with equal significance 
contributing to the manifestation of rapid moving masses 
(rock falls, rock slides), were the lithological units (0.2111) 
and the slope angle (0.2111) followed by the distance to 
road network (0.1972) and distance from the tectonic fea-
tures (0.1833). Limestone formations having considerable 
percentage of flat-pebble conglomerates were evaluated 
as the most susceptible formations. Also, areas with slope 
angle greater than 61°, close to the road network and close to 
fault zones were ranked as the most susceptible (Table 5). In 
regard to the slow and very slow movements, the lithological 
units (0.2375) and distance to road network (0.2000) were 
the most significant variables followed by the distance from 
the hydrographic network (0.1844) and the distance from the 
tectonic features (0.1625). Schist formations and flyschoid 
sediments were the most susceptible formations according 
to the calculated normalized weight (Table 6).

Based on the estimated normalized weights, two landslide 
susceptibility maps were produced in which five categories 
of susceptibility were introduced (Fig. 11a, b). From the 

Fig. 9   Landslide conditioning factors: distance to road network

Table 1   Linguistic variables, crisp and fuzzy numbers for the impor-
tance weight

Linguistic variables Crisp numbers Fuzzy numbers

Very low importance 1 (0, 0, 0, 3)
Low importance 2 (0, 3, 3, 5)
Medium importance 3 (3, 5, 5, 7)
High importance 4 (5, 7, 7, 10)
Very high importance 5 (7, 10, 10, 10)

Table 2   Degree of expert’s reliability

Linguistic variables Degree of 
experts reliabil-
ity (dR)

Low reliability 0.50
Medium reliability 0.75
High reliability 1.00
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landslide susceptibility map concerning rapid movements, 
it can be observed that high values of susceptibility were 
mainly located at the western areas of the island. On the 
contrary, high values of susceptibility concerning slow to 
very slow movements cover the entire island and are mainly 
located within areas covered by soil or soil-like formations, 

along the road and river network. Concerning the spatial 
distribution of the VHS class for slow to very slow move-
ments and with respect to the morphology of the region, 
almost 88% was estimated to be in areas with slope angle 
less than 30°. For rapid movements the relevant percentage 
was about 82% and concerns areas of slope angles lower 

Fig. 10   a The kernel density of the final PSI data set including the PSs that presents intensive variability of the displacement rate, with respect to 
the surrounding points; b the landslide inventory map

Table 3   The normalized weights of the landslide-related variables for rapid movements

Thematic layer A expert 
(dR = 1.0)

B expert 
(dR = 1.0)

C expert 
(dR = 1.0)

Aggregated fuzzy weights Defuzzified values Normal-
ized 
weights

Lithological units 4 5 5 19/3, 27/3, 27/3, 30/3 8.4444 0.2111
Slope angle 5 4 5 19/3, 27/3, 27/3, 30/3 8.4444 0.2111
Slope orientation 3 3 1 6/3, 10/3, 10/3, 17/3 3.6667 0.0917
Distance from tectonic features 4 4 4 5, 7, 7, 10 7.3333 0.1833
Distance from hydrographic network 2 3 3 6/3, 13/3, 13/3, 19/3 4.2222 0.1056
Distance to road network 5 4 4 17/3, 24/3, 24/3, 30/3 7.8889 0.1972
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than 45° with the majority covered by areas that have slope 
angles between 30° and 45°.

For the first map, which illustrates the landslide suscepti-
bility concerning rapid movements (Fig. 11a), from a total of 
129 failures, 88 (68.21%) were classified into the VHS class, 
32 (24.80%) into the HS class and 9 (6.97%) into the MS 
class, indicating a very good performance. For the second 
map, which illustrates the landslide susceptibility concern-
ing the slow to very slow movements (Fig. 11b), from a total 
of 45 failures, 24 (53.34%) were classified into the VHS 
class, 11 (24.45%) into the HS class and 10 (22.23%) into 
the MS class. It was also estimated that about 12.83% of 
the total area was classified as very high susceptibility with 
regard to slow to very slow movements, while 10.69% of the 
total area was classified in the highest class of susceptibility 
with regard to rapid movements (Fig. 12).

Figure 13a, b illustrates the prediction curve rates for 
the two models after the implementation of the fuzzy logic 
approach. As it can be seen, for the rapid movements, the 
AUC values are relatively similar among the experts (0.793, 
0.809 and 0.844), indicating a good prediction capability. 
For the slow to very slow movements the AUC values are 
also similar (0.734, 0.731, 0.797) indicating, again, a fair to 
good prediction capability. However, the AUC values that 
represent the results from the developed methodology are 
estimated to be much higher, 0.873 and 0.812, respectively. 
The estimated values indicated that both models had a better 
prediction capability, in comparison with those produced 
based on each expert opinion.

Discussion

Several studies support the finding of the present study that 
remote sensing techniques and field observations are of great 
assistance for the detection of slow to very slow movements 
and the construction of an inventory map (Metternicht et al. 
2005; Canuti et al. 2007; Parcharidis et al. 2009; Lu et al. 
2012). Although PSI data are only valid to identify slow to 
very slow mass movements, they represent a powerful tool 

allowing better understanding of the geometry and kinemat-
ics of movements that are not always easy to be identified 
in the field. The relevant advantage gained from implemen-
tation of remote sensing techniques regards the rapid and 
easily updatable acquisitions of data over wide areas (Canuti 
et al. 2007). The produced kernel density map assisted the 
group of experts, in pointing out areas where slow to very 
slow movements are evident. According to Lu et al. (2012) 
study, who presented an innovative approach for detecting 
extremely slow moving landslides based on kernel density 
estimation, the advantage of the approach is that it takes 
both PS velocity and spatial distribution of the PSs into 
consideration.

Based on the results of the fuzzy logic approach followed 
in the present study and the opinion of experts, the factor 
lithology played the most significant role in the evolution 
of rapid and slow to very slow movements. This is in agree-
ment with findings from other studies in which lithology is 
presented as one of the most important factor controlling 
ground movements (Koukis and Ziourkas 1991; Koukis et al. 
2005; Duman et al. 2006; Henriques et al. 2015). Accord-
ing to Guzzetti et al. (1996) the evolution of landslides are 
controlled by the relative position of sedimentary forma-
tions and tectonic discontinuities, by the relative presence 
of hard versus weak or soft rocks, and also by the spatial 
distribution of permeable and impermeable layers. Similarly, 
Ercanoglou and Temiz (2011) states that lithology domi-
nantly controls the type and mechanism of landslides. In 
the present study, the contribution of each lithological unit 
was weighted differently regarding the failure mechanism. 
The lithological unit that involves carbonate formations was 
weighted higher regarding their susceptibility to rock falls 
and low to slides. Although severely fractured carbonate for-
mations can be subjected to rotational or transitional slides 
presenting a soil-like behavior, field survey data showed that 
rapid rock falls or debris flows mainly occur within those 
formations. On the other hand, flyschoid formations were 
weighted higher regarding their susceptibility to slow to very 
slow movements and low to rapid movements. As reported 
by several studies flyschoid formations in the Greek territory 

Table 4   The normalized weights of the landslide-related variables for slow to very slow movements

Thematic layer A expert 
(dR = 1.0)

B expert 
(dR = 1.0)

C expert 
(dR = 1.0)

Aggregated fuzzy weights Defuzzified values Normal-
ized 
weights

Lithological units 4 5 5 19/3, 27/3, 27/3, 30/3 8.4444 0.2375
Slope angle 3 2 3 6/3, 13/3, 13/3, 19/3 4.2222 0.1188
Slope orientation 2 2 3 3/3, 11/3, 11/3, 17/3 3.4444 0.0969
Distance from tectonic features 3 4 3 11/3, 17/3, 17/3, 24/3 5.7777 0.1625
Distance from hydrographic network 3 4 4 13/3, 19/3, 19/3, 27/3 6.5555 0.1844
Distance to road network 5 3 4 15/3, 22/3, 22/3, 27/3 7.1111 0.2000
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Table 5   Landslide-related variables for rapid movements

Thematic layer Classes A expert 
(dR = 1.0)

B expert 
(dR = 1.0)

C expert 
(dR = 1.0)

Aggregated fuzzy 
weights

Defuzzified 
values

Nor-
malized 
weights

Lithological units Recent alluvial 
deposits (Holo-
cene)

1 2 1 0, 3/3, 3/3, 11/3 1.5555 0.0461

Recent scree and 
talus cones

2 1 1 0, 3/3, 3/3, 11/3 1.5555 0.0461

Flyschoid 
sediments (blue 
marls, sand-
stones sandy 
clays)

2 3 3 6/3, 13/3, 13/3, 
19/3

4.2222 0.1250

Limestone 
formations 
with flat-pebble 
conglomerates

5 5 5 7, 10, 10, 10 8.3333 0.2467

Limestone forma-
tions

4 4 4 5, 7, 7, 10 7.3333 0.2171

Dolomite forma-
tions

3 4 3 11/3, 17/3, 17/3, 
24/3

5.7777 0.1711

Schist formations 3 3 3 3, 5, 5, 7 5.0000 0.1480
Slope angle < 15° 1 1 1 0, 0, 0, 3 1.0000 0.0396

16°–30° 1 3 3 6/3, 10/3, 10/3, 
17/3

3.6666 0.1454

31°–45° 2 3 4 8/3, 15/3, 15/3, 
22/3

5.0000 0.1982

46°–60° 3 4 5 15/3, 22/3, 22/3, 
27/3

7.1111 0.2819

> 61° 5 4 5 19/3, 27/3, 27/3 
30/3

8.4444 0.3348

Slope orientation 0°–45° 4 5 3 15/3, 22/3, 22/3, 
27/3

7.1111 0.1370

45°–90° 3 3 3 3, 5, 5, 7 5.0000 0.0964
90°–135° 2 1 3 3/3, 8/3, 8/3, 15/3 2.8888 0.0557
135°–180° 4 3 3 11/3, 17/3, 17/3, 

24/3
5.7777 0.1113

180°–225° 4 5 4 17/3, 24/3, 24/3 
30/3

7.8888 0.1520

225°–270° 3 3 5 13/3, 20/3, 20/3, 
24/3

6.3333 0.1221

270°–315° 5 4 5 19/3, 27/3, 27/3 
30/3

8.4444 0.1627

315°–0° 5 5 4 19/3, 27/3, 27/3 
30/3

8.4444 0.1627

Distance from 
tectonic features

< 100 m 5 (active + over-
thrust-thrust)

5 (active + over-
thrust-thrust)

5 (active + over-
thrust-thrust)

7, 10, 10, 10 9.0000 0.3253

4 (non-active) 4 (non-active) 5 (non-active) 17/3, 24/3, 24/3 
30/3

7.8888 0.2851

101–500 m 4 (all) 2 (all) 2 (all) 5/3, 13/3, 13/3, 
20/3

4.2222 0.1526

4 (overthrust-
thrust)

3 (overthrust-
thrust)

2 (overthrust-
thrust)

8/3, 15/3, 15/3, 
22/3

5.0000 0.1807

> 501 m 2 1 1 0, 3/3, 3/3, 11/3 1.5555 0.0562
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are mainly covered by a thick weathering mantle and are 
more prone to slides and creep movements (Koukis et al. 
2005; Rozos et al. 2008; Sabatakakis et al. 2013).

Based on the produced landslide susceptibility map con-
cerning rapid movements, over 50% of the area classified 
as very high susceptibility is covered by limestone forma-
tions having a slope angle greater than 30°. This is because 
limestones, in the Ionian and Paxos geotectonic zone, are 
thick-bedded formations, sometimes fractured with multiple 
joint systems that, in the western part of the island, form 
extensive masses of cones of scree materials that can be 
observed along the base of steep calcareous slopes. Simi-
lar to our results, Papathanassiou et al. (2013) reported that 
the sedimentary rocks covering west- and northwest-facing 
slopes appear highly fractured with low mechanical proper-
ties and in those areas landslide susceptibility is expected 
to be higher. Concerning slow to very slow movements and 
based on the analysis of the produced landslide susceptibility 
map, about 30% of the area classified as very high suscepti-
bility, is covered by Miocene molassic formations, 16% by 
Upper Triassic limestones and 15% by Miocene marls. The 
molassic formations and the marls were mostly covered by a 
thick weathering mantle subjected to sliding or creep move-
ments, especially during periods of prolonged precipitation. 
This is in agreement with the general observed behavior of 
these formations in which the weathering process and the 
decrease in shear strength caused by rainfall is responsi-
ble for the manifestation of landslides (Christaras 1997). 
Respectively, the limestone formations that cover relatively 
gentle slopes (< 30°), present the same slow movements.

Slope angle was ranked as the second most significant 
factor, concerning rapid movements. Slopes are formed by 

the combined influence of many parameters, such as the 
intensity of climatic conditions, the weathering processes, 
the types and density of vegetation, and the discontinuity 
pattern of geological formations (Huma and Radulescu 
1978; Maharaj 1993). Considering that the upper limit of 
friction angles for silty soils and all other mixed soil for-
mations is 30° and 45°, respectively (Rozos et al. 2008), 
slow soil failures can be rarely expected along slopes with 
angles steeper than 45°. On the contrary, rock falls had 
been observed in the present study with increasing intensity 
in steeper slopes. Similar to our findings, Papathanassiou 
et al. (2013) reports that landslide activity is more frequent 
within areas covered by slope angles higher than 30°, while 
the highest frequency is observed in areas with slope angle 
between 40° and 50°.

The distance from road network based on the results of 
the fuzzy logic approach was ranked as the second most 
significant factor, concerning slow to very slow movements. 
This could be justified by the fact that the loss of support at 
the base of the slopes caused by the construction of road seg-
ments, reduces the safety factor, increasing the possibility of 
landslides. Also, a road segment may affect in very different 
ways surface runoff, and depending on its location, it may 
serve as a source of landslides (Pradhan et al. 2010a). From 
the visual analysis of the produced landslide susceptibility 
map, it appears that several portions of the road network are 
highly susceptible, which is in accordance with previous 
studies highlighting the increased landslide susceptibility 
near the road network (Papathanassiou et al. 2013; Ganas 
et al. 2015).

The results of the present study confirmed the initial 
belief that a group of experts utilizing fuzzy logic approach 

Table 5   (continued)

Thematic layer Classes A expert 
(dR = 1.0)

B expert 
(dR = 1.0)

C expert 
(dR = 1.0)

Aggregated fuzzy 
weights

Defuzzified 
values

Nor-
malized 
weights

Distance from 
hydrographic 
network

< 50 m 5 5 5 7, 10, 10, 10 9.0000 0.4880
51–100 m 3 2 4 8/3, 15/3, 15/3, 

22/3
5.0000 0.2711

101–250 m 2 2 3 3/3, 11/3, 11/3, 
17/3

3.4444 0.1867

> 251 m 1 1 1 0, 0, 0, 3 1.0000 0.0542
Distance from 

road network
Unsurfaced (buffer)
 < 50 m 5 4 4 17/3, 24/3, 24/3 

30/3
7.8888 0.2630

 > 51 m 3 3 2 6/3, 13/3, 13/3, 
19/3

4.2222 0.1407

Surfaced-highway
 < 50 m 5 5 5 7, 10, 10, 10 9.0000 0.3000
 51–100 m 3 4 4 13/3, 19/3, 19/3, 

27/3
6.5555 0.2185

 > 101 m 1 1 3 3/3, 5/3, 5/3, 13/3 2.3333 0.0778
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Table 6   Landslide-related variables for slow to very slow movements

Thematic layer Classes A expert 
(dR = 1.0)

B expert 
(dR = 1.0)

C expert 
(dR = 1.0)

Aggregated fuzzy 
weights

Defuzzified 
values

Nor-
malized 
weights

Lithological units Recent alluvial 
deposits (Holo-
cene)

1 1 1 0, 0, 0, 3 1.0000 0.0294

Recent scree and 
talus cones

2 3 3 6/3, 13/3, 13/3, 
19/3

4.2222 0.1242

Flyschoid 
sediments (blue 
marls, sand-
stones sandy 
clays)

4 5 4 17/3, 24/3, 24/3 
30/3

7.8888 0.2320

Limestone 
formations 
with flat-pebble 
conglomerates

3 4 3 11/3, 17/3, 17/3, 
24/3

5.7777 0.1699

Limestone forma-
tions

3 2 2 3/3, 11/3, 11/3, 
17/3

3.4444 0.1013

Dolomite forma-
tions

2 2 2 0, 3, 3, 5 2.6666 0.0784

Schist formations 5 5 5 7, 10, 10, 10 9.0000 0.2647
Slope angle < 15° 4 5 2 12/3, 20/3, 20/3, 

25/3
6.3333 0.2184

16°–30° 5 4 4 17/3, 24/3, 24/3 
30/3

7.8888 0.2720

31°–45° 3 3 5 13/3, 20/3, 20/3, 
24/3

6.3333 0.2184

46°–60° 4 2 3 8/3, 15/3, 15/3, 
22/3

5.0000 0.1724

> 61° 3 2 2 3/3, 11/3, 11/3, 
17/3

3.4444 0.1188

Slope orientation 0°–45° 4 5 4 17/3, 24/3, 24/3 
30/3

7.8888 0.1667

45°–90° 3 2 1 3/3, 8/3, 8/3, 15/3 2.8888 0.0610
90°–135° 2 1 1 0, 3/3, 3/3, 11/3 1.5555 0.0329
135°–180° 4 3 3 11/3, 17/3, 17/3, 

24/3
5.7777 0.1221

180°–225° 5 4 4 17/3, 24/3, 24/3 
30/3

7.8888 0.1667

225°–270° 3 3 5 13/3, 20/3, 20/3, 
24/3

6.3333 0.1338

270°–315° 5 4 5 19/3, 27/3, 27/3 
30/3

8.4444 0.1784

315°–0° 4 4 3 13/3, 19/3, 19/3, 
27/3

6.5555 0.1385

Distance from 
tectonic features

< 100 m 5 (active + over-
thrust-thrust)

5 (active + over-
thrust-thrust)

5 (active + over-
thrust-thrust)

7, 10, 10, 10 9.0000 0.3164

4 (non-active) 4 (non-active) 5 (non-active) 17/3, 24/3, 24/3 
30/3

7.8888 0.2773

101–500 m 3 (all) 2 (all) 3 (all) 6/3, 13/3, 13/3, 
19/3

4.2222 0.1484

4 (overthrust-
thrust)

3 (overthrust-
thrust)

3 (overthrust-
thrust)

11/3, 17/3, 17/3, 
24/3

5.7777 0.2031

> 501 m 2 1 1 0, 3/3, 3/3, 11/3 1.5555 0.0547
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Table 6   (continued)

Thematic layer Classes A expert 
(dR = 1.0)

B expert 
(dR = 1.0)

C expert 
(dR = 1.0)

Aggregated fuzzy 
weights

Defuzzified 
values

Nor-
malized 
weights

Distance from 
hydrographic 
network

< 50 m 5 5 5 7, 10, 10, 10 9.0000 0.4500
51–100 m 4 3 4 13/3, 19/3, 19/3, 

27/3
6.5555 0.3278

101–250 m 2 2 3 3/3, 11/3, 11/3, 
17/3

3.4444 0.1722

> 251 m 1 1 1 0, 0, 0, 3 1.0000 0.0500
Distance from 

road network
Unsurfaced (buffer)
 < 50 m 5 4 4 17/3, 24/3, 24/3 

30/3
7.8888 0.2817

 > 51 m 2 2 2 0, 3, 3, 5 2.6666 0.0952
Surfaced-highway
 < 50 m 5 5 5 7, 10, 10, 10 9.0000 0.3214
 51–100 m 3 3 4 11/3, 17/3, 17/3, 

24/3
5.7777 0.2063

 > 101 m 2 2 2 0, 3, 3, 5 2.6666 0.0952

Fig. 11   a The landslide susceptibility map of the slow to very slow failures; b the landslide susceptibility map of the rapid failures
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can produce a more reliable and accurate landslide sus-
ceptibility map. This result is in accordance with previous 
studies concerning the conclusion that the averaged “judg-
ment” of a group of experts appears to be more accurate 
than the individual judgment of each expert (Lee and Jones 
2004; Chalkias et al. 2016). Moreover, according to Zhu 
et al. (2014) experts’ knowledge has been accepted to be 
more reliable, consistent, and generally applicable when 
the knowledge is formalized under fuzzy logic, as it is in 
our case. Feizizadeh et al. (2014), highlighted that fuzzy 
logic approach can be employed to address the presence of 
vagueness and imprecision of information and also to cap-
ture the fuzziness of the experts’ judgment. In both cases of 
rapid and slow to very slow movements, the prediction capa-
bilities of the developed models are increased with respect 
to the prediction capability that individually an expert has 
achieved. The outcomes of the validation procedure con-
firmed the efficiency of the developed methodology as it 
presents approximately a 7% increase in the AUC values 
when the simple fuzzy additive weighting model is utilized.

Conclusions

In the present study, two landslide susceptibility maps con-
cerning the Island of Lefkada, Greece, were produced, pro-
viding qualitatively the probable occurrence of two different 
types of failure: rapid moving failures involving rock falls 
and rock slides and slow to very slow failures involving earth 
slides and creep movements. The landslide inventory map 
for both type of failures, was constructed based on a meth-
odology approach that uses the available landslide records, 
aerial photos and satellite images, PSI data and fieldwork 
data. Specifically, the inventory map produced by combin-
ing remote sensing techniques and field observations, was 
of great assistant and proved to be an accurate tool for the 
detection of slow to very slow movements. Concerning the 

ranking of the variables in accordance with their significance 
in estimating the landslide susceptibility, the outcomes of 
the study indicated the following: regarding the rapid mov-
ing failures, the most significant variables were lithology 
and slope angle followed by the distance from road net-
work and from tectonic features. The distance from hydro-
graphic network and slope orientation were identified as the 
variables with the least significance. Regarding the slow 

Fig. 12   Percentage of landslide susceptibility classes for both type of 
movements

Fig. 13   Prediction rate curves from each expert and overall per-
formance, for a rapid ground movements and b slow to very slow 
ground movements
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to very slow movements, lithology and distance from the 
road network were the most significant variables followed 
by distance from hydrographic network and from tectonic 
features. Slope angle and slope orientation were identified 
as the variables with the least significance with respect to 
landslide susceptibility. The good prediction capability of 
the models was confirmed during the validation process. In 
addition, the initial belief that a group of experts following 
a fuzzy logic approach could produce a more reliable and 
accurate landslide susceptibility map, was also confirmed. 
In both cases, of rapid and slow to very slow movements, 
the prediction capabilities of the developed models were 
increased with respect to the prediction capability that each 
expert had achieved. From the outcomes of the study, it can 
be concluded that the developed fuzzy logic approach could 
be efficiently used for landslide susceptibility mapping and 
for estimation purposes in spatial predictive models.
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