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Abstract
The risk analysis on karst groundwater pollution is a research hotspot in current international hydrogeological field as well 
as the premise of preventing and controlling groundwater pollution. According to the characteristics of groundwater pol-
lution in the typical study area, the study selected main-control factors of risk evaluation on karst groundwater pollution 
in mountainous areas at first. Based on this, the research determines the method for quantifying the factors and established 
a risk evaluation index system for karst groundwater pollution. To overcome drawbacks of the method for determining 
weights of factors in traditional evaluation method, the study determines the structure of the artificial neural network model 
by combining the selected evaluation factors. And also, the weight coefficients of evaluation factors on each layer are cal-
culated. On this basis, the model for evaluating the risk of karst groundwater pollution is established. Moreover, the risk 
zoning evaluation map of groundwater pollution in the typical study area is prepared after conducting the weighted stacking 
of various sub-layers using the geographic information system. The method applied in the study can comprehensively and 
objectively reflect that the groundwater pollution is controlled by multiple factors and reveal the nonlinear characteristic 
of the pollution process. Additionally, the evaluation result is institutive and visible, which can provide a certain basis and 
reference for relevant researches.

Keywords Karst groundwater · Pollution · Risk evaluation · Artificial neural network (ANN) · Geographic information 
system (GIS)

Introduction

Generally, the soil layer of karst areas in southwest China is 
thin with a surface-ground bilayer structure, so that it is easy 
for pollutants to enter into aquifers through weak overlying 

strata and sinkholes. Compared with other non-karst aqui-
fers, the karst groundwater pollution is increasingly signifi-
cant and, therefore, how to reasonably and effectively pro-
tect karst groundwater has been an urgent problem to solve 
(Kaçaroǧlu 1999; Shi et al. 1999; Tiwari et al. 2012; Zhang 
et al. 2017). The risk prediction of groundwater pollution 
is an important mean to prevent the groundwater pollution. 
Carrying out the risk identification on groundwater pollu-
tion not only can comprehensively explore the relationship 
between groundwater pollution and human social practices 
but also can timely determine the key areas of groundwater 
pollution, which provides a scientific basis for the manage-
ment and protection of regional groundwater resources (Li 
et al. 2015, 2016; Masciopinto et al. 2017; Kourakos et al. 
2012).

As an open system, the groundwater system shows a 
close and complex relation with the external factors and, 
therefore, the risk evaluation on groundwater pollution 
is a complex problem (Secunda and Collin 1998; Tiwari 
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et al. 2015; Sangam et al. 2015). It is found through lit-
erature review that hydrogeologists predicted groundwater 
pollution risk using different methods from different per-
spectives according to actual conditions of various areas 
due to complexities of evaluation factors and limitations 
of research levels. For example, the United States Envi-
ronmental Protection Agency put forward the DRASTIC 
evaluation model in 1987, which is mainly designed for 
investigating the vulnerability evaluation of pores and 
fractured aquifers (Aller et al. 1987); Martin and Abra-
ham of Israel comprehensively considered the influences 
of crucial environmental factors and land use intensity in 
risk evaluation on groundwater pollution. The four basic 
environmental factors involve hydrology, landform, soil 
and vegetation (Martin and Abraham 2001); Sappa and 
Vitale of Italy has established a pollution impact map for 
different agrochemicals through water quality simulation 
mode base on geographic information system (GIS), and 
chose different key parameters to evaluate groundwater 
pollution risk (Sappa and Vitale 2001); The UK uses the 
GOD method designed by Foster and Skinner in the risk 
assessment of groundwater source pollution (G is the 
groundwater outlet, O is the overall lithology, D is the 
depth of the groundwater) (Foster and Skinner 1995); 
Liu et al. constructed a risk assessment index system for 
groundwater pollution including influencing factors such 
as the exposure of the evaluation subject, anti-pollution 
of unsaturated zone, aquifer vulnerability and so on. In 
addition, the weight of each evaluation index was deter-
mined by analytic hierarchy process (AHP) method (Liu 
et al. 2012). Current researches have realized significant 
achievements about risk prediction on non-karst ground-
water pollution while it is difficult to establish a uniform 

evaluation index system owing to the motion laws of karst 
groundwater in different karst areas show great disparities. 
Therefore, the subjective (such as Delphi, AHP) and objec-
tive (such as entropy, grey relational analysis) weighting 
methods are generally employed to determine weights of 
factors in current risk prediction models of groundwater 
pollution. However, these methods show shortcomings: 
subjectivity is strong and weights cannot reflect the actual 
significance of factors. To solve the aforementioned prob-
lems, the study established a risk evaluation system for 
karst groundwater pollution applicable to karst areas based 
on systematically investigating the typical study area. The 
study also introduced artificial neural network (ANN) 
method with learning mechanism containing weights. On 
this basis, the risk of karst groundwater pollution in Huaxi 
district of Guiyang city, Guizhou province, China, was 
evaluated using the data processing and display functions 
of the GIS, attaining a favorable effect. The research can 
provide bases and references for similar researches.

General situation of the study area

Geographical location

Huaxi district is located in southwest of Guiyang city 
in Guzihou province within the geographic coordi-
nate of 106°26′40″–106°41′56″ (east longitude) and 
26°15′28″–26°31′03″ (north latitude). The overall research 
area is 359.79 km2. The geographic location is displayed 
in Fig. 1.

Fig. 1  Geographic location
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Meteorological and hydrological conditions

The study area is located in the central Guizhou plateau, 
which has the subtropical plateau monsoon moist climate in 
the northern hemisphere with various characteristics of pla-
teau, humid and monsoon climates. According to statistical 
observation data of Huaxi meteorological station since 1956, 
the average precipitation for years, the annual maximum 
and minimum precipitations in the study area were 1099.4, 
1450.9 (in 2000) and 765.6 mm (in 1986), respectively. The 
precipitation mainly takes place in the summer half year, 
accounting for about 77.6% of the total.

The study area is located in the upstream zone of Qing-
shui River, a major tributary in Wujiang River of Yangtze 
River basin, which mainly includes Chetian, Lengfan, Gan 
and Kailun rivers, with the total runoff in the length of 
60.1 km and the overall area of 225.91 km2.

Topography

Located in the middle section of Miaoling Mountain, the 
study area gradually declines from southwest to northeast 
in terrain, which mainly appears as karst landform. The 
combination forms mainly include slopes, depressions, and 
clusters and valleys as well as eroded middle–low mountains 
and denudated hills with relative smaller areas.

Aquifer rock formations

The primary exposed strata in the study area from old to new 
are separately displayed as Permian, Triassic and Quater-
nary systems. According to the lithology of exposed strata 
and characteristics of aquifer media, the groundwater in the 
area is divided into carbonate karst water and pore water 
in loose Quaternary rocks, where the former can be fur-
ther divided into fracture–cavern water, karst cave–fracture 

water, and dissolved pore–fissure water. The aquifer rock 
formations and the water-abundance characteristics are 
shown in Table 1.

Chemical properties of groundwater

The pH value of groundwater in the study area generally 
ranges from 7.2 to 8.04, appeared as neutral–weakly alka-
line water. The total hardness (as  CaCO3) is in the range of 
286– 611 mg/L generally, shown as slightly–extremely hard 
water. As to the water quality, the groundwater in the study 
area mainly consists of various cations (such as  Ca2+,  Mg2+, 
 K+ and  Na+) and anions (including  HCO3−,  SO42− and  Cl−) 
in chemical compositions. The chemical types of ground-
water are mainly shown as  HCO3

−Ca,  HCO3
−Ca·Mg and 

 HCO3·SO4
−Ca.

The risk evaluation indexes of groundwater 
pollution

Compared with other groundwater systems, the karst 
groundwater system in Huaxi district shows significant char-
acteristics: non-uniform aquifer media, diverse landforms, 
large topographic slope and poor contamination resistance 
of unsaturated zones. Consequently, the optimal evaluation 
effect cannot be acquired by simply applying current index 
systems. Thus, by fully investigating the characteristics of 
groundwater environment, the study established a risk evalu-
ation index system for karst groundwater pollution in the 
study area from inherent and special factors of groundwater. 
The cause of the groundwater pollution is the conjunction 
of two kinds of factors, the first is the inherent factor which 
refers to the sensitivity to pollution of groundwater in a natu-
ral state and it is static, immutable and uncontrollable; the 
second is the special factor which refers to the sensitivity 

Table 1  Water abundance of aquifer rock formations

Types of aquifer rock formation Strata Symbol Lithology

Karst aquifer rock formation Fracture–cavern karst water Qixia and Maokou formations P2q + m Limestone, cherty limestone, 
silicalite and mudstone

Karst cave–fracture water Guiyang formation T2gy Argillaceous dolomite and 
limestone

Huaxi formation T2h Dolomite, argillaceous dolomite 
and limestone

Daye formation T1d Limestone
Changxing formation P3c Argillaceous limestone and 

bioclastics
Wujiaping formation P3w Shale with limestone, silicalite, 

sandstone and coal
Dissolved pore–fissure water Anshun formation T1a Dolomite and limestone

Aquifer rock formation of pore water in loose rocks Quaternary Q Clay, sand, conglomerate, etc.
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to specific pollutants or human activities, and it is related 
to human activities and is dynamic and can be controlled. 
Then each evaluation factor was marked with a certain score 
(1–10) in different ranges. The larger the score is, the higher 
the risk degree (Tables 2, 3). The details are displayed as 
follows:

Inherent evaluation factors of groundwater

(1) Types of aquifers
The types of aquifers control the runoff path and length 

of groundwater, determine the contact condition of pol-
lutant-bearing groundwater and aquifers and influence the 
migration, adsorption, dilution and dispersion of pollut-
ants in the groundwater. Generally, the larger the scales 

and numbers of fractures and karst caves contained in an 
aquifer are, the stronger the permeability, the weaker the 
filtering capacity for pollutants and the poorer the deg-
radation and dilution degrees. According to the drilling 
and field investigation, the types of aquifers in the study 
area can be divided into carbonate, clastics and carbon-
ate–clastic aquifers.

(2) Topographic slope
The topographic slope influences the rainfall infiltra-

tion. Under a low slope, water gently flows and plenty of 
pollutants are infiltrated owing to the rainfall has sufficient 
contact areas with the ground surface so as to pollute the 
groundwater. On the contrary, the rainfall flows out as sur-
face runoff so that there is a small quantity of infiltrations 
of rainfall with pollutants under a large topographic slope. 

Table 2  Division of karst 
development degrees

Symbol Description of lithology Karst cor-
rosion ratio 
(%)

Karst development degree

J1zl Sandy shale with limestone 0–2 Weak
T3e + s Sandstone and siltstone 0–1 Weak
T2gy Argillaceous dolomite and limestone 3–10 Weak–moderate
T2h Dolomite, argillaceous dolomite and limestone 10–15 Moderate
T1a Dolomite and limestone 15–30 Moderate–strong
T1d Limestone 15–30 Moderate–strong
P3c Argillaceous limestone and bioclastics 0–3 Weak
P3w Shale with limestone, silicalite, sandstone and coal 0–3 Weak
P2m Limestone, cherty limestone, silicalite and mudstone > 30 Strong
P2q Cherty limestone and intercalation of muddy lime-

stone in the lower part
> 30 Strong

Table 3  Scoring criteria of inherent evaluation indexes of groundwater

Topographic 
slope (°)

Scores Thickness of 
unsaturated zone 
(m)

Scores Precipitation 
(mm)

Scores Types of aqui-
fers

Scores Average hydrau-
lic conductivity 
(m/d)

Scores

< 5 10 2.00–3.00 9 990–1020 2 Carbonate rocks 4 0.05–0.10 1
6–15 9 3.01–5.00 7 1020–1050 4 Carbonate rocks 

with clastics
3 0.11–0.15 3

16–25 5 5.01–7.00 5 1050–1080 6 Clastics 2 0.16–0.20 5
26–35 3 7.01–9.00 3 1080–1110 8 0.21–0.25 7
36–62 1 9.01–10.5 1 1110–1140 10 0.26–0.40 9
Karst landform 

types
Scores Types of media of 

unsaturated zones
Scores Types of media of unsaturated 

zones
Scores Karst develop-

ment degree
Scores

Karst depression 9 Sand shale with lime-
stone

5 Dolomite and limestone 8 Strong 10

Karst valley 6 Sandstone and siltstone 5 Argillaceous dolomite and lime-
stone

8 Moderate–
strong

8

Slope 5 Limestone 6 Dolomite and argillaceous dolo-
mite

8 Moderate 6

Middle–low 
mountains

3 Shale with argilla-
ceous limestone

6 Karst limestone 10 Weak–moderate 4

Eroded hills 1 Weak 2
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Majorities of the study area show gentle terrain with the 
slope of 1°–15° while local areas are steep with the slope 
of 36°–62°.

(3) Thickness of unsaturated zones
The thickness of unsaturated zones determines the path 

and time of pollutants from the ground surface to the aqui-
fer as well as the degradation and adsorption degrees. In 
general, the thicker an unsaturated zone is, the longer and 
the more complex the infiltration path of pollutants. Addi-
tionally, the probability that pollutants are degraded and 
adsorbed increases with the growing contact time between 
infiltration pollutants and unsaturated zones. Therefore, 
the thickness of the unsaturated zone exerts a protec-
tion effect on the groundwater system and the thicker an 
unsaturated zone is, the more favorable for preventing the 
groundwater from pollution.

(4) Precipitation
Precipitation is the primary carrier for liquid and solid 

pollutants to infiltrate and recharge to the groundwater 
system. Pollutants diffuse into aquifer through horizon-
tal runoff after vertically migrating to aquifers through 
precipitation. The more the precipitations are, the more 
the infiltrating pollutants carried by precipitation and the 
larger the possibility of groundwater to be polluted. The 
average precipitation of the study area for years is found 
to be lowest in the southwest (990 mm) while most in the 
northeast (1140 mm), that is, the precipitations gradually 
rise from the southwest to the northeast.

(5) Karst development degree
The karst development degree is an important index 

for evaluating the risk of karst groundwater pollution. 
The higher the karst development degree is, the larger the 
development scales of karst caves and fractures in aquifers. 
Under the condition, it is easier for pollutants to flow in 
aquifers and more difficult to degrade and dilute the pollut-
ants, which thereby leads to a higher possibility of ground-
water pollution. The karst development degree in the study 
area is divided into five grades (Table 2): strong, moder-
ate–strong, moderate, weak–moderate and weak by tak-
ing lithology and dissolved rates of boreholes as inference 
indexes. Different grades correspond to different scores.

(6) Hydraulic conductivity
The hydraulic conductivity depends on the property of 

rocks. The fractures inside rocks and size and connectiv-
ity of karst conduits influence the flow rate of groundwa-
ter and migration rate of pollutants to some extent and 
further affect the contact time between groundwater and 
aquifer media. The larger the hydraulic conductivity is, 
the stronger the water permeability of an aquifer, the faster 
the pollutants flow into the aquifer, the smaller the prob-
ability of the pollutants to be diluted and degraded during 
migration and the wider the pollution scope. According 
to the data obtained through pumping test, the hydraulic 

conductivity in the study area gradually declines from the 
southeast to the northwest.

(7) Types of karst landforms
Karst landforms are diverse and groundwater infiltrates 

in different approaches and modes under different land-
forms. For example, in karst depressions without soil layer 
or with thin soil layer, precipitations directly flow into 
underground rivers through depressions and sinkholes. In 
this way, groundwater is likely polluted if precipitations 
contain pollutants. However, in karst valleys, precipita-
tions slowly flow out along the surface and mainly filtrate 
through small holes and karst caves. The filtration mode 
takes a long time. The combination types of karst land-
forms in the study area are divided into five types: karst 
landform types, karst depression, karst valley, slope, mid-
dle–low mountains, and eroded hills.

(8) Types of media of unsaturated zones
The media of unsaturated zones determine the filtration 

paths and approaches. Generally, the larger the particles 
of media of unsaturated zones are, the lower the clay con-
tents and, therefore, the poorer the adsorptive capacity 
for pollutants while the larger the possibility of pollutants 
flowing into groundwater.

Special evaluation factors of groundwater

(1) Land use types
Human activities greatly influence groundwater sys-

tem with the social progress. The most significant human 
behavior is shown as land use and land use types affect 
the capacity of pollutants to flow into groundwater. By 
analyzing satellite images, the study divides the land use 
types into land for construction, arable land, forest land 
and waters. And also, the scoring criteria of land use types 
in the study area are established according to the produc-
ing condition and capacity to flow into groundwater of 
pollutants under different land use types.

(2) Pollution sources of groundwater
The pollution sources of groundwater refer to the 

sources of various substances causing groundwater pol-
lution. The pollution sources in the study area are divided 
into agricultural, domestic and industrial and mineral pol-
lution sources according to data. The first two pollution 
sources separately refer to agricultural livestock farms and 
domestic sewage while the industrial and mineral pollution 
source denotes waste coal fields, sewage treatment plants 
and polluting enterprises. According to the migration rate 
and mode of groundwater, the types and influence scopes 
of pollution sources are scored. The corresponding scores 
are added up when random two or three scopes of pollu-
tion sources in the research study are superposed.
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Weight determination

Back propagation neural network

In the comprehensive evaluation of groundwater pollution 
risk, the rationality of weights of factors directly influences 
the reliability of the comprehensive evaluation results. 
Currently, the weights of evaluation factors are generally 
determined using subjective and objective weightings. 
Subjective weight method reflects the empirical judgment 
of decision-makers and the weights determined using the 
method generally conform to the practices. However, it is 
easy to exaggerate or reduce the effects of certain factors 
owing to different decision-makers having diverse empiri-
cal judgments (Wang and Li 2006; Fan et al. 2002). In 
contrast, the weights obtained by applying the objective 
weighting method are not the true importance of factors 
but measurements of useful information provided by data 
of various factors although the method effectively utilizes 
the data information of evaluation factors. Moreover, the 
more the information is, the larger the corresponding 
weights of factors and viceversa (Lu et al. 2008). Addition-
ally, as a comprehensive evaluation system is a complex 
nonlinear system, the influence degrees of various fac-
tors on the evaluated problems vary with time and space. 
It means that weights of majorities of evaluation factors 
change with the development of evaluated objectives and 
progress of human awareness. Therefore, it is necessary 
to establish a learning mechanism for weights to adapt to 
the ever-changing evaluation requirements. Artificial neu-
ral network (ANN) has special advantages in solving the 
problem (Dawson and Wilby 1999; Snell et al. 2000; Du 
and Zhao 2006). Back propagation (BP) neural network is 
a multilayer feedforward neural network established based 
on BP algorithm whose topology structure is composed of 
input, hidden and output layers. The completeness theorem 
of mapping capacity of BP neural network indicates that 
a three-layer BP neural network can approximate to any 
continuous function at random precision (Yang and Ma 
2016; Ni et al. 2017). The study attempts to systematically 
identify the unknown relations between various evaluation 
factors using BP neural network to establish the neural net-
work model and determine weights of various evaluation 
factors. The method for determining weights of factors 
using BP neural network is displayed as follows (Wang 
2013; Deng et al. 2016):

(1) Establishment of BP neural network
Data are chosen as training samples. The training 

samples contain m factors, each of which has n samples. 
Thereby, an input data matrix X = (xij)n×m, (i = 1, 2, …, n; 
j = 1, 2, …, m) can be established in which xij refers to ith 
factor of ith sample.

The network model contains three layers: input, hid-
den and output layers. There are m nodes in the input 
layer, namely m evaluation factors, while the input vec-
tor is expressed as X = (x1, x2, …, xi, …, xm)T. There is 
one layer in the hidden layer with k nodes (the value of k 
can be calculated according to Formula (1) or (2)). The 
output vector is shown as Y = (y1, y2, …, yj, …, yk)T and 
the output layer contains one node. The output value is O 
while the desirable output is expressed as D(d1, d2, …, dj, 
…, dk). The connection weight matrix between the input 
and the hidden layers is displayed as V = (vij)m×k in which 
vij denotes the connection weight between ith node in the 
input layer and jth node in the hidden layer. The connec-
tion weight vector between the hidden and the output lay-
ers is expressed as Z = (z1, z2, …, zj, …, zk) in which zj 
refers to the connection weight between the output layer 
and jth node in the hidden layer.

There is the following relation between the input and the 
hidden layers:

The following relation exists between the hidden and the 
output layers:

f (x) in Formulae (3) and (4) is an activation function and 
the nonlinear transfer function sigmoid is generally applied, 
namely

Samples are chosen to train the neural network, namely 
the factor of the first sample is input after randomly taking a 
group of small data. The output error Ei (the output error of ith 
sample) occurs when the output result does not conform to the 
desirable value. The formula is expressed as follows:

The total error is expressed as follows:

(1)k = (nodes in input layer + nodes in output layer)∕2

(2)k = (nodes in input layer × nodes in output layer)1∕2

(3)yj = f

(
m∑

i=1

vijxi

)

j = 1, 2,… , k

(4)O = f

(
k∑

j=1

zjyj

)

(5)f (x) =
1

1 + e−x
.

(6)Ei =
1

2
(
di − oi

) i = 1, 2,… , n

(7)E =
1

2

n∑

i=1

Ei.
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To improve the generalization ability of the network, it 
is necessary to train the network by employing regularized 
adjustment method. The mean square error (MSE) of the net-
work is employed as the performance function of the BP net-
work. The formula is shown as follows:

where ei refers to the training error of ith training sample 
( ei = ti − ai ) while ti and ai denote the target output and net-
work output of ith training sample, respectively. The network 
performance function undergoing regularized adjustment is 
expressed as follows:

where γ refers to the performance function while 
msw =

1

n

∑n

j=1

�
wj

�2.
The error signal �o is obtained by calculating output 

desirable and actual values to adjust the connection weight 
between hidden and output layers. The specific method refers 
to Formulae (10)–(14). All samples are trained and the train-
ing ends when E < Emin (the training precision is generally a 
positive decimal fraction). Otherwise, the connection weight 
is modified and the calculation is repeated until satisfying the 
requirement.

(8)mse =
1

N

N∑

i=1

(
ei
)2

(9)msereg = �mse + (1 − �)msw

(10)�o = (d − o)o(1 − 0),

where the learning rate η ∈ (0,1) and the momentum µ ∈ 
(0,1).

After the training ends and reaches required precision, 
the sum of absolute values of all connection weights (V) is 
calculated according to Formula (14), followed by normali-
zation, to further obtain the weights of all factors.

Weight calculation

If too many input samples are chosen, the calculation result 
may not meet the requirement for high precision. However, 
if only few are chosen, it would be hard to satisfy the accu-
racy requirement for the evaluation. After many attempts, 10 
sets of data have been chosen as input samples. The loca-
tions of these data are distributed evenly in the study area, 
and then the quantization of input data is realized according 
to Tables 3 and 4. Meanwhile, to achieve contrast between 
input and output samples, we have further normalized the 

(11)�
y

j
= �ozjyj

(
1 − yj

)
,

(12)zj(t) = zj(t − 1) + ��oyj + �Δzi(t − 1),

(13)vij(t) = vij(t − 1) + ��
y

j
xi + �Δvij(t − 1),

(14)wj =

∑k

l=1

�
�
�
vji
�
�
�

∑m

i=1

∑k

l=1
�
�vil

�
�

j = 1, 2,… ,m

Table 4  Scoring criteria of special evaluation indexes of groundwater

Land use types Scores Types of pollution sources Influence scope Scores Influence scope Scores Influence scope Scores

Land for construction 9 Agricultural pollution source 0–500 m 3 500–1500 m 2 1500–3000 m 1
Arable land 5 Domestic pollution source 0–500 m 5 500–1500 m 3 1500–3000 m 1
Forest land 2 Industrial and mineral pollution 

source
0–500 m 8 500–1500 m 5 1500–3000 m 2

Waters 1

Table 5  Input samples for training the neural network

Input sample X 1 2 3 4 5 6 7 8 9 10

Topographic slope 1 1 1 0.889 0.889 0.889 1 1 0.444 0
Types of aquifers 0.5 0.5 0.5 0.5 0.5 1 1 0.5 0.5 1
Precipitation 0.25 0.25 0.75 0.25 0.5 0.75 1 0 0 0.5
Thickness of unsaturated zones 0.25 0.25 0 0.75 0.75 0.5 0.25 0.75 0.75 0.25
Types of media of unsaturated zones 0.6 0.6 0.2 0.2 0.2 0.6 0.6 0.2 0.2 0.6
Karst landforms 0.5 0.5 1 0 1 1 1 0.625 0.625 0.5
Average hydraulic conductivity 0 0.25 0.5 1 1 0.75 0.75 0.75 0.75 0.25
Karst development degree 0.5 0.5 0.5 0.25 0.25 0.75 0.75 0.5 0.5 0.75
Land use types 0.5 0.125 0.5 0 0.5 0.5 1 0.5 0.5 0.125
Types of pollution sources 0 0.054 0.324 0.676 0.216 0.108 0.054 0.162 0.324 0
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quantified data and converted into the numbers between 0 
and 1, and Table 5 is the input sample used for network train-
ing. The three-layer structure composed of an input layer, a 
hidden layer and an output layer is employed. The hidden 
layer contains 9 nodes and the network training precision is 
0.001. The MATLAB software is used in calculation.

The desirable output sample is the risk level of ground-
water pollution of each input sample. Values between 1 and 
5 were selected to quantify the output samples, in which 
1 represents very low risk, while 5 represents very high 
risk. Similarly, we have normalized the quantified data and 
Table 6 is the desirable output samples according to artificial 
neural network training.

The blue line and the dotted line in Fig. 2 denote the pre-
cision condition and target of training, respectively. After 
training for 2378 times, the training ends owing to the net-
work satisfies the requirement, namely, MSE < 0.001. At 
this time, the predicted values calculated by artificial neural 
network are consistent with the desirable output samples 
(Fig. 3). By the connection weigh matrix V between the 
input layer and the hidden one, we can get the weight of each 
evaluation factor shown in Table 7 according to formula 14.

Maps of various evaluation factors based 
on GIS

The thickness of unsaturated zone, the lithologic combi-
nation of unsaturated zone and aquifer, karst corrosion 
ratio, hydraulic conductivity and so on are calculated using 

the collected data of geological drilling and pumping test 
about maps and records in the study area. To compare 
different factor data, it is necessary to remove the influ-
ences of different dimensions and units of various factors 
(Wu et al. 2016). Therefore, the dimensionless treatment 
is conducted on raw data according to the scoring criteria 
in Tables 3 and 4 to convert the data in the range of 1–10. 
Finally, thematic maps can be drawn by the interpolation 
method combined with GIS software which include the 
types of aquifers, the thickness of unsaturated zones, the 
media type of unsaturated zones, the hydraulic conductiv-
ity and the degree of karst development. In the same way, 
the distribution map of atmospheric precipitation has been 
made according to the years of monitoring data of the rain 
station in the study area. According to the existing topo-
graphic map of the study area, the topographic slope map 
has been drawn. According to the remote sensing image of 
the study area, the land use situation was divided into four 
types including construction land, arable land, woodland 
and water area, and the land use type map was made on 
this basis. Thematic map of Karst landform and influence 
scopes of pollution sources map have been drawn accord-
ing to field investigation data, the influence scopes of pol-
lution sources are harder to unify, the influence scopes of 
the representative pollution sources in Huaxi district was 
used as a basis in this study. According to the observation, 
the further the pollution distance is, the lighter the degree 
of pollution is. The evaluation factor thematic maps are 
as follows, based on which the spatial distribution law of 

Table 6  Desirable output samples for the training of the neural network

Desirable output Y 0.2078 0.1524 0.5071 0 0.3733 0.7852 1 0.1268 0.1114 0.3433

Fig. 2  Network training precision Fig. 3  Prediction of BP neural network
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the quantized values of various factors can be institutively 
mastered (Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13).

Risk prediction of karst groundwater 
pollution in Huaxi district

The risk evaluation model of karst groundwater 
pollution

Establishing a risk evaluation model for karst groundwater 
pollution is to establish a mathematical model which shows 
the influences of various evaluation factors on groundwater 
pollution. Thereby, the risk index VI is introduced to evalu-
ate the risk of karst groundwater pollution. The risk evalu-
ation is summarized to the sum of superposed influences of 
difference evaluation factors on groundwater pollution in an 
element of a section in an area, which can be expressed using 
the following model formula:

where VI, Wk, fk(x,y), x, y and n refer to risk index, weights of 
diverse evaluation factors, the score of kth evaluation factor, 

(15)VI =

n∑

k=1

Wk ⋅ fk(x, y)
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Fig. 5  Topographic slope

Fig. 6  Types of landforms

Fig. 7  Land use types

Fig. 8  Karst development degree
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geographic coordinates, and the number of evaluation fac-
tors, respectively.

Risk evaluation of karst groundwater pollution 
in Huaxi district

On the basis of drawing maps of multiple evaluation fac-
tors, the maps of different evaluation factors are super-
posed by employing the information overlap technology of 
GIS to form the superposed cells combining multi-source 
information. Afterwards, the comprehensive risk evalua-
tion indexes in different superposed cells are calculated 
using the established risk evaluation model, and then 
graded using Natural Breaks of GIS software to get the 
optimal five-level grading result. Eventually, the zoning 
map of comprehensive evaluation about the risk of karst 
groundwater pollution in Huaxi district combining multiple 
factors is prepared (Fig. 14).

The high-risk and relatively high-risk zones are mainly 
distributed in the northeastern and central regions of the 
study area with an area about 150 km2, which takes up 
43.9% of the total study area. The zone with low slope 
is abundant with precipitation and mainly shown as karst 
hills and depressions in landform. Moreover, the zone 
mainly has carbonate aquifers in terms of types of aquifers, 

showing high karst development degree, large-scale karst 
caves and sinkholes, and thin unsaturated zones in local 
areas. Thus, it is easy for the surface pollutants to infiltrate 
into groundwater with precipitation. Especially, owing to 
intensive urban constructions and distributions of waste 
coal mines in this zone, karst groundwater is likely to 
be seriously polluted once the pollution is improperly 
prevented.

Low-risk and relatively low-risk zones are mainly distrib-
uted in the northwest, north, and southwest of the study area 
with an area about 100 km2, taking up 30.56% of the total 
area. The precipitation is at a low–moderate level while the 
zones have large–moderate topographic slopes. These zones 
are mainly shown as monadnocks, slopes, peak clusters and 
valleys while carbonate rock with clastics and clastic aqui-
fers are types of aquifers most widely seen. The karst poorly 
develops mainly appearing as karst fissures and holes and 
the thickness of unsaturated zones is at a moderate–thick 
level. Moreover, the lands are mainly used for forest and 
waters.

The moderate–risk zone is mainly distributed in the 
area between relatively low-risk and relatively high-risk 
zones covering an area about 92.06 km2, which accounts 
for 25.54% of the total study area. In this zone, the karst 
favorably develops and there is a gentle topographic slope. 

Fig. 9  Hydraulic conductivity Fig. 10  Thickness of unsaturated zones
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The precipitation retains for a long time while the media of 
the unsaturated zones in the zone are not in favor of infiltra-
tion of groundwater.

Conclusions

Currently, the determination method of factor weights in 
the risk evaluation model of groundwater pollution is usu-
ally determined by subjective or objective weight; however, 
all of these methods are either too subjective or the weight 
value can not reflect the actual meaning of the factor. The 
artificial neural network method has the characteristics of 
obtaining the approximate relationship of system from the 
limited data set, which can better reflect the complicated 
relationship among groundwater pollution evaluation fac-
tors and, therefore, this study constructed the risk predic-
tion model of groundwater pollution based on artificial 
neural network. Factor values of ten different locations in 
the study area were chosen as the training samples, the 
training sample’s groundwater pollution risk as the out-
put samples and the BP neural network was used to sys-
tematically identify unknown relationship among various 
factors, and then the factor weights were calculated. On 
this basis, combined with GIS technology, the risk evalua-
tion of groundwater pollution in Huaxi District of Guiyang 

Fig. 11  Media types of unsaturated zones

Fig. 12  Types of aquifers

Fig. 13  Influence scopes of pollution sources



Environmental Earth Sciences (2018) 77:344 

1 3

Page 13 of 14 344

City was completed, and the method proved to be feasible 
through the analysis of the evaluation results. The ground-
water pollution risk evaluation based on GIS-ANN technol-
ogy can comprehensively and objectively reflect the char-
acteristics of the groundwater pollution which is controlled 
by many factors and has a complicated nonlinear formation 
mechanism. At the same time, the evaluation results are 
intuitive, visual, and can provide a certain basis and refer-
ence for related research.

In southwest China, karst groundwater pollution is 
caused by the natural factors and human activities. Com-
pared with other regions, the thickness of unsaturated zone 
is extremely uneven and corrosion effect is stronger, the 
unique karst development structure can connect groundwa-
ter with surface water. Furthermore, the unsaturated zone 
water retention capacity is very weak, which makes pol-
lutants easier to wind its way to the groundwater, so in the 
process of prevention and control of groundwater pollution 
in this area, we must fully consider the particularity of the 
pollution approach and takes special prediction and control 
measures.
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