
Vol.:(0123456789)1 3

Environmental Earth Sciences (2018) 77:276 
https://doi.org/10.1007/s12665-018-7451-1

ORIGINAL ARTICLE

GIS‑based landslide susceptibility evaluation using fuzzy‑AHP 
multi‑criteria decision‑making techniques in the Abha Watershed, 
Saudi Arabia

Javed Mallick1 · Ram Karan Singh1 · Mohammed A. AlAwadh2 · Saiful Islam1 · Roohul Abad Khan1 · 
Mohamed Noor Qureshi2

Received: 26 September 2017 / Accepted: 27 March 2018 / Published online: 4 April 2018 
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Landslides are natural geological disasters causing massive destructions and loss of lives, as well as severe damage to natural 
resources, so it is essential to delineate the area that probably will be affected by landslides. Landslide susceptibility mapping 
(LSM) is making increasing implications for GIS-based spatial analysis in combination with multi-criteria evaluation (MCE) 
methods. It is considered to be an effective tool to understand natural disasters related to mass movements and carry out an appro-
priate risk assessment. This study is based on an integrated approach of GIS and statistical modelling including fuzzy analytical 
hierarchy process (FAHP), weighted linear combination and MCE models. In the modelling process, eleven causative factors 
include slope aspect, slope, rainfall, geology, geomorphology, distance from lineament, distance from drainage networks, distance 
from the road, land use/land cover, soil erodibility and vegetation proportion were identified for landslide susceptibility mapping. 
These factors were identified based on the (1) literature review, (2) the expert knowledge, (3) field observation, (4) geophysical 
investigation, and (5) multivariate techniques. Initially, analytical hierarchy process linked with the fuzzy set theory is used in 
pairwise comparisons of LSM criteria for ranking purposes. Thereafter, fuzzy membership functions were carried out to determine 
the criteria weights used in the development of a landslide susceptibility map. These selected thematic maps were integrated 
using a weighted linear combination method to create the final landslide susceptibility map. Finally, a validation of the results 
was carried out using a sensitivity analysis based on receiver operator curves and an overlay method using the landslide inven-
tory map. The study results show that the weighted overlay analysis method using the FAHP and eigenvector method is a reliable 
technique to map landslide susceptibility areas. The landslide susceptibility areas were classified into five categories, viz. very 
low susceptibility, low susceptibility, moderate susceptibility, high susceptibility, and very high susceptibility. The very high and 
high susceptibility zones account for 15.11% area coverage. The results are useful to get an impression of the sustainability of the 
watershed in terms of landsliding and therefore may help decision makers in future planning and mitigation of landslide impacts.

Keywords  Multi-criteria decision analysis · Fuzzy analytical hierarchy process · Fuzzy membership functions · 
Geoinformation technology · Landslide susceptibility maps

Introduction

Landslides are natural disaster, significantly affected 
by the failure of materials making up the hill slopes and 
are augmented by the force of gravity, precipitation and 

anthropogenic activities causing massive destruction and 
loss of lives, in addition to severe loss of natural resources 
(Intarawichian and Dasananda 2010; Feizizadeh et al. 2014). 
The spatial probability of landslides, also known as sus-
ceptibility, is the probability of a landslide occurring in an 
area on the basis of local terrain conditions (Brabb 1984; 
Ilanloo 2011). Susceptibility neither considers the tempo-
ral probability of failure (i.e. when or how frequently land-
slides occur), nor the magnitude of the expected landslide 
(i.e. how large or destructive the failure will be). Several 
methods and techniques for evaluating landslide susceptibil-
ity have been proposed in the literature (Wang et al. 2012). 
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GIS-based spatial analysis coupled with multi-criteria evalu-
ation (MCE) methods is making increasing implications in 
landslide susceptibility mapping (LSM) studies. It is thought 
to be a valuable tool for understanding these natural hazards 
and foreseeing potential landslide hazard areas (Feizizadeh 
et al. 2014). Thereby, it can assist the decision makers for 
further planning and mitigation of landslide impacts (Rood-
poshti et al. 2016).

Various techniques and tools adopted for determining 
landslide susceptibility can be categorized as subjective 
and objective methods. The subjective methods consist of 
inventory mapping and decision makers’ assessments using 
standardization and weighting procedures based on the-
matic maps (Wang et al. 2012). The subjective approaches 
used multi-criteria evaluation (MCE) techniques, viz. sim-
ple additive weighting (Feizizadeh and Blaschke 2013), 
ordered weighted average (Ayalew et al. 2004), analytical 
hierarchy process (Yalcin 2008), analytical network process 
(Neaupane and Piantanakulchai 2006) and also heuristic and 
knowledge-based techniques (Barredo et al. 2000). The sec-
ond technique through the objective method mostly relies on 
statistical analysis (Lee and Min 2001), soft computing (Lee 
et al. 2004a, b), deterministic analysis (Carrara 1983), neuro-
fuzzy (Pradhan 2013), artificial neural network (Dou et al. 
2015), index of entropy (Pourghasemi et al. 2012) and deci-
sion trees (Hong et al. 2015). The objective method typically 
depends on the objective assessments and is more rigorous. 
Therefore in this study, we adopted subjective approach is 
an expert-driven qualitative method to assess the landslide 
susceptibility and to produce a susceptibility map portraying 
its spatial distribution under GIS environment. LSM needs 
a multi-criteria method with high levels of precision and 
dependability in the subsequent maps, with a specific end 
goal to support decision-making and risk assessment. The 
effectiveness of decision-making relies on the quality of the 
data and techniques to develop the landslide susceptibility 
maps (Wang et al. 2012). GIS-based multi-criteria decision 
analysis (MCDA) is an important technique that allows data 
derived from various sources to be consolidated (Feiziza-
deh et al. 2014). GIS-based MCDA transforms the spatial 
and non-spatial data into information that can be utilized in 
decision-making (Chen et al. 2010). The Analytic Hierarchy 
Process (AHP) method is widely considered for multiple-
criteria decision-making (MCDM) and has been success-
fully used in various areas of natural resource management, 
environmental impact assessment, and regional planning 
(Saaty 1980; Ouma and Tateishi 2014; Oikonomidis et al. 
2015; Rahaman et al. 2015; Mallick 2016). AHP has gained 
its significance due to its interactive graphical user (IGU) 
interfaces, automatic calculation of priorities and variabili-
ties, and sensitivity analysis. Even though its popularity, the 
method is often criticized for its inability to efficiently han-
dle the inherent uncertainty and imprecision related to the 

geo-visualization of a decision maker’s perception of crisp 
numbers. The empirical effectiveness and theoretical validity 
of the AHP have also been discussed by many authors (Mci-
ntyre and Parfitt 1998; Cheung et al. 2002; Chowdhury et al. 
2009; Ishizaka and Labib 2011, Wang et al. 2012; Ahmad 
et al. 2013; Shahabi and Hashim 2015). Many researchers 
have also been discussed the empirical effectiveness and the-
oretical validity of the AHP (Mcintyre and Parfitt 1998), and 
this discussion has consequently focused on four primary 
domains: the axiomatic foundation, the correct meaning of 
priorities, the 1–9 measurement scale and the rank reversal 
problem (Millet and Saaty 2000). Despite that, most of the 
criticisms in these areas have been partially resolved, mainly 
three-level hierarchic structures (Hsieh et al. 2004).

The objective of the current study is to propose a method 
to resolve the uncertainty and imprecision within the ana-
lytical hierarchy prioritization process by representing the 
decision-makers choices as fuzzy numbers or fuzzy sets. In 
the AHP method, the decision-making problem is organ-
ized hierarchically at different levels, each level containing 
a finite number of elements, but in many situations, the pref-
erence model of the decision maker is uncertain and fuzzy, 
and it is somewhat challenging crisp numerical values of the 
comparison ratios to be provided by subjective perception. 
The decision makers may be subjective and uncertain about 
their level of preference because of incomplete knowledge 
or information, and uncertainty within the decision environ-
ment. AHP can be linked with fuzzy logic methods (Wil-
ley 1979; Altrock and Krause 1994; Opricovic and Tzeng 
2003; Li and Will 2005) in uncertainty analysis and pro-
vide a framework that makes use of the fuzzy membership 
functions (FMFs) to evaluate the criteria and provide more 
accurate result (Feizizadeh et al. 2014). The criterion maps 
are standardized using fuzzy sets in context with the MCDM 
by assigning to each object a membership or non-member-
ship function of each criterion (Gorsevski and Jankowski 
2010). The assessment of results for decision-making using 
the AHP integrated with fuzzy set theory allows greater 
flexibility.

The region’s climate and geo-physiographic conditions 
can also determine the likelihood of a landslide and mass 
wasting events, which occur periodically over time. In the 
last few years, many efforts of slope stability and landslide 
susceptibility mapping applied in Saudi Arabia (Youssef 
et al. 2012, 2013, 2014; Youssef and Maerz 2013; Maerz 
et al. 2014; Mallick et al. 2014). In the current study, GIS-
based statistical models including fuzzy analytical hierarchy 
process (FAHP), weighted linear combination (WLC) and 
multi-criteria evaluation (MCE) models were adapted to 
develop a landslide susceptibility map. There is substantial 
need to improve the prediction of future landslide areas and 
risk assessment coupled with geoinformation technology 
to quantify the risk of landslide hazards zone. The results 
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obtained from this study provide a considerable contribu-
tion to the researchers and practitioners involved in the con-
struction projects dealing with the landslide protection, who 
may work in the fields of civil engineering, environmental 
analysis, natural risk hazards and safety management, and 
decision makers can choose favourable locations for devel-
opment and conservation schemes.

Study area and geospatial setting

Abha semi-arid mountainous watershed is located in the 
Aseer Province, Saudi Arabia. The watershed covers an 
area of 370 km2 and boundary lies between the latitude 
of 18°10′12.39″N and 18°23′33.05″N and longitude of 
42°21′41.58″E and 42°39′36.09″E. The watershed repre-
sents a part of Abha’s highland, i.e. related to the Arabian 
shield in the western part of the Saudi Arabia (Fig. 1). In the 
Arabian shield, the Precambrian rocks are mostly Neopro-
terozoic, but in total record 3000 million years of Earth his-
tory. According to the Saudi Geological Survey, the water-
shed area is underlain predominately by upper Proterozoic 

metamorphosed volcanic and sedimentary rocks of the 
Bahah, and Jiddha group and by upper Proterozoic plutonic 
rocks ranging in composition from Gabbro to granite. This 
ecoregion characterized by natural geological erosion and 
sedimentation phenomena of high intensity, as well as man-
induced accelerated land degradation processes (Mallick 
et al. 2014; Youssef et al. 2016).

The study area collects variable rainfall caused by the 
south-western monsoon, which carries wet oceanic winds 
(Vincent 2008). This region has the highest average rain-
fall in Saudi Arabia distributed over 2–4 months during the 
spring and summer growing seasons (March–June) while 
rainfall that occurs during the rest of the year is negligible 
(Wheater et al. 1989). During the raining season, some of its 
neighbouring villages and rural areas witness flash-floods. 
The climatic condition in the study area is cold and semi-
arid (Koppen:BSk). According to the analysis of rainfall 
station (ABHA, station no. 41112), operated by the Presi-
dency of Meteorology and Environment (PME) which is 
located in the southwest of the study area. Rainfall typically 
occurs in intense thunderstorms from March to June. The 
maximum monthly precipitations for last 30 years were 43.7, 

Fig. 1   Study area
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244.0, 112.8 and 17.6 mm for March, April, May and June, 
respectively. The average annual precipitation is reported as 
about 214 mm/year, with a maximum rainfall of 639.5 mm 
occurring in 1983. The maximum rainfall occurred in a day 
was 99 mm in 3 February 1983. The average minimum and 
maximum temperature is 19.3 and 29.70 °C, respectively. 
The topography of the area is undulating, and the eleva-
tion ranges from 1954 to 2989 m above the sea level. The 
study area is elongated in shape and dissected by many small 
wadies (valleys) that drain their waters towards Abha Wadi. 
The slope angles range from 0° to 52.32°. The watershed 
has a heterogeneous landscape regarding terrain complex-
ity. The seismic zones in Saudi Arabia situated along the 
Red Sea and the Gulf of Aden in the west and south and the 
subduction zone associated with the Zagros suture in the 
north. In general, the damage and losses associated with 
earthquakes are negligible in this region (Abdulaziz et al. 
2014); the regions along the Red Sea coast are vulnerable 
to earthquakes. Our study area is situated about 200 km east 
from the Red Sea hence in the present study area, the inter-
nal deformation of the Arabian plate may be insignificant. 
In the Aseer region, many escarpments roads and highways 
have been developed all over the regions where the Arabian 
shield found. These highways and roads connect numerous 
urban areas located at a high elevation of the mountains with 
other cities situated along the Red Sea coast. Some of these 
roads include the road from Abha to the Red Sea coast and 
local roads in the Jazan region. Along these areas, many rock 
falls have happened that block the roads, as well as damage 
infrastructure and cause injuries and fatalities.

The watershed is located in the different geological units, 
which digitized from the 1:250,000 Abha quadrangle geo-
logical map (Greenwood 1985) (Fig. 1). Geologically the 
area is underlain predominately by upper Proterozoic meta-
morphosed volcanic and sedimentary rocks of the Bahah, 
and Jiddha group and by upper Proterozoic plutonic rocks 
ranging in composition from Gabbro to granite. Eight types 
of geologic lithology found in the study area.

•	 Granite Suite–Biotite Monzogranite–Diorite and Gabbro 
(dg).

•	 Jiddah Group–Basalt and Andesite–Pillow lava, flow 
breccia, tuff, dacite tuff, interbedded subordinate, often 
carbonaceous conglomeratic graywacke and phyllie (jt).

•	 Sedimentary–Wajid sandstone (Oew).
•	 Jiddah Group–Bahah group within the Tayyah belt–

Volcaniclastic graywacke, carbonaceous, shale and 
siltstone, subordinate chert, slate, and conglomerate, 
minnor interbedded basalt, andesite, and dacite (bt).

•	 Granite Suite–Biotite Monzogranite–Uniform body 
(grb).

•	 Jiddah and Bahah group–Biotite-Quartz-Plagioclase 
Granofels–Subordinate amphibolite, anabiotite schist 
(jbg)).

•	 Dioritic and Gabbroic Rocks–Metagabbro (mg).
•	 Dioritic and Gabbroic Rocks–Gabbro–Massive to lay-

ered plutons, sills, dikes, and irregular bodies (gb).

The dominate types of soil class in the study are loamy 
sand, sandy loam, and loam (Mallick 2016). The study 
area embraces one of the richest and the most variable flo-
ristic regions of Aseer Mountains (Vincent 2008). The var-
iation in climate and topography in the study area (Aseer 
Province) has led to the formation of diverse plant com-
munity (Abulfatih 1981). Foggy cold places are dominated 
by Juniperus procera. Acacia trees are widely distributed 
to the west of the study area in highlands region. Ficus 
salicifolium communities and Ziziphus spina-christi var. 
spina-christi are common in the lowlands, and many others 
found on the steep slopes to the west and south of the high-
lands (Abulfatih 1981). The characteristic of the study area 
represents a degraded landform, and the socio-economic 
activities revolve around utilization of natural resources 
that need immediate attention in terms of conservation 
and development. The geophysical characteristics of the 
watershed distinguish the study area to demonstrate the 
applicability of the methodology.

Data and methods

The present study shows the application of various data 
sources to be used in landslide susceptibility evaluation. 
To evaluate the landslide susceptibility mapping (LSM), 
it is essential to know the preparatory and trigging fac-
tors and to prepare the necessary thematic layers. For this 
purpose, eleven thematic maps, viz. slope, rainfall, aspect, 
geomorphology, geology, soil erodibility, elevation, land 
use/land cover (LULC), drainage, lineament, the proximity 
of the road, generated using remote sensing (RS) and con-
ventional data with the help of ArcGIS 10.3. All the spatial 
data were geometrically rectified to a common Universal 
Transverse Mercator (UTM-WGS84) coordinate system 
and resampled to their respective spatial resolution using 
the nearest-neighbour algorithm. The details of the data 
collection procedure, preparing the inventory map, land-
slide conditioning factors, and model building and valida-
tion described as follows:

Data collection

Data collection includes data sources and data types used in 
the present study.
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Field survey, a reconnaissance survey was carried out 
at different times during October–November months was 
done to identify the various land use/land cover classes, soil 
sampling for grain size (texture) analysis present in the study 
area and existing landslide site. Other data sources such as 
historical landslide events (collected from the transportation 
authority, published articles, i.e. newspaper, and interaction 
with local people) can give some ideas about the frequency 
of landslide events. Satellite images, Landsat-8 with a spa-
tial resolution of 15 m, worldview-2 with spatial resolution 
0.5 m, and ALOS PALSAR Radiometrically Terrain Cor-
rected (RTC) DEM with 12.5-m resolution. Experimental 
data, the collected soil samples analysed in the laboratory 
for soil properties, i.e. sand, silt, clay, organic content, and 
density. Meteorological data, the historical records of rain-
fall data (from 8 rain gauges stations) that located in and 
around the watershed used. Geological data, geological 
maps from the 1:250,000 Abha quadrangle GM-75 digitized.

Preparation of landslide inventory map

Preparation of inventory maps is a crucial part of landslide 
hazard analysis (Guzzetti et al. 2006), for example, the spa-
tial distribution of landslides susceptibility (Pradhan and 
Lee 2010; Pourghasemi et al. 2012). A landslide inventory 
map describes the location, i.e. landslides are more likely 
to be trigger under the same conditions that had been found 
on earlier landslide, numbers and other data of occurrence 
and the types of mass movements that have left discernable 
traces in an area (Guzzetti et al. 2012). A landslide inventory 
map was prepared according to the interpretation of different 
data such as historical landslide events, field investigations, 
interaction with local people about the landslide events and 
satellite images analysis (Van Westen et al. 2006). Histori-
cal landslides have some significant geomorphological fea-
tures that easily identifiable with high resolution (world-
view-2), especially in the 3D models, including decreases 
in the densely vegetated area and bare soil (Mallick et al. 
2014). Other notable features that may assist in detecting 
landslide area include the presence of flow materials along 
gullies, rims, and drainage networks with different erosional 
features and sedimentation (Mallick et al. 2014). Field sur-
vey and observations were conducted to verify and collect 
some recent landslides in the study area (Fig. 2). These all 
data were collected and combined to prepare the landslide 
inventory map. Using data sources (local government agen-
cies, remote sensing data (LANDSAT 8 image), high resolu-
tion satellite images (Google Earth RS image), and ALOS 
PALSAR DEM (12.5 m), topographic map (scale 1:25,000), 
and verified using intensive field investigation, a total of 38 
landslides identified and mapped in the study area, among 
them about 17 landslides visited in the field for verifica-
tion purposes. Results depicted that all these locations are 

new and old landslide area, characterized by different inten-
sity (volume) ranging from a few to thousand cubic metres. 
These landslide sites refer mainly translational slide mass 
movements (landslide is a downslope movement of mate-
rial that occurs to a distinctive surface of weakness such as 
a fault, joint or bedding plane). It occurs mainly along the 
structures; another type of landslide is rotational slides, it 
occurs mainly in the highly fractured rocks and wadis ter-
races. Predominantly landslides were identified along the 
faults (lineaments). Geological structures, such as cleav-
age (rock to split on a set of regular parallel or subparal-
lel planes), schistosity (orientation of equant minerals in a 
rock), fractures and joints, with a dip angle of more than 30° 
towards the wadis facilitate many planer failures.

Landslide sites were identified and collected (GPS) 
and digitized as point features. In GIS, point data can be 
expressed as X, Y coordinate (UTM-WGS84), does not 
depict landslide occurred areas. Therefore, point data may be 
considered when the areal extent of a minor landslide cannot 
be drawn because of the scale of the map (Yilmaz 2009). 
However, the logical method is to reveal the pixel belonging 
to the landslide. For the map of scale 1:5000–1:50,000, the 
5-, 10-, 30-m pixel sizes yield similar accuracy (Lee et al. 
2004a, b). In the present study, landslides larger than one 
pixel (12.5 × 12.5 m) were used in the analyses.

Landslide causative factors: generation of thematic 
maps

The landslide susceptibility map is generated based on 
identified criteria (thematic features related to the causative 
factor) that are relevant to the concerned environment and 
geophysical conditions. The set of criteria selected should 
adequately represent the landslide occurrence and should 
contribute towards the study objective (Feizizadeh and 
Blaschke 2013). The selected set of criteria should address 
the landslide and also fulfil the objectives of the research. In 
the present study, the boundary of the watershed was deline-
ated using digital elevation model (DEM) of 12.5-m pixel 
resolution. Eleven causative factors identified for landslide 
susceptibility mapping. These include slope aspect, slope, 
rainfall, geology, geomorphology, distance from lineament, 
distance from drainage networks, distance from the road, 
land use/land cover, soil erodibility and vegetation propor-
tion. All the thematic layers were transformed into a raster 
spatial database by 12.5 × 12.5 m pixel size using a nearest-
neighbour algorithm with the projection system, UTM coor-
dinate system zone 38 N, datum WGS84. Out of 11 thematic 
layers, three layers (slope angle (Lee and Min 2001), slope 
aspect (Yalcin et al. 2011) and drainage network (Tarboton 
et al. 1991) were extracted from digital elevation model 
(DEM) using ArcGIS 10.3 software.
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The slope angle is one of the important aspects in land-
slide susceptibility analysis. The relationship between land-
slide occurrence and slope angle emphasizes the role that 
landslides have in landscape evolution. Usually, slope steep-
ness is significantly triggered by the geological character-
istics of the slope. Initially, slope failure began at the foot 
of homogeneous slopes, leading to the location where the 
stresses were the highest. Slope failure began with disinte-
gration of the slope material by the breakage of interpar-
ticle bonds, leading to loss of cohesion. After that, failure 
spread upward to an upper part of the slope or to the slope 
crest (Katz et al. 2014). Finally, slope material overlying 
the sliding surface slides down the slope, runs out for some 
distance, and finally deposits downslope. The slope angle 
and slope aspect was derived from 12.5 m × 12.5 m pixel 
size ALOS PALSAR DEM data of the Abha watershed using 

ArcHydro tools of ArcGIS software. The slope angle ranges 
from 0° to 52.32°. The western and north-western part of 
the study area comprises of a high degree of slope, whereas 
the central-south and eastern parts of the watershed consist 
of the low degree of slope. From the results, it inferred that 
high slope (20°–30°) with overlay rainfall renders the area 
highly susceptible to landslide (Yalcin and Bulut 2007). Fig-
ure 3a–d shows the elevation, slope angle, drainage networks 
and slope aspect (Fig. 3d). The occurrence of landslides is 
likely affected by topography (elevation), and this topogra-
phy is controlled by several hydrogeologies, geomorphologi-
cal processes (i.e. geological types, precipitation, tempera-
ture, and soil erosions) (Pourghasemi et al. 2013).

Visual image interpretation techniques using Landsat-8 
satellite data and expert knowledge (geomorphologist) 
have been used to create the geomorphological map as per 

Fig. 2   Field survey
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the standards from the National Research Council (NRC) 
program, Geological Survey of India (The National Geo-
morphological and Lineament Mapping-NGLM) manual 
(GSI and NRSC 2010). The seven geomorphological units 
were extracted using visual image interpretation techniques 
including wadies, Piedmont slope, moderate-dissected den-
udational hills (MDDH), highly dissected structural hills 
(HDSH), pediment, highly dissected denudational hills 
(HDDH), and moderate-dissected structural hills (MDSH) 
(Fig. 4b). The catchment geomorphology plays a vital role 
in the conversion of rainfall into a runoff (Singh et al. 2014) 
and has been considered as a dominant factor in triggering 
a landslide (Cardinali et al. 2002). A large part of the water-
shed is covered with piedmont slope and the low-dissected 
structural hill which considered as high susceptible landslide 
occurrence. The flow direction of major wadies from North-
West to South-East direction. The pediment is a gradually 
inclined erosional surface sliced in hard rock, i.e. exposed 
granite rock, thinly veneered with gravel, which is developed 
at the foothills, has considered moderate susceptible for a 
landslide. Highly denudational hills and highly dissected 
structural hills, having eroded structures, formed as a result 

of differential erosion and weathering. These occupy the 
west and north-eastern parts of the area. It has the potential 
for a landslide trigger. Highly structural hills are the acute 
and linear hills exhibiting definite trend lines with varying 
lithology associated with faulting and so on and mostly act 
as susceptible landslide zone.

Geological map (Hardcopy format) collected from the 
Saudi Geological Survey at a scale of 1:250 000 Abha 
quadrangle GM-75 (Greenwood 1985). The hard copy map 
first scanned, geometrically rectified and then the heads-up 
digitizing procedure to a prepared thematic layer of geology. 
Figure 4a shows details of geology classes that are mainly 
underlined by Dioritic and Gabbroic rocks layered sills, 
dikes etc., sedimentary sandstone; volcanoclastic, shale and 
siltstone; basalt, andesite and carbonaceous conglomeratic; 
and granite suite. The dominant group of rocks such as vol-
canoclastic, shale and siltstone are covering significant parts 
of the study area. Small extent of sedimentary sandstone, 
which is highly permeable and less stable, is identified in 
north-western part of the study area. Besides that, Dioritic 
and Gabbroic rocks layered sills, dikes etc., which is consid-
ered as low hazard zones due to moderate denudational and 

Fig. 3   Spatial distribution of the selected criteria: a DEM, b slope, c distance to drainage, and d aspect
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dissected structural hills situated in the north-east parts of 
the watershed. However, basalt, andesite and carbonaceous 
conglomeratic; granite suite and quartzite are the hard rock 
materials located mainly in the central-south, eastern and 
north-eastern parts of the study area and considered for high 
landslide potential areas due to high potential for runoff.

These geological data and structural data verified during 
the field. Various type of information was collected through 
on site investigation and available literature (Youssef et al. 
2015a, b). During site investigation, the joint planes and 
minor faults were identified. All landslides, in the study 
identified and mapped using remote sensing data (LAND-
SAT 8 image), high resolution satellite images (Google 
Earth RS image), and ALOS PALSAR DEM (12.5 m), topo-
graphic map (scale 1:25,000), and verified using intensive 
sites investigation. The area is commonly prone to landslide 
activities (rock falls, sliding, and debris flows) and erosion 
due to runoff through different gullies. The study area is tra-
versed by many faults where several shear zones are situated. 
These tectonic features, in the studied watershed region, 

are responsible for crushing and shearing of the rockmass. 
According to geological map (Abha quadrangle GM-75), 
the study area and its surroundings comprise of faults and 
linear structures (Greenwood 1985). These faults and linear 
structures were verified by field investigation. Major fault 
that cut through the rocks were noticed along the main cur-
vature of the study area. These fault zone’s materials are 
highly crashed and weathered along the gullies. The study 
area is significantly affected by faults and the rock charac-
teristics in the most of the area are highly jointed and mixed 
together along with many colluvium soils are located with 
different sizes where shallow debris overburden extending 
below the homogenous slope (Youssef et al. 2015a, b). The 
unconsolidated overburden materials, when saturated during 
rains, form debris flows. These sliding blocks and the debris 
flows are affected the human lives, destruction of houses and 
facilities, and damage to the environment. It is also noticed 
that the Geological structures, such as cleavage (rock to split 
on a set of regular parallel or subparallel planes), schistos-
ity (orientation of equant minerals in a rock), fractures and 

Fig. 4   Spatial distribution of the selected criteria: a geology, b geo-
morphology, c distance from lineament, and d lineament rose dia-
gram. Details related to the abbreviation used for geomorphological 

unit (4B): HDSH = fighly-dissected structural hills; HDDH = highly 
dissected denudational hills; MDDH = moderate-dissected denuda-
tional hills; and MDSH = moderate dissected structural hills
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joints, with a dip angle of more than 30° towards the wadis 
facilitate many planer failures.

The lineaments demonstrate the zone of weakness sur-
face proving some linear to curvilinear features such as 
fracture, joint, fault in the geological structure (Mandal 
and Maiti 2014). Landsat-8 satellite imagery and geo-
logical map (Abha quadrangle GM-75) have been used to 
prepare the lineament map. The visual interpretation tech-
niques carried out to identify the lineaments by using False 
Color Composite (FCC) of satellite data (band 4, band 7 
and band 1) (Suzan and Toprak 1998), as per the literature 
band 4 was found to be the good in depicting the textural 
features (Pradeep et al. 2000) for lineament interpretation. 
After that, the visual interpretation enhanced by consid-
ering a 99% linear contrast stretch (more details could be 
found in Arlegui and Soriano 1998). After that, distance 
map prepared for lineament using Euclidean distance tool 
in ArcGIS 10.3 (Nalbant and Alptekin 1995). Rose diagram 
has been constructed to analyse the orientations of the line-
aments. The density of lineament is high in the west and 
north part of the study area (Fig. 4c). This diagram indicates 
the high occurrence of the lineament towards N 330°–360° 
and S 165°–180°. The dominant trends of the lineament are 
found along the NNW-SSE and WNW-ESE (Fig. 4d). In 
this study, we considered that the distance of 150 m from 
lineament is dominated by a high percentage of the land-
slide (Mandal and Maiti 2014). The Euclidean distance tool 
of ArcGIS was also used for preparing the distance maps for 
drainage networks and roads. The maps show the distance 
from lineaments ranges from 0 to 4211 m, distance from 
roads ranges from 0 to 2070 m, and distance from drainage 
network ranges from 0 to 2360 m.

Rainfall is one of the most important climatic variables 
that essentially prerequisite for various applications includ-
ing landslide susceptibility modelling (Xu 2015). Therefore, 
it is essential to understand its temporal and spatial phe-
nomena required for hazard-related studies. Rainfall data for 
the last 30 years (during the year of 1986–2016) collected 
from Presidency of Meteorology and Environment (PME), 
Saudi Arabia of eight (8) rain gauges stations, which distrib-
uted over and nearby the studied area. In our methodology, 
we used long-term precipitation for a 30-year period. An 
average annual rainfall is mapped out from the daily rain-
fall data measurements (Duman et al. 2005; Shahabi and 
Hashim 2015; Feizizadeh et al. 2014). The rainfall data were 
interpolated using the geostatistical technique, i.e. inverse 
distance weighted (IDW) method (Lu and Wong 2008) in 
the ArcGIS platform to analyse the spatial variability of rain-
fall. Analysed data show that the maximum annual rainfall 
data (30 years) were ranging from 118 mm to 342 mm, with 
the average annual value of 215 mm (Fig. 5a) of the study 
area. The spatial distribution of rainfall and its occurrences 
mostly depends on climatic and topographical factors. In 

the mountainous regions, the elevation factor is a key factor 
affecting the rainfall (Berhanu et al. 2013).

For the most part, anthropogenic activities are to blame 
for deforestation, high sedimentation rate, high runoff, loss 
in soil quality, and triggering forces of global and regional 
climate change (Dwivedi et al. 2005; Mallick et al. 2014). 
The land use and land cover (LULC) are one of the critical 
factor responsible for landslide occurrence due to the trans-
formation of natural surfaces. Landsat-8 satellite datasets 
of October 2014 was used to produce the LULC map using 
supervized classification (Nicholas 2005 (maximum likeli-
hood classifier). The validation of the classification result is 
performed using confusion or error matrix (Lillesand and 
Kiefer 1999), and it found with good agreement. The major 
LULC class (Fig. 5b) was found in exposed rock, followed 
by scrubland, sparse vegetation, and built-up area. Rock 
exposed areas and bare soil have high susceptible to land-
slide (Feizizadeh et al. 2014).

Vegetation in a semi-arid climate characterized by het-
erogeneous landscape patterns of bare land and green areas. 
It is well known that vegetation can play a significant role 
in slope stability through hydrological and mechanical pro-
cesses; these impacts can be adverse or beneficial to stabil-
ity. The characteristics of the bare lands are usually formed 
by exposed rock and crusted soils with low soil structure, 
low depth and low infiltration rates. This makes overland 
flow highly discontinuous with bare land areas as runoff gen-
erating areas. However, in the vegetated areas have consider-
ably better soil properties such as high organic matter con-
tent and a stronger aggregation, thereby, results in a higher 
infiltration capacity and areas as runoff sinks (Cammeraat 
and Imeson 1999). The amount and type of vegetation on a 
site will also play an essential role in landslide susceptibility. 
Vegetated branches assist in slow down water that flows over 
the soil surface, and it also consolidates the soil in place, 
whereas in the absence of the vegetated branches or root 
systems of trees, bushes, and other plants, the land surface 
is more likely to slide away.

In the present study, the vegetation proportion cover per 
pixel level is calculated from Landsat-8 satellite datasets 
using equation mentioned in Valor and Caselles (1996). 
Analysis of vegetation proportion shows that the value 
ranges from 0.00 to 1.00 with a mean of 0.12 (Fig. 5c). The 
highest patch of vegetation proportions located over the 
north-western part and along the wadies whereas lowest 
towards the east part of the study area. In this study, the 
highest value of vegetation proportion covers considered as 
low landslide susceptibility, whereas the lower values con-
sidered for high landslide susceptibility.

Soil samples collected from the study area during dry 
weather conditions using stratified technique, i.e. an area 
classified into similar topography, soil moisture and land 
cover, were determined using a Global Positioning System 



	 Environmental Earth Sciences (2018) 77:276

1 3

276  Page 10 of 25

(GPS) model GPS 38S. A total of seventy-five (75) soils 
sample were collected from each site with two replicates 
each 2–3 m apart at the depth of 0–30 cm. In the labora-
tory, after air-drying (102 °C for 24 h in oven), soil samples 
crushed and pass a 2-mm sieve and carefully homogenized 
and later analysed in laboratory for their properties, namely 
soil texture, and organic matter content, using standard pro-
cedure described by Carter (1993). Organic matter content 
obtained from high temperature of 350–600 °C for 2 h using 
muffle furnace. The precision of the measurements is speci-
fied to 1.5% of the detected amount, with a detection limit 
of 0.02% (Hill and Schutt 2000). Texture analysis of the soil 
samples was done by hydrometer method using stokes’ law 
(Sheldrick and Wang 1993). The grain size (sand, silt and 
clay %) and organic matter content % were analysed in order 
to estimate the soil erodibility.

The soil erodibility factor “K” characterizes the average 
long-term soil and soil-profile response to the erosive power 
related to rainfall and runoff. Soil erodibility factor is one of 
the essential factors required in the landslide studies (Lee 
2004), and integrated watershed management (Mallick 2016). 
The soil erodibility factor is influenced by the detachability 

of the soil, by infiltration and runoff, and the transportability 
of the sediment eroded from the soil. The key soil properties 
affecting K are soil texture (sand, silt, and clay percentages 
used to describe soil texture), organic matter, soil structure, 
and the permeability of the soil profile (Renard et al. 1997). K 
factor has been calculated using equation no. 1 (Wischmeier 
and Smith (1978)

where the geometric mean of soil particle size, and K fac-
tor unit is in (ton ha h ha−1 MJ−1 mm−1), OM is percent-
age of organic matter contents, fsand is the sand % (parti-
cle size of 0.05–2.0 mm), fsilt is the silt % (particle size 
0.002–0.05 mm), fclay is the clay % (particle size less than 
0.002 mm) as per guideline USGS.

Result depicts that the K factor ranges from 0.000 to 
0.0627 ton ha h ha−1 MJ−1 mm−1, with an average value 

(1)

K = 0.0293
(

0.65 − DG + 0.24D2
G

)

exp

{

− 0.0021

(

OM

fclay

)

− 0.00037

(

OM

fclay

)2

− 4.02fclay + 1.72f 2
clay

}

(2)DG = −3.5fclay − 2.0fsilt − 0.5fsand

Fig. 5   Spatial distribution of the selected criteria: a rainfall, b land use/land cover, c vegetation proportion, and d soil erodibility
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and standard deviation of 0.043 and 0.0147, respectively. It 
observed from the generated map (Fig. 5d) that the high val-
ues of K factor mainly located in the north-western and west-
eastern part of the study area. As per the outcomes of the 
result, it has been inferred that susceptibility of landslide is 
high where the soil erodibility is maximum, due to soil parti-
cle size either above or below the range of 20–200 µm, above 
this range it is more difficult to detach particles because of 
the mass and below this range cohesive forces counter par-
ticle detachment (Carlos and Odette 2012). Hence area with 
light texture soil (i.e. silt) and low organic matter content 
had the highest K values due to that the detachment increases 
as soil particles size are in the range of 20–200 µm (Mallick 
2016).

Selection of thematic layers

In the recent past related to GIS-based landslide studies, it is 
inferred that the selecting of the various thematic maps hav-
ing a significant role in the landslide susceptibility mapping 
(Pourghasemi et al. 2013). Such a bias approach of selecting 
the thematic layers for landslide susceptibility mapping may 
produce incorrect results. In this study, multivariate tech-
niques, viz. Principal Component Analysis (PCA) (Jensen 
2005) and expert opinions considered for assigning weights 
and normalization (from various stakeholders such as geol-
ogist, geotechnical experts, and local government bodies) 
were implemented to provide more robustness to the final 
result of a landslide susceptibility mapping. PCA is a sta-
tistical tool that uses an orthogonal transformation to con-
vert a set of observations of possibly correlated criteria (or 
thematic maps) into a set of values of linearly uncorrelated 
variables. This leads to discriminate the groups of statisti-
cal values that could have a potential relationship (Jensen 
2005). Principal components with more than 60% variance 
can be taken into account (Andreo et al. 2008) for statisti-
cal study. In the present study, PCA was performed for the 
eleven criteria.

Fuzzy set theory in multi‑criteria decision‑making

Zadeh (1965) first introduced the fuzzy set theory is model-
ling approach which simulates the complex systems that are 
difficult to explain by crisp numbers. Fuzzy logic allows 
the input of ambiguous, imprecise, and vague information 
(Balezentiene et al. 2013). Fuzzy logic is usually used in 
decision-making to carry out the spatial object on a map 
as a fuzzy membership function. In the case of classical set 
theory, a crisp number of an object either belongs to a par-
ticular set or not. However, in fuzzy set theory, the objects 
can belong as a membership value that ranges between 0 and 
1 which shows the degree of membership function (Zadeh 

1965). Figure 6 shows an example of a triangular fuzzy num-
ber (TFN) M̃.

A triangular fuzzy number (TFN) signified as (l/m, m/u) 
or (l, m, u) represents the smallest possible value, the most 
likely value and the most significant possible value, respec-
tively. The TFN having linear representation on left and right 
side can be referred in term of its membership function as:

A fuzzy number with its corresponding left and right 
representation of each degree of membership is as below 
(Kahraman et al. 2003):

where l(y) and l(r) refers the left side and the right side rep-
resentation of a fuzzy number, respectively

Fuzzy membership function (FMF)

The significant role of fuzzy set theory and fuzzy membership 
functions (FMF) can represent the vague data. It also permits 
mathematical functions and programming to use in the fuzzy 
domain. A fuzzy set is a class of objects characterized by a 
membership function, which assigns each object a grade of 
membership between 0 to 1 and vice versa (Zadeh 1965). In 
the case of landslide susceptibility mapping, the concept of 
partial membership of a considered location for more than 
one susceptibility class is possible by fuzzy sets theory. In this 
context, fuzzy membership’s functions were assigned to ana-
lyse the spatial variability and its pattern that resulted in the 
development of continuing class boundaries for each hazard 
zone. The transition between 0 and 1 which takes place can 
be determined by the shape of each applied FMF.

(3)𝜇
�

x�M̃
�

=

⎧

⎪

⎨

⎪

⎩

0,

(x − l)∕m − l),

(u − x)∕(u − m),

0,

x < l,

l ≤ x ≤ m

m ≤ x ≤ u

x > u

⎫

⎪

⎬

⎪

⎭

(4)M̃ =
(

Ml(y),Mr(y)
)

= (l + m − l)y, u + (m − u)y)

Fig. 6   A triangular fuzzy number (TFN) M̃
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Thematic data standardization using FMFs

The thematic layers (criteria) for landslide susceptibility map-
ping generated in different units as well as levels of measure-
ment. The four levels of measurement defined as nominal, 
ordinal, interval, and ratio (Akgun and Türk 2010), which 
necessitates the need for data standardization. Hence, the 
evaluation process requires incorporating all susceptibility 
triggering criteria into one output. So, the fuzzy membership 
approach adopted standardization methods (Liu 2004). The 
use of fuzzy sets theory in geospatial-based hazard and land-
slide assessment has been considered as an improved result 
(Mason and Rosenbaum 2002). Therefore, all the landslide 
triggering factors were standardized in range of 0 (low suscep-
tible) to 1 (high susceptible). As per the objectives and prob-
lem definition we have used three membership functions for 
landslide susceptibility such as linear FMFs (A linear increas-
ing or decreasing membership between tow inputs: linearized 
sigmoid shape), large FMFs (Sigmoid shape where large 
inputs have large memberships) and categorical FMFs (each 
named class assigned a membership value by the expert) (see 
Fig. 7). The first two sigmoidal membership function used 
commonly in many fuzzy logic applications and provided a 
gradual variation from non-membership (0) to complete mem-
bership (1) (Akgun and Türk 2010), although it is sometimes 
inevitable to select user-defined FMFs or categorical member-
ship functions. Figure 7 represents FAHP-based membership 
functions including: (Type I) large for (a) rainfall, (Type II) 
linear FMFs for (b) Soil erodibility c) distance to roads, (d) 
distance to lineament, (e) distance to drainage, (f) vegetation 
proportion, and (Type III) categorical FMFs for (g) slope (h) 
aspect (i) geomorphology (j) geology and (k) land use/cover. 
All applied FMFs of criteria and the subsequent output raster 
maps are shown in Figs. 7 and 8, respectively.

Assignment of weights and normalization

The expert’s opinions are considered for assigning suitable 
weights and its normalization. Assignment of weights has 
been recommended by Saaty (1980) but it was not significantly 
considered in the earlier studies. Analytical Hierarchy Process 
(AHP) has been extensively used in multi-criteria decision 
analysis (MCDA) to obtain the appropriate weights for different 
criteria (Saaty 1977; Ohta et al. 2007). It has been successfully 
implemented in GIS-based MCDA studies (Carver 1991; Mal-
czewski 1999, 2004; Marinoni et al. 2009). An AHP calculates 
the required weights associated with the relevant thematic lay-
ers assist with the opted matrix in which all the identified crite-
ria (thematic layers) are compared and analysed with each other 
(Feizizadeh and Blaschke 2013; Mallick 2016). The weights 
combined with values (criterion) generate a single-scale value 
for particular decision variant (spatially), which shows the rela-
tive importance of the value concerned. Since, the conventional 

AHP cannot appropriately depict the decision-making process 
based on the quantitative articulation of preferences, a fuzzy 
extension of AHP (called FAHP) was evolved to solve the fuzzy 
hierarchical problems. In the present study, the FAHP approach 
implemented for hierarchical analysis fuzzification by assigning 
fuzzy numbers for the pairwise comparisons, to obtain fuzzy 
weights. To determine evaluation criteria, weights for FAHP 
following steps were adopted (Chen et al. 2011).

Step I: Pairwise comparison matrices were established using 
all the elements/criteria in the dimensions of the hierarchy 
system. Linguistic terms were assigned to the pairwise com-
parisons as follows, asking in each case, which of the two ele-
ments/criteria were more important:

where ãij measure denotes, let 1̃ be (1,1,1), when i equal 
j (i.e. i = j); if 1̃, 2̃, 3̃, 4̃, 5̃, 6̃, 7̃, 8̃, 9̃ measure that cri-
terion i is relatively important to criterion j and then 
1̃−1, 2̃−1, 3̃−1, 4̃−1, 5̃−1, 6̃−1, 7̃−1, 8̃−1, 9̃−1 measure that crite-
rion j is relatively important to criterion i (Table 1).

Step II: To use the geometric mean technique to define the 
fuzzy geometric mean and fuzzy weights of each criterion by 
Buckley (1985) as follows:

where ãin is fuzzy comparison value of criterion i to criterion 
n, thus, r̃i is geometric mean of fuzzy comparison value of 
criterion i to each criterion, w̃i i is the fuzzy weight of the ith 
criterion, can be indicated by a TFN, w̃i =

(

lwi, mwi, uwi

)

 . 
Here lwi, mwi, uwi stand for the lower, middle and upper 
values of the fuzzy weight of the ith criterion, respectively.

Landslide susceptibility map

The qualitative landslide susceptibility zone (LSZ) of the 
watershed obtained by integrating the thematic maps in the 
GIS environment. The weighted linear combination method 
used for the computation of the LSZ (Malczewski 1999) 
(Eq. 7):

where LSI = landslide susceptibility index, xi = normal-
ized score (scale) of the ith class/feature of theme and 
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ã2n

⋮ ⋮⋱ ⋮
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Fig. 7   FAHP-based member-
ship functions including: (Type 
I) large for a rainfall, (Type II) 
linear FMFs for b soil erod-
ibility, c distance to roads, d 
distance to lineament, e distance 
to drainage, f vegetation propor-
tion, and (Type III) categorical 
FMFs for g slope, h aspect, i 
geomorphology, j geology and 
k land use/cover
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Fig. 8   Spatial distribution of landslide susceptibility for each the-
matic layer, based on fuzzy membership functions (i.e. fuzzy or 
crisp) of each parameter: a slope, b rainfall, c distance to lineaments, 
d drainage to roads density, e distance to drainage, f slope aspect, g 

geology, h geomorphology, i land use/land cover, j soil erodibility 
and k land use/cover; and also show the l lineament orientation using 
rose diagram
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wj = normalized weight of the jth theme, m = total number 
of themes, and n = total number of classes in a theme.

Sensitivity analysis

Sensitivity analysis is used to assess effects of the input cri-
teria on the model output performance and also to validate 
the effect of changing variable conditions or parameter val-
ues on the system (Gomez and Jones 2010). The informa-
tion on the effect of scaled values and weights assigned to 
each parameter verified by sensitivity analysis (Napolitano 
and Fabbri 1996). Therefore, the effective weights of each 
criterion compared with the assigned weight. The effective 
weight is computed using the following Eq. (8) (Napolitano 
and Fabbri 1996).

where w and s are, respectively, the weight and scaled value 
for the theme (Theme) assigned in each grid and LSI is the 
landslide potential index as computed from Eq. 7.

Results and discussion

The relationship between the detected landslide loca-
tions and eleven susceptibility factors identified by using 
GIS-based statistical models including fuzzy analytical 
hierarchy process (FAHP), weighted linear combination 
(WLC) and multi-criteria evaluation (MCE) technique. In 
the first stage, the theme standardization of landslide trig-
gering criteria was performed after that the susceptibil-
ity map created by a GIS-based landslide susceptibility 
mapping technique. The selection of criteria, PCA load-
ing help to interpret principal components. It is based on 
finding which variables are most strongly correlated linear 
combination weights (coefficients) with each component. 

(8)Effective…weight =
Themew ∗ Themes

LSI
∗ 100

In this study, PCA loading reveals that all eleven sets of 
criteria are susceptible to landslide occurrence. The crite-
ria weighting, typically, assign the attribute’s weight was 
carried out using MCDA (multi-criteria decision analysis) 
techniques. Accordingly, slope, rainfall and distance form 
lineament is inferred as the most significant causative fac-
tor to the landslide occurrences. Apart from that the dis-
tance to the lineament, rainfall, distance to the drainage 
network and slope aspect criteria are also among the prin-
cipal indexes of a landslide. The accuracy of predictive 
models (“what is likely to happen?”) has played a signifi-
cant concern in the majority of environmental modelling 
applications including hazard assessments.

The bias point of assessment from the decision maker 
for data standardization and criteria weighting affects the 
predictive accuracy. Moreover, the lack of synergy between 
expert opinions and stochastics model may cause limita-
tion of the landslide susceptibility mapping process while 
using a subjective method. To preserve the quality of spatial 
data, more computationally intensive approach (FAHP and 
expert opinions) was considered for criteria standardiza-
tion schemes. In this context, variety (linear, large and cat-
egorical) of fuzzy memberships functions (FMF) positively 
affected the validity and accuracy of input criteria. Further, 
the adopted methodology exhibits promising results to pre-
dict landslide occurrence irrespective of experts’ opinion. 
Therefore, the efficiency of the proposed FAHP and MCDM 
model substantially improves the outcomes. The details 
of the results and discussions discussed below mentioned 
heads.

Identifying potential thematic layers for landslide 
susceptibility zone assessment

Table 2 shows the results of the Principal Component Analy-
sis (PCA) including eleven PCs, eigenvalues, total variances 
and cumulative variances. PCA loading help to interpret 
principal components or factors; due to they are the linear 
combination weights (coefficients) whereby unit-scaled 
components or elements define or “load” a variable. The 
result infers that the first two principal components (PCs) 
explain about 80.27% of the total variance of the system. 
The plot of PC loading (Fig. 9) shows that all sets of vari-
ables are susceptible of landslide occurrence, while some 
the themes, such as vegetation proportion and land use/land 
cover are on the fourth quadrants, but they are very near to 
first positive quadrant of the axis. Hence, all variables may 
be contributing a significant role in landslide susceptibility 
occurrence. Thus, in this study, the landslide susceptibility 
zonation, all the eleven thematic layers were considered for 
proposed modelling.

Table 1   Fuzzy conversion scale

Importance 
intensity

Triangular 
fuzzy scale

Importance 
intensity

Triangular fuzzy scale

1 (1,1,1) 1/1 (1/1, 1/1, 1/1)
2 (1,2,4) 1/2 (1/4, 1/2, 1/1)
3 (1,3,5) 1/3 (1/5, 1/3, 1/1)
4 (2,4,6) 1/4 (1/6, 1/4, 1/2)
5 (3,5,7) 1/5 (1/7, 1/5, 1/3)
6 (4,6,8) 1/6 (1/8, 1/6, 1/4)
7 (5,7,9) 1/7 (1/9, 1/7, 1/5)
8 (6,8,10) 1/8 (1/10, 1/8, 1/6)
9 (7,9,11) 1/9 (1/11, 1/9, 1/7)
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Weights normalization for thematic maps

Table 3 summarizes the weights assigned to different the-
matic layers. The individual theme, as well as the classes 
of each thematic layer, normalized by the fuzzy analytical 
hierarchy process (FAHP) and eigenvector technique which 
is shown in Table 4. The statistical analysis such as consist-
ency ratios (CRs) < 8%, eigenvector solution: 5–7 iterations, 
and delta = 5.1 E−8 to 6.7E−8 for assigned weights for the 

eleven thematic layers and their features, shows that the 
assigned weights are consistent with the desired outcomes.

Validation of the results

Validation of the results by sensitivity analysis

The resulting outcome is verified by analysing the effec-
tive weight of a theme and compared it with the theoretical 
weight. Figure 10 represents the effective weights with the 
theoretical weight for each landslide susceptibility criterion. 
The effective weights for each theme are slightly different 
from the theoretical weight assigned to landslide suscepti-
bility zonation.

Validation of the results using relative operating 
characteristics (ROC)

ROC curve analysis is generally utilized for evaluating the 
accuracy of a diagnostic test (Swets 1988, Williams et al. 
1999). ROC curve is a plot of the probability of having a true 
positive (correctly predicted event response) on the X axis 
versus the probability of a false positive (falsely predicted 
event response) on the Y axis as the cut-off probability var-
ies. For example, a true positive is a prediction of a landslide 
for an area where a landslide happaned, while a false posi-
tive is a prediction of a landslide for an area where a land-
slide did not happen (Nandi and Shakoor 2010; Roodposhti 
et al. 2014). The accuracy of the model can be measured by 
the area under ROC curve (Williams et al. 1999; Yilmaz 
2009). An area of 1 shows a perfect test, while an area of 0.5 
shows an insignificant test. The closer the curve follows the 
left-hand border and then the top border of the ROC space, 

Table 2   Principal component loadings of the 11 variables used in PCA

Variable (themes) Principal Component Analysis

Unit in NAW I II III IV V VI VII VIII IX X XI

VG 0.0–1.0 0.28 − 0.22 − 0.09 0.05 − 0.04 − 0.14 − 0.02 − 0.51 0.21 0.47 0.21
Rainfall 0.0–1.0 0.32 0.20 0.16 − 0.07 − 0.06 0.10 0.21 0.42 0.00 0.40 0.59
DD 0.0–1.0 0.10 0.03 − 0.33 0.18 0.62 0.08 − 0.58 0.23 0.04 0.24 − 0.02
DL 0.0–1.0 0.13 − 0.06 0.10 − 0.07 0.48 0.11 0.31 − 0.44 − 0.08 − 0.10 0.09
DR 0.0–1.0 0.06 0.11 − 0.35 0.24 0.37 − 0.53 0.59 − 0.05 − 0.18 0.01 0.03
GEOM 0.0–1.0 0.39 0.54 0.28 − 0.03 0.20 0.13 0.03 − 0.01 − 0.07 0.01 0.10
Geology 0.0–1.0 0.15 0.05 0.18 − 0.07 0.07 0.14 0.33 0.29 0.30 0.44 − 0.46
Slope 0.0–1.0 0.25 0.11 0.66 − 0.23 0.34 − 0.51 − 0.19 − 0.15 0.03 − 0.05 0.00
LULC 0.0–1.0 0.41 − 0.44 0.15 − 0.04 0.25 − 0.03 0.14 0.41 0.08 − 0.11 0.09
SE 0.0–1.0 0.23 0.16 − 0.08 0.04 0.09 0.03 0.09 0.20 0.40 − 0.59 0.11
Aspect 0.0–1.0 0.23 0.27 0.38 0.21 − 0.08 0.07 − 0.02 − 0.01 0.00 − 0.01 − 0.01
Eigenvalue – 16.08 4.008 1.134 0.820 0.772 0.652 0.486 0.325 0.290 0.252 0.190
% of Variance – 64.20 16.07 4.55 3.29 3.09 2.61 1.95 1.30 1.16 1.01 0.76
Cumulative Variance % – 64.20 80.27 84.81 88.10 91.20 93.81 95.76 97.06 98.23 99.24 100.0

Fig. 9   Plot of loadings of first PC versus that of second PC for eleven 
thematic variables
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the more accurate the test; the true positive rate is high and 
the false positive rate is low (Pradhan 2013; Roodposhti 
et al. 2014). The ROC method was executed based on the 
landslide inventory database. Accordingly, to compute the 
AUC, 38 known landslide sites chosen for the accuracy of 
the model and 31 non-landslides points (NLS points) ran-
domly chosen within the bounds of the study area. Figure 11 
shows the AUC of the ROC curve of 0.891 with a standard 
error of 0.038.

Validation of the results using simple overlay

The final landslide susceptibility map was also verified using 
the landslide inventory map. It has been carried out by over-
laying the 38 known landslides sites on the landslide suscep-
tibility map (see Fig. 12). About 73.68% of known landslides 
sites fell in the very high susceptibility and high susceptibil-
ity zones, while 15.79% accounts for moderate susceptibility 
and 10.53% belongs to low susceptibility category. No land-
slide event occurs in the “very low susceptibility” category.

Analysis of landslide susceptibility map

Results obtained from the study summarize the weighted 
overlay analysis method using MCDM (the FAHP and eigen-
vector techniques) is one of the reliable technologies to map 
landslide susceptibility zones. The eleven (11) thematic lay-
ers, slope, rainfall, distance to lineaments, distance to the 
road network, distance to drainage network, geology, geo-
morphology, slope aspect, soil erodibility, vegetation pro-
portion and land use/land cover, to classify the studies study 
area into different landslide susceptibility zones. Figure 12 
shows the landslide susceptibility map which was quantita-
tively developed using landslide susceptibility index (LSI) 
value for the interpretation. The mean value of the landslide 
susceptibility index was 16.92, and the standard deviation 
was 5.04, whereas the minimum and maximum values of 
LSI were 6.24 and 39.07, respectively.

Landslide susceptibility index classified into the various 
zone as per the histogram profile. The histogram profile dis-
plays the statistical information about pixel (cell) value of 
LSI that indicates the frequency of spread data. The histo-
gram inferred that the spread values unevenly distributed, 
so natural-break classification scheme selected for zonation 
mapping (Constantin et al. 2011). Hence, the landslide sus-
ceptibility zones identified and mapped into five classes: 
very low susceptibility, low susceptibility, moderate sus-
ceptibility, high susceptibility and very high susceptibility 
(Fig. 12). As per the analysis, 5.59 and 9.53% of the total 
area of the study area were under very high and high sus-
ceptibility zone, while 22.55 and 35.58% were under the 
moderate and low susceptibility zone, respectively (Table 5). 
With this qualitative-based zonation, very high and high Ta
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Table 4   Assigned and normalized weights of different features of eleven thematic layers for landslide

Theme Feature classes FMF Assigned 
weight

Fuzzy weight

1. Slope in degree a) Susceptibility class 1 (0.00–5.00 degree) 0.200 1 0.045
b) Susceptibility class 2 (5.01–15.00 degree) 0.400 2 0.066
c) Susceptibility class 3 (15.01–20.00 degree) 0.800 4 0.243
d) Susceptibility class 4 (20.01–30.00 degree) 1.000 5 0.530
e) Susceptibility class 5 (30.01–40.00 degree) 0.600 3 0.116
f) Susceptibility class 6 (40.01–52.32 degree) 0.400 2 0.066

2. Rainfall a) Susceptibility class 1 (118–155 mm) 0.000–0.123 1 0.039
b) Susceptibility class 2 (156–183 mm) 0.124–0.242 2 0.050
c) Susceptibility class 3 (184–211.mm) 0.243–0.397 3 0.068
d) Susceptibility class 4 (212–236 mm) 0.398–0.532 4 0.098
e) Susceptibility class 5 (237–259 mm) 0.533–0.644 5 0.149
f) Susceptibility class 6 (260–290 mm) 0.645–0.760 6 0.222
g) Susceptibility class 7 (291–342 mm) 0.760–1.000 7 0.374

3. Distance from lineaments a) Susceptibility class 1 (2807–4211 m) 0.00–0.333 1 0.039
b) Susceptibility class 2 (2097–2806 m) 0.334–0.501 2 0.050
c) Susceptibility class 3 (1469–2096 m) 0.502–0.650 3 0.068
d) Susceptibility class 4 (974–1468 m) 0.651–0.768 4 0.098
e) Susceptibility class 5 (595–973 m) 0.769–0.858 5 0.149
f) Susceptibility class 6 (280–594 m) 0.859–0.933 6 0.222
g) Susceptibility class 7 (0–279 m) 0.934–1.000 7 0.374

4. Distance from roads a) Susceptibility class 1 (1924–2870 m) 0.000–0.329 1 0.039
b) Susceptibility class 2 (1384–1923 m) 0.330–0.517 2 0.050
c) Susceptibility class 3 (1012–1383 m) 0.518–0.647 3 0.068
d) Susceptibility class 4 (708–1011 m) 0.648–0.752 4 0.098
e) Susceptibility class 5 (438–707 m) 0.753–0.847 5 0.149
f) Susceptibility class 6 (203–437 m) 0.848–0.929 6 0.222
g) Susceptibility class 7 (0–202 m) 0.930–1.000 7 0.374

5. Distance from drainage a) Susceptibility class 1 (1510–2363 m) 0.000–0.360 1 0.039
b) Susceptibility class 2 (1158–1509 m) 0.361–0.508 2 0.050
c) Susceptibility class 3 (889–1157 m) 0.509–0.623 3 0.068
d) Susceptibility class 4 (657–888 m) 0.624–0.721 4 0.098
e) Susceptibility class 5 (436–656 m) 0.722–0.815 5 0.149
f) Susceptibility class 6 (213–435 m) 0.816–0.909 6 0.222
g) Susceptibility class 7 (0–212 m) 0.910–1.000 7 0.374

6. Aspect a) Susceptibility class 1 (flat) 0.100 1 0.039
b) Susceptibility class 2 (north) 0.200 2 0.056
c) Susceptibility class 3 (north-east and north-west) 0.400 3 0.092
d) Susceptibility class 4 (south and Southwest) 0.600 4 0.155
e) Susceptibility class (east and Southeast) 0.800 5 0.238
f) Susceptibility class (south-east) 1.000 6 0.42

7. Geology a) Susceptibility class 1 (granite suite) 0.200 1 0.045
b) Susceptibility class 2 (basalt, andesite and carbonaceous conglomer-

atic)
0.400 2 0.066

c) Susceptibility class 3 (volcanoclastic, shale and siltstone) 0.600 3 0.116
d) Susceptibility class 4 (dioritic and gabbroic massive layered sills, dikes 

etc.)
0.800 4 0.243

e) Susceptibility class 5 (sedimentary–sandstone) 1.000 5 0.530
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Table 4   (continued)

Theme Feature classes FMF Assigned 
weight

Fuzzy weight

8. Geomorphology a) Susceptibility class 1 (wadies) 0.200 1 0.045
b) Susceptibility class 2 (Piedmont slope/Low-dissected structural Hills) 0.400 2 0.066
c) Susceptibility class 3 (Moderate-dissected denudational hills/Moder-

ate-dissected structural Hills)
0.600 3 0.116

d) Susceptibility class 4 (Pediment) 0.800 4 0.243
e) Susceptibility class 5 (highly dissected structural hills/highly dissected 

denudational hills)
1.000 5 0.530

9. Soil Erodibility a) Susceptibility class 1 (0.000–0.010) 0.000–0.160 1 0.039
b) Susceptibility class 2 (0.011–0.024) 0.161–0.388 2 0.056
c) Susceptibility class 3 (0.025–0.033) 0.389–0.529 3 0.092
d) Susceptibility class 4 (0.034–0.040) 0.530–0.643 4 0.155
e) Susceptibility class 5 (0.041–0.049) 0.644–0.792 5 0.238
f) Susceptibility class 6 (0.050–0.063) 0.793–1.000 6 0.42

10. Vegetation proportion a) Susceptibility class 1 (0.471–1.000) 0.00–0.525 1 0.039
b) Susceptibility class 2 (0.317–0.470) 0.526–0.682 2 0.050
c) Susceptibility class 3 (0.227–0.316) 0.683–0.772 3 0.068
d) Susceptibility class 4 (0.156–0.226) 0.773–0.843 4 0.098
e) Susceptibility class 5 (0.094–0.155) 0.844–0.905 5 0.149
f) Susceptibility class 6 (0.035–0.093) 0.906–0.964 6 0.222
g) Susceptibility class 7 (0.000–0.031) 0.965–1.000 7 0.374

11. Land use/land cover a) Susceptibility class 1 (water bodies) 0.000 1 0.000
b) Susceptibility class 2 (built-up/dense vegetation) 0.200 2 0.074
c) Susceptibility class 3 (agricultural land/sparse Vegetation) 0.400 3 0.109
d) Susceptibility class 4 (fallowland/bushes and scrublands) 0.600 4 0.168
e) Susceptibility class 5 (bare soil and wasteland) 0.800 5 0.222
f) Susceptibility class 6 (rock outcroplands) 1.000 6 0.426

Fig. 10   Graphical analysis of 
the calculated effective weights 
versus theoretical weight for 
each landslide susceptibility 
criterion
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susceptibility area of the watershed has accounted 15.11% 
area coverage, identifying the steep slope failure susceptible. 
Concerning quantitative analysis and spatial distribution, the 
spatial variation of very high and high landslide zones found 
in the western, south-western and central-north highlands of 
the watershed. The present study contributes significantly to 
understanding the watershed hazard susceptibility that could 

be used as the preliminary basis by decision makers, plan-
ners, and engineers to avoid and minimize the damage and 
losses caused by existing and future landslides.

The study aimed to integrate the fuzzy set theory with 
GIS-based AHP-MCDA, which could be a useful tool for 
incorporating various features that influence the LSM pro-
cess. The LSM framework emphasizes on structuring the 

Fig. 11   ROC curve for the 
proposed landslide susceptibil-
ity mapping

Fig. 12   Landslide susceptibility zones of the watershed
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decision-making process. The integration of fuzzy-AHP 
approach used to decide the criteria weightings from the 
subjective method. The proposed method ascertains that 
the fuzzy set theory coupled with GIS-based AHP-MCDA 
can produce a high-reliability landslide hazard map. The 
fuzzy-AHP approach is promising for GIS-based MCDA 
as it solves two significant limitations of the conven-
tional AHP. Initially, AHP used in a single process which 
depends on expert knowledge for assigning the criteria 
weights while allowing a specific level of subjectivity in 
the pairwise comparison matrix. Secondly, the inconsist-
ency of the technique has been recognized to a constrained 
scale of judgment, the absence of transitivity, and the rank 
reversal phenomenon.

So, it neccessiates to discuss about the AHP and its limi-
tation in the present context. Since in the beginning AHP 
has been performed in various applications in environmental 
hazard, hydrogeology, environmental planning and manage-
ment (Saaty 1980; Chen et al. 2001; Madrucci et al. 2008; 
Jha et al. 2010; Abba et al. 2013; Mallick et al. 2014). AHP 
has gained significance in terms of interactive graphical UIs, 
automatic calculation of priorities and inconsistencies and 
several ways to process a sensitivity analysis, yet there is 
still lot of controversy surrounding AHP (Jha et al. 2010; 
Ahmad et al. 2013). The rank reversal phenomenon arises 
from inclusion of new alternative or deletion of an old alter-
native in decision-making process. This results in change of 
ranking in the past choices. It had been one of the significant 
constraints of utility-based theories that initially assumed 
the most imperative component/s of decision-making is/are 
alternative/s and their utilities under the different criteria 
(Saaty and Vargas 2008). These issues continued persist 
until Millet and Saaty (2000) proposed examples where 
ranking should be preserved or permitted to reverse. The 
provided examples explained that AHP accommodates two 
types of blend procedures: ideal mode (allows for alternative 
rank preservation) and distributive mode (which does allow 
for rank reversal). The pairwise comparison in AHP utilizes 
a reliable method of transforming pairwise comparisons into 
a set of numbers representing the relative priority of each 
criterion.

Though numerous other scales discussed in the literature, 
none of them completely address the previously mentioned 
issues with AHP. A ratio scale proposed by Saaty (1977) was 
utilized in the utmost applications (Duru et al. 2012). The 
data uncertainty and the ambiguity of human decision make 
it difficult to provide correct numerical weights to evaluate 
the criteria. In many cases, the pairwise comparison ratings 
can’t be chosen precisely and experts may prefer intermedi-
ate ratings instead of definite ratings. In order to solve the 
issue of precision, fuzzy-AHP compares with more adapt-
able for obtaining experts’ preferences (Kahraman et al. 
2003; Kutlu and Ekmekçioglu. 2012). In the fuzzy-AHP 
method, each decision has a specific arrangement, which is 
related with a two-dimensional priority matrix (viz. criterion 
vs. criterion). Whereas, conventional AHP utilizes pairwise 
comparisons of criteria in a top-down sequence and weights 
choice matrices by the consequence of a single identical pri-
ority matrix (Duru et al. 2012). Since the assessment criteria 
of the best arrangement have the different implications and 
meanings, there is no legitimate reason to treat them all as 
of equal importance. Moreover, fuzzy-AHP utilized to deal 
with the categorical criteria (qualitative data) of LSM (e.g. 
slope, aspect, geomorphological, geology and LULC) which 
are difficult to describe in crisp values, thus strengthen the 
comprehensiveness and reasonableness of the decision-mak-
ing process (Chen et al. 2011). Fuzzy-AHP calculates both 
priorities and data by fuzzy sets (Duru et al. 2012).

In the present research, GIS-based fuzzy-AHP-MCDA 
framework performed to LSM. This research investi-
gates that the framework utilizes artificial values derived 
through pairwise comparisons. However, Duru et al. (2012) 
described, various fuzzy-AHP studies which lack of the 
matrix consistency problem, though the choices are incon-
sistent. The outcomes of this study show that the combina-
tion of fuzzy set theory with AHP in both criteria weight-
ing and normalization. According to our results, it can be 
stated that the integration of fuzzy sets with AHP in both 
criteria weighting and normalization gives high adaptabil-
ity in choices and decision-making. The criteria weighting 
and normalization also considers the uncertainties in the 
LSM process by using FMFs as well as by methods for tri-
angular fuzzy numbers (TFNs) rather than crisp numbers 
for comparing the relative significance between LSM cri-
teria. Moreover, fuzzy logic is appealing because in light 
of the fact that it is simple to understand and implement. 
Fuzzy logic can be applied on data for any measurement 
scale, and the weighting is defined by the expert (Chen et al. 
2011; Feizizadeh et al. 2013). Nevertheless, the study pre-
sents more practical assessment of landslide susceptibility 
mapping using linguistic variables. The fuzziness nature of 
data renders inaccurate assessment which can be overcome 
successfully by employing fuzzy-AHP weights (Oguzitimur 
2011; Mijani and Samani 2017).

Table 5   Landslide susceptibility zones of the watershed and their 
area and percentage of coverage

Class Landslide susceptibil-
ity zone

LSI (range) Area 
coverage 
(km2)

Area 
coverage 
(%)

1 Very low susceptibility 6.24–13.58 99.00 26.76
2 Low susceptibility 13.59–17.18 131.64 35.58
3 Moderate susceptibility 17.19–21.56 83.42 22.55
4 High susceptibility 21.57–27.35 35.27 9.53
5 Very high susceptibility 27.36–39.07 20.67 5.59
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Conclusions

Landslides are a natural disaster, significantly affected by 
the failure of materials making up the hill slopes and aug-
mented by the force of gravity, precipitation and anthropo-
genic activities. In last few decades, landslides have been 
considered to be the most critical natural hazards in Aseer 
region, Saudi Arabia. Therefore, a short- and long-term 
solution is required for mitigating the landslide risk. The 
study presents an integrated approach for landslide suscep-
tibility map with prominence on structuring the decision-
making process. This could be assessed by appropriate 
data selection, weighting of criteria and normalization. 
The integrated GIS-based fuzzy-AHP-MCDA framework 
applied to landslide prone areas, in order to understand the 
processes that contribute to the landslides. The proposed 
method ascertains that the fuzzy set theory coupled with 
GIS-based AHP-MCDA can produce a high-reliability 
landslide hazard map. According to study results, it can be 
stated that the integration of fuzzy sets with AHP in both 
criteria weighting and normalization gives high adaptabil-
ity in choices and decision-making. The criteria weighting 
and normalization also consider the uncertainties in the 
LSM process by using FMFs as well as by methods for tri-
angular fuzzy numbers (TFNs) rather than crisp numbers 
for comparing the relative significance between LSM cri-
teria. Moreover, fuzzy logic is appealing because in light 
of the fact that it is simple to understand and implement.

The study results summarize the weighted overlay anal-
ysis method using MCDM. The landslide susceptibility 
zones identified and mapped into five classes: very low 
susceptibility, low susceptibility, moderate susceptibility, 
high susceptibility and very high susceptibility. The analy-
sis shows that very high and high susceptibility area of the 
watershed has accounted 15.11% area coverage, identify-
ing the steep slope failure susceptible. Concerning spatial 
distribution, the spatial variation of very high and high 
landslide zones found in the western, south-western and 
central-north highlands of the watershed.

The study results and findings illustrated that the stated 
approach can produce a high-reliability landslide hazard 
map. However, different uncertainty aspects of LSM need 
to be resolved. A degree of uncertainty will always persist 
in any LSM due to the uncertainty inherent in LSM cri-
teria. The uncertainty inherent exists both in the criteria 
weighting and in degree of influence by each criterion. 
In order to overcome spatial uncertainty in fuzzy-AHP 
approach, the future research will evaluate the spatially 
explicit reliability models for spatial sensitivity and uncer-
tainty analyses based on GIS-fuzzy-AHP MCDA and also 
the impact of rainfall time series with different length in 
a landslide susceptibity in the framework of changing 

rainfall spatio-temporal change. The present study con-
tributes significantly to understanding the watershed haz-
ard susceptibility that could be used as the preliminary 
basis by decision makers, planners, and engineers to avoid 
and minimize the damage and losses caused by existing 
and future landslides. These results will also be useful 
in explaining the relationship between known landslides 
and landslide susceptibility, and thereby, it assists geosci-
entists and engineers in the analysis and design process, 
sustainable land stability management aimed at mitigation 
of landslide impacts. The methodology applied herein may 
be used in landslide susceptibility assessment throughout 
similar semi-arid watershed environments.
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