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Abstract
Filamentous fungi were isolated from semiarid soil in which the lead (Pb) concentrations were above regulatory limits as 
determined by the Brazilian standards. Among these fungi, four isolates were tested for their abilities to grow in a culture 
medium containing lead nitrate. Chaetomium aureum was the species that presented a comparatively better performance 
including mycelial growth in a lead-containing medium, ability to use pectin as a carbon source, as well as basophilic and 
thermotolerant properties. The C. aureum inoculum with either activated or inactivated native microbiota was able to reduce 
the free Pb in soil (61 and 54%, respectively) after 60 days of inoculation. Although the mechanism involved in decreasing 
water-soluble and exchangeable lead concentrations in soil has not been studied, either the processes of biosorption by organic 
molecules (called oosporein, produced by this species) or fungal mineral transformation is among its possible explanations. 
These findings support the use of filamentous fungi as potential tools for the bioremediation of contaminated sites and 
highlight C. aureum as a promising tool for environmental biotechnology. In addition, the ability of this fungus (collected in 
a lead-contaminated area) to grow efficiently in the presence of this metal indicates that the bioprospecting strategy of the 
indigenous microbiota should be encouraged, as they appear to be more likely to succeed.
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Introduction

Lead (Pb) has been recognized as an extremely toxic metal 
of special interest among environmental pollutants (Casas 
and Sordo 2006). Pollution caused by anthropogenic activi-
ties mostly originates from mining, smelting, industrial uses, 
wastes incineration, and burning of coal and leaded gasoline 
(Cheng and Hu 2010). From toxicological perspective, lead 

causes extensive damage in different organisms and it is con-
sidered a neurotoxic agent (Skerfving and Bergdahl 2014).

Microorganisms in soil are particularly susceptible to the 
effects of Pb. Unlike many other metals, Pb has no biological 
role and is potentially toxic to microorganisms (Sobolev and 
Begonia 2008). Its excessive accumulation in living organ-
isms is always detrimental (Adelekan and Abegunde 2008). 
Nevertheless, certain microorganisms can tolerate the pres-
ence of high concentrations of heavy metals owing to differ-
ent physiological mechanisms (Da Silva-Júnior and Pereira 
2007, 2014; Li et al. 2015; Kang et al. 2016).

The strategies used by microorganisms to survive adverse 
environments with high concentrations of heavy metals 
are particularly interesting to the study of remediation in 
contaminated sites. In many cases, these organisms can 
decrease the bioavailability of toxic elements in the envi-
ronment through mechanisms, including the absorption of 
lead by secreting extracellular polymers, like the secretion 
of polysaccharides by Pseudomonas sp. (Shiomi 2015). 
There is still, mechanisms such as adsorption at the cell wall 
(for example, in Aspergillus flavus) (Ozer and Ozer 2003), 
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intracellular binding by substances like phytochelatins and 
siderophores (in Schizosaccharomyces sp.) (Shiomi 2015) 
or intracellular precipitation of lead (marine bacteria Vibrio 
harveyi and gram negative bacteria Providencia alcalifa-
ciens) (Mire et al. 2004; Naik et al. 2012).

The efficacy of metal removal from the environment may 
be enhanced by selecting optimum conditions for parameters 
such as temperature and pH (Biswas et al. 2015). Deter-
mination of these optimal conditions may encourage faster 
microbial growth (Da Silva-Júnior and Pereira 2007) as well 
as the production and release of metabolites (Battilani et al. 
2010). Furthermore, the specific relationship between the 
contaminant and the microorganism used for the bioremedia-
tion process should be considered.

Currently, the search for mechanisms and organisms for 
bioremediation programs has gained prominence, due to 
the increasing levels of contaminated sites. In order to look 
for these competent organisms we have to take into account 
their potential to grow in adverse conditions, adaptability, 
and a deeper investigation of the relationship between micro-
organisms and the environment

The study aimed to isolate filamentous fungi in a con-
taminated area of lead, as well as to evaluate the behavior of 
this isolated fungus tolerant to this metal in culture medium 
and to use a microcosm scale in the soil.

Materials and methods

Sample collection and processing of soil

Soil sampling was performed at the perimeter of a metallur-
gical plant located in Belo Jardim, Pernambuco state, Brazil. 
The results of soil analysis are described in Table 1, and the 
lead concentration was considered to be above regulatory 
limits as defined by Brazilian standards (CONAMA 2009).

Soil samples were collected from random points at the 
depth of 0–20 cm, after removing plant residues from the 

sampling sites. The samples were then stored in polyeth-
ylene bags and were transferred to the Soil Microbiology 
Laboratory of the Instituto Tecnológico de Pernambuco. At 
the laboratory, the samples were sieved (2 mm) and homog-
enized for further assays.

Isolation of filamentous fungi

For the isolation of filamentous fungi, 25 g of soil was sus-
pended in 225 mL of sterile distilled water and the resulting 
suspension serially diluted. Triplicates were obtained from 
each suspension, placed in plates containing 0.2 mL potato 
dextrose agar (PDA) medium, and homogenized with a Dri-
galski spatula. The plates were incubated in the laboratory 
at room temperature (approximately 28 °C) for up to 6 days, 
and CFU g−1 counts were then obtained (Warcup 1950).

Identification of the fungi

The identification was performed by macroscopic and micro-
scopic observations of the isolated fungi. The morphological 
aspects of the cultures such as the aspects of their border, 
pigmentation, and color were visualized through macro-
scopic observation of the fungal colonies grown on either 
PDA or Czapek media. The microscopic characteristics of 
these isolates were observed through the description of the 
reproductive structures under an optical microscope using 
the slide culture technique. The fungal species were iden-
tified as described by Fennell et al. (1975), Domsch et al. 
(1980), and von Arx et al. (1986).

Growth in culture medium with lead nitrate

Tolerance analysis of the isolated species was performed 
by investigating the growth of the colonies in culture media 
containing different concentrations of lead nitrate (0, 93.75, 
187.5, and 281.25 Pb mg kg−1). A piece of the monosporic 
cultures of four isolates from the contaminated soil (C. 
aureum, Thielavia sp. Aspergillus niger and Penicillium 
sp.) was transferred to PDA media (in triplicate, individu-
ally). After 6 days of incubation, the colony diameters were 
measured with millimeter precision. Among the isolated 
colonies, the fungus Chaetomium aureum Chivers (1912) 
was selected considering the results from previous studies, 
which demonstrated the tolerance of the genus Chaetomium 
to high lead concentrations.

Growth using different substrates

Evaluation of the growth of colonies using different sub-
strates was performed after transferring a fragment of mono-
sporic cultures (C. aureum) to Petri dishes (also in triplicate) 
containing PDA medium with different substrates (dextrose, 

Table 1   Soil analysis Parameter

pH (H2O) 4.82
Organic matter (%) 2.48
V (%) 77
P (mg dm−3) 6
Ca (cmolc dm−3) 3.25
Mg (cmolc dm−3) 4.05
K (cmolc dm−3) 0.41
Al (cmolc dm−3) 0.30
H (cmolc dm−3) 4.65
S (cmolc dm−3) 16.05
Pb mg kg−1 154.0
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pectin, casein, and amide). The cultures were incubated at 
room temperature for 4 days, and the colony diameters were 
then measured with millimeter precision.

Growth at different temperatures

Fragments of C. aureum monosporic cultures were trans-
ferred to PDA media (six replicates) and incubated for 
3 days at three temperatures (28, 35, and 42 °C). After this 
period, the colony diameters were measured with millimeter 
precision.

Growth in different pH values

Fragments of monosporic cultures of C. aureum were trans-
ferred to Petri dishes (six replicates) containing PDA media 
prepared at 4 different pH values (pH 6, 7, 8, and 9) and 
were incubated for 3 days. After this period, we measured 
the colony diameters with millimeter precision.

Experiment at the microcosm scale—C. aureum 
in contaminated soil

C. aureum inoculums preparation

Replicates of the fungal culture stored in the laboratory were 
used to prepare concentrated suspensions of spores which 
were placed in Petri dishes containing PDA. These replicates 
were incubated at a temperature of 28 °C for 10 days. After 
this period, the mycelial mass was transferred to tubes which 
containing a sterile saline solution (0.8%) and the final con-
centration of the inoculum ranged from 2.5 to 3 g L−1.

Soil

Soil samples from the area, where the fungus was isolated, 
were used for the microcosm assay. Both natural and auto-
claved (at 121 °C for 1 h for two consecutive days) soils 
were used.

Soil inoculation and analyzed variables

Recipients containing 300 g of soil were inoculated (in 
triplicate) with fungal suspensions for periods of 0, 30, and 
60 days. The following parameters were then measured: pH, 
organic matter, lead content, and colony forming units per 
gram of soil (CFU g−1).

The experimental design was entirely random in a scheme 
factorial 2 × 2 × 3 × 3. The treatments were: (1) non-auto-
claved soil without C. aureum inoculum, (2) non-autoclaved 
soil inoculated with C. aureum, (3) autoclaved soil without 
C. aureum inoculum, and (4) autoclaved soil inoculated with 
C. aureum.

Water‑soluble and exchangeable Pb determination

The soil samples were shaken with 0.1 M CaCl2 for 16 h at 
room temperature and centrifuged at 3600 rpm. The super-
natant then filtered with a Millipore filter (0.45 µm) (Orroño 
and Lavado 2009). The Pb was quantified using inductively 
coupled plasma-atomic emission spectrometry (ICP-OES).

Data analysis

The results were expressed as mean ± SD. The data were 
analyzed by one-way analysis of variance (ANOVA) follow-
ing the Tukey’s test. The Kruskal–Wallis nonparametric test 
was employed for the analysis of nonparametric data. Differ-
ences at p < 0.05 were considered as statistically significant.

Results and discussion

Microbial growth in the presence of lead nitrate

Among the colonies grown in soil from the residue storage 
patio at the metallurgical plant, four colonies were selected 
to evaluate growth in the presence of lead: one isolate of C. 
aureum, one of Thielavia sp., one of Penicillium sp., and 
one of Aspergillus niger. After 3 days, lead nitrate showed 
negative effects on the growth of Thielavia sp., A. niger, and 
Penicillium sp. isolates. However, it caused no significant 
difference in the growth of the C. aureum isolate (Fig. 1).

After 6 days, the C. aureum isolate showed increased 
mean growth efficiency in the medium containing lead 
nitrate, also displaying significantly greater mycelial growth 
in the two highest concentrations of lead compared to that 
in the control. In sequence, the Thielavia sp. isolate dem-
onstrated mycelial growth that was superior to the control 

Fig. 1   Growth of colonies in culture mediums containing dif-
ferent concentrations of lead nitrate, after 3  days (0, 150, 300, 
and 450  mg  kg−1, which are equivalent to 0, 93.75, 187.5, and 
281.25 Pb mg kg−1, respectively)
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at a Pb concentration of 187.5 mg kg−1. On the other hand, 
isolates of the genera Aspergillus and Penicillium showed 
decreased mycelial growth with increasing lead concentra-
tion (Fig. 2).

These findings indicate that the filamentous fungus C. 
aureum showed tolerance to lead nitrate after 3 days of incu-
bation, and presented a higher mycelial growth depending 
on the mean lead concentration in the mean after 6 days.

Interactions between fungi and toxic metals are not lim-
ited to studies with iron, nor are they restricted to the toxic 
effects of metals in different species of fungi, these studies 
also investigated their toxicity, resistance, tolerance, absorp-
tion, and excretion (Gola et al. 2016; Kaewdoung et al. 2016; 
Ruta et al. 2017). Elucidating these processes is an important 
step in decision-making for microbe bioremediation studies. 
The relationship between toxic metals and the fungi of the 
genus Chaetomium was addressed by only a few studies, 
which have shown both species-specific and metal-specific 
responses.

The fungi of the Chaetomium genus were isolated from 
the soils of peri-urban agricultural area irrigated by indus-
trial and mine waste areas, presenting high concentrations of 
metals such as Fe, Mn, Cu, As, Sr, Mo, Cd, Sb, Ti, Zn, and 
Pb (Iram et al. 2009). Smith et al. (1978) studied the effects 
of trace-metals on the growth of urban tree-leaf pathogen 
fungi and observed that high concentrations of some met-
als such as Al, Fe, Mg, Pb, and Zn are extremely toxic to 
Chaetomium sp. However, the growth of this fungus was 
favored at some intermediate concentrations of Pb and Fe. 
An example of this high resistance in harsh environments 
can be seen in a review of the surveys conducted during 
1986–2012 in natural ecosystems of the Russian Federation 
and Ukraine, which were contaminated due to the Chernobyl 
disaster (Shcheglov et al. 2013), showing a fungal activity of 
3.7 × 105–3.7 × 107 Bq/Kg for C. aureum and Paecilomyces 

lilacinus in medium and high levels of contamination 
(Zhdanova et al. 1995). Aguileta et al. (2016) also demon-
strated a lower prevalence of parasitic fungi at the radiation 
levels near Chernobyl, but with similar fitness.

In the present study, four investigated isolates of Chaeto-
mium sp. were tolerant to lead, since they were indigenous 
components of the contaminated soil adjacent to the metal-
lurgical plant. In fact, fungi of this genus have already been 
used in isolates of contaminated soil from the same study 
area (Da Silva-Júnior and Pereira 2007) and have proven 
to be tolerant to the lead-containing mixture of natural soil 
and scum (Da Silva-Júnior and Pereira 2014). In the cur-
rent study, C. aureum isolates displayed a better outcome 
in mycelial growth in relation to other isolates incubated in 
medium containing lead nitrate. The association between 
two factors must have contributed to this growth: the toler-
ance of the fungus to lead and the use of nitrate as a nitrogen 
source (Feeney and Curran 1992). This explains the neces-
sity of evaluating some culture conditions of this fungus and 
inoculating it in a lead-contaminated soil in order to monitor 
some soil parameters at the microcosmic scale.

Analysis of mycelial growth in different substrates 
and conditions

The C. aureum isolate displayed a stronger ability to grow 
in the culture medium containing lead nitrate; therefore, it 
was used for physiological characterization as well as in the 
microcosm scale experiments. The ability of C. aureum to 
grow in different substrates was investigated (Fig. 3). This 
fungus displayed higher mycelial growth in media contain-
ing pectin compared to those containing starch and glucose. 
On the other hand, it was not capable of growing in media 
containing casein as the substrate.

Abiotic culture parameters, such as temperature, pH, 
and water activity, may influence in the physiological state 

Fig. 2   Growth of colonies in culture mediums containing dif-
ferent concentrations of lead nitrate, after 6  days (0, 150, 300, 
and 450  mg  kg−1, which are equivalent to 0, 93.75, 187.5, and 
281.25 Pb mg kg−1, respectively)

Fig. 3   Growth of colonies in culture mediums containing different 
substrates, after 6 days
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of microorganisms (van Long et al. 2017). The C. aureum 
isolate demonstrated the ability to use pectin, glucose, and 
starch as substrates, but not casein. Among the three sub-
strates, pectin promoted the highest mycelial growth. The 
ability to degrade materials of vegetal origin, such as cel-
lulose and pectin, has already been described for the fungi 
of the genus Chaetomium by Batista and Pontual (1948), 
besides the detection of the enzymatic activity of pectinase 
(Reddy and Sreeramulu 2012).

The genus Chaetomium is composed of fungi with an 
enzymatic surface machinery, which is capable of break-
ing down complex molecules such as cellulose (Cragg et al. 

2015). This strategy has been investigated in studies on 
the biodegradability of organic polymers (Oprea and Dor-
oftei 2011), nitrocellulose (Auer et al. 2005), hydrocarbons 
(Aranda 2016), pesticides (Tiedje and Hagedorn 1975; Hu 
et al. 2015), and natural products (Zheng et al. 2016).

Other growth parameters investigated were the pH of 
the culture medium and incubation temperature (Figs. 4, 
5). The increase in pH values had a positive effect on the 
growth of C. aureum, and the best temperature for growth 
was observed at 35 °C. The C. aureum isolate appeared to 
be both thermo- and alkaline-tolerant. Both properties have 
already been described for many Chaetomium species (Mil-
ner 1977; Ravindran et al. 2011; Ravindran and Thangaiah 
Naveenan 2011; Srivastava et al. 2017). However, fungi of 
the genera Chaetomium have already been isolated in soils 
with pH higher than 10 in the same study area (unpublished 
data). This specific case, where the pH value of industrial 
waste is 10.4, demonstrates a basophilic condition that favors 
the use of this fungus in future bioremediation programs. 
Furthermore, since this region is located in the Brazilian 
semiarid region, fungi that can survive and grow in high 
temperatures may be considered in planning the recuperation 
of contaminated sites.

Microcosm scale experiment

In order to evaluate the effect of lead-contaminated soil on 
the fungus, we prepared an experiment at the microcosm 
scale by adding an inoculum of C. aureum (concentrations 
between 2.5 and 3 g L−1) to soil samples. Tables 1 and 2 
show that the four treatments, with or without C. aureum 
inoculum in autoclaved and non-autoclaved soil, reduced 
the concentration of water-soluble and exchangeable lead 
after 60 days.

Treatment 2 (non-autoclaved soil with the fungus inocu-
lum) showed a reduction of approximately 40% in the lev-
els of exchangeable lead in the first 30 days of inoculation. 
This reduction is twice as large as that observed in treat-
ment 1 (non-autoclaved soil without the fungus inoculum). 
Between 30 and 60 days, treatment 4 (autoclaved soil with 
fungus inoculum) was the most efficient in reducing the 
concentration of free Pb. The reduction rate after 60 days 
revealed that treatments with the fungus inoculum were 

Fig. 4   Growth of colonies in culture medium in different tempera-
tures, after 6 days

Fig. 5   Growth of colonies in culture mediums in different pH values, 
after 6 days

Table 2   Reduction in water-
soluble and exchangeable Pb in 
the microcosms experiment

Day 0 Day 30 Day 60

Reduction (%) Reduction (%) Cumulative 
reduction (%)

Reduction (%) Cumulative 
reduction (%)

Treatment 1 0 21.89 21.89 8.13 28.24
Treatment 2 0 40.81 40.81 34.25 61.08
Treatment 3 0 − 5.14 − 5.14 24.29 20.40
Treatment 4 0 6.89 6.89 50.65 54.05
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at least in two different settings, non-autoclaved and auto-
claved soil, more effective at decreasing the concentrations 
of exchangeable lead than in the treatments without the 
inoculum.

The effect on pH and the organic matter content in the 
soil is illustrated in Table 3. These two parameters only 
varied after 60 days of inoculation. The pH decreased 
significantly in treatments 1, 2, and 3, whereas organic 
matter content increased significantly in treatment 2 after 
the same period. Microbial density during the micro-
cosm experiments is illustrated in Fig. 6. This parameter 
displayed similar behavior in treatments with both auto-
claved and non-autoclaved soils. In the former experiment, 
microbial density grew after 30 and 60 days of inocula-
tion, whereas in the latter, treatments 1 and 2 displayed an 
increase in density after 30 days, followed by a decrease 
after 60 days of inoculation.

C. aureum thus seemed to be a promising bioremedia-
tion element at the microcosm scale. Its presence in soil, 
associated with the native microbiota, reduced the levels 
of exchangeable lead by two times more than that in the 
absence of the fungal inoculum after 60 days of incuba-
tion. During the same period, inoculation of C. aureum 
played an important role in maintaining the pH values of 
the soil, while inoculation of the fungus in association 
with the native microbiota increase the organic matter con-
centration in the soil. On the other hand, the responses in 
microbial abundance in soil were related to the process of 
autoclaving.

Even though the number of studies encompassing 
microbial remediation focused on organic matter decom-
position is highly varied, during the last few years, an 
increased interest in fungal species with the capacity for 
efficient metal removal has been observed (Sargin et al. 
2016; Xin et al. 2016). The most recent studies show the 
importance of biosorption to reduce the bioavailability of 
metals in the environment (Gola et al. 2016) and as in the 
current study, the high tolerance strategy is accompanied 
by a decrease in the availability of metals in the environ-
ment (Dey et al. 2016). Manoliu et al. (1999) suggest that 
the cellulolytic fungus C. globosum is capable of internal-
izing iron, thus removing it from the surroundings through 
molecules called siderophores. In the current study, the 

mechanism for decreasing exchangeable lead concentra-
tion is not clear, but two hypotheses can proposed.

The first hypothesis is that exchangeable lead may be 
removed through biosorption by molecules released by 
the fungus, thus reducing its availability in soil. In fact, 
it is reported that C. aureum produces a metabolite called 
oosporein, which we believe, may bind to the metal, thus 
forming a complex. Oosporein is a red-colored pigment that 
presents the typical properties of a polyhydroxyquinone 
(Lloyd et al. 1955). Molecules of this nature are capable of 
binding to metals and actively participate in oxy-reduction 
reactions (Ragimov et al. 1974; Greenaway and Dabrowiak 
1982).

The other hypothesis is the mineral transformation of lead 
by the fungus. This kind of biologically mediated minerali-
zation has already been described for two fungal species, 
Metarhizium anisopliae and Paecilomyces javanicus, which 
transformed lead into pyromorphite (Rhee et al. 2012). 
Although it has not been investigated in C. aureum, miner-
alization of lead is a possible bioremediation mechanism, as 
it reduces metal solubility, and therefore, its bioavailability.

Irrespective of the strategy used by the fungus, our find-
ings are relevant to the study of lead contamination in ter-
restrial environments. C. aureum, aided by the native micro-
bial community in soil, was capable of influencing both 
the availability of this metal and the chemical parameters 
observed in the soil at the microcosm scale. This ability 

Table 3   pH and organic matter 
behavior in the microcosms 
experiment

*Represents statistical difference (p < 0.05) in relation to day 0 (zero)

pH Organic matter

Day 0 Day 30 Day 60 Day 0 Day 30 Day 60

Treatment 1 6.8 ± 0.02 6.8 ± 0.02 6.6* ± 0.06 4.7 ± 0.21 3.4 ± 3.65 3.0 ± 2.65
Treatment 2 6.8 ± 0.02 6.7 ± 0.02 6.6* ± 0.06 3.9 ± 0.75 7.5 ± 1.68 10.0* ± 0.61
Treatment 3 7.3 ± 0.02 7.2 ± 0.02 6.6* ± 0.07 8.0 ± 1.29 7.9 ± 1.31 6.5 ± 1.04
Treatment 4 7.3 ± 0.01 7.2 ± 0.01 7.3 ± 0.01 5.5 ± 1.15 6.0 ± 0.67 6.4 ± 0.82

Fig. 6   Microbial density during the microcosms experiments
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of interfering in edaphic processes is only possible due to 
the physiological mechanisms of lead tolerance, which have 
not been enlightened yet for C. aureum. In this context, we 
believe that the strategy of using indigenous organisms in 
attempts of bioremediation may be useful to increase their 
success rates. Recently, the authors also associated the 
increased efficiency in the removal of metals by fungi when 
used in consortia (Awasthi et al. 2017). Therefore, microbial 
processes must be considered in recuperation techniques at 
lead-contaminated sites.

Conclusions

Lead showed no evidence of toxicity in C. aureum at the 
concentrations tested in vitro. In terms of substrate use, the 
C. aureum isolate was considered versatile, temperature-
tolerant, and basophilic. In addition, when inoculated in 
lead-contaminated soil, it was capable of decreasing the 
exchangeable lead concentration, irrespective of its asso-
ciation with the non-indigenous microbiota.

These findings support the use of filamentous fungi as 
potential tools for the bioremediation of contaminated sites 
by metals and highlight C. aureum as a promising tool for 
environmental biotechnology. The strategy of using indig-
enous species seems promising to seek candidates for biore-
mediation of contaminated sites.
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