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Abstract
The hillslopes of the Serra do Mar, a system of escarpments and mountains that extend more than 1500 km along the south‑
ern and southeastern Brazilian coast, are regularly affected by heavy rainfall that generates widespread mass movements, 
causing large numbers of casualties and economic losses. This paper evaluates the efficiency of susceptibility mapping for 
shallow translational landslides in one basin in the Serra do Mar, using the physically based landslide susceptibility mod‑
els SHALSTAB and TRIGRS. Two groups of scenarios were simulated using different geotechnical and hydrological soil 
parameters, and for each group of scenarios (A and B), three subgroups were created using soil thickness values of 1, 2, and 
3 m. Simulation results were compared to the locations of 356 landslide scars from the 1985 event. The susceptibility maps 
for scenarios A1, A2, and A3 were similar between the models regarding the spatial distribution of susceptibility classes. 
Changes in soil cohesion and specific weight parameters caused changes in the area of predicted instability in the B scenarios. 
Both models were effective in predicting areas susceptible to shallow landslides through comparison of areas predicted to 
be unstable and locations of mapped landslides. Such models can be used to reduce costs or to define potentially unstable 
areas in regions like the Serra do Mar where field data are costly and difficult to obtain.

Keywords Mathematical models · Susceptibility mapping · Shallow landslides · Geotechnical and hydrological 
parameters · Serra do Mar

Introduction

A variety of methods and approaches have been developed 
and applied in predicting landslide hazards. Physically based 
mathematical models are considered to be the most objec‑
tive, due to the direct application of equations that describe 

physically relevant processes, and disregard researchers sub‑
jective opinions. Such models also can be used to predict 
landslide susceptibility under different land use scenarios, 
(Dietrich and Montgomery 1998; Guzzetti et al. 1999; Mont‑
gomery and Dietrich 1994; van WESTEN 2004).
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Physically based models assess shallow landslide suscep‑
tibility through the combination of stability and hydrological 
modeling. The choice of a particular model must reflect the 
objectives of its application, consideration of the landslide 
type, the availability of in situ or secondary data, and acces‑
sibility for data collection to inform model parameterization. 
Among them, such as SHALSTAB/shallow landsliding sta‑
bility model (Dietrich and Montgomery 1998; Montgomery 
and Dietrich 1994); dSLAM/Distributed physically based 
slope stability model (Dhakal and Sidle 2003; Wu and Sidle 
1995); SINMAP/Stability Index Mapping) (Morrissey et al. 
2001; Pack et al. 1998); TRIGRS/Transient Rainfall Infiltra‑
tion and Grid‑Based Regional Slope Stability (Baum et al. 
2002; Iverson 2000); and SLIP/Shallow Landslide Instabil‑
ity Prediction (Montrasio and Valentino 2008).

The main advantages of these models are: (a) ability to 
apply in different areas without high cost to collect input 
data, (b) direct comparison among results obtained from 
different areas, (c) they are easily used in a GIS platform, 
and (d) they provide a good definition of the role topogra‑
phy plays, which is especially in areas where values for soil 
properties are not available (Dhakal and Sidle 2003; Sidle 
and Wu 1999).

Physically based mathematical models have a potential 
to improve our understanding of landslide hazards and to 
reduce the costs of identifying unstable areas such as the 
Serra do Mar, where the difficulty of access due to its steep 
slopes and dense tropical rainforest preclude direct field 
investigations. Specifically, this paper evaluates two ques‑
tions: (a) Which of these physically based mathematical 
models best assess shallow landslide susceptibility in humid 
tropical environments like Serra do Mar and (b) does the 
inclusion of additional parameters (such as rainfall event 
size) improve the assessment of potentially unstable areas? 
This article aims to assess the efficiency of susceptibility 
mapping for shallow translational landslides using SHAL‑
STAB and TRIGRS and tested these models in a basin 
affected by 356 shallow landslides during an intense rain‑
fall event between January 23 and 24, 1985. In particular, 
we examine whether including dynamic rainfall improves 
basin‑scale hazard mapping assessments.

SHALSTAB and TRIGRS models

SHALSTAB and TRIGRS calculate shallow translational 
landslide susceptibility at a drainage basin scale, from cou‑
pling a hydrological model to a limit equilibrium slope sta‑
bility model, using topographical and geotechnical data. 
However, they have some differences in their mathematical 
structures, mainly regarding the hydrological model: SHAL‑
STAB assumes steady state, whereas TRIGRS incorporates 
transient rainfall.

SHALSTAB calculates the critical steady‑state rainfall 
necessary to trigger slope instability at any point in a land‑
scape (Dietrich et al. 1993, 1995; Montgomery and Dietrich 
1994; Montgomery et al. 1998). The model considers sub‑
surface flow parallel to the surface, and the hydraulic con‑
ductivity and soil thickness, which are treated as uniform 
for the whole basin. The hydrological model assumes that 
precipitation infiltrates to a lower conductivity layer and fol‑
lows topographically determined flow paths, allowing the 
calculation of the spatial pattern of equilibrium soil satura‑
tion. This allows prediction of the critical ratio of the steady‑
state rainfall “q” to the soil transmissivity (T) required to 
cause slope instability (q/T) via:

where “q” is the critical rain required to initiate failure [m], 
“T” is the soil transmissivity  [m2/day], “a” is the upslope 
contributing area  [m2], “b” is the contour length across 
which flow is accounted for [m], “C’” is the soil effective 
cohesion [Pa], “θ” is the slope angle [°, degrees], “ρw” is 
the density of water [kN/m3], “ρs” is soil unit weight [kN/
m3], “g” is gravitational acceleration [m/s2], “z” is the soil 
thickness [m], and “ϕ” is the soil friction angle [degrees].

The TRIGRS model couples a hydrological model and a 
stability model to predict shallow landslides induced by rain‑
fall events by computing transient pore‑pressure changes and 
their effects on the factor of safety (Fs) at different depths 
(Baum et al. 2002). In TRIGRS, we can define two boundary 
conditions: (1) the infinite‑depth boundary condition, appro‑
priate for areas where the vertical hydraulic conductivity is 
relatively uniform with depth and (2) the finite‑depth bound‑
ary condition, which is appropriate where a more permeable 
superficial layer overlies a less permeable substrate, such as 
regolith over bedrock (Baum et al. 2002).

“c” is soil cohesion, “ϕ” is the soil angle of friction 
(degrees), “Z” is the vertical coordinate direction (positive 
downward) and depth below the ground surface, “t” is the 
elapsed time since the start of storm), “ �w ” is unit weight 
of groundwater [kN/m3], “ �s ” is soil unit weight [kN/m3].

Study area: Serra do Mar—Copebrás Basin

The Serra do Mar has significant economic importance 
since it is crossed by the railway and highways that con‑
nect São Paulo and Rio de Janeiro, to their hinterland as 
well as to the port of Santos, the busiest in South Amer‑
ica. At the foot of the Serra do Mar in São Paulo lies the 

(1)
q

T
=

sin �
(

a∕b
)

[

C�

�wgz cos
2 � tan�

+
�s

�w

(

1 −
tan �

tan�

)]

(2)Fs =
tan�

tan �
+

c − �(Z, t)�w tan�

�sZ sin � cos �



Environmental Earth Sciences (2018) 77:260 

1 3

Page 3 of 15 260

Cubatão region where Cubatão’s Industrial Park houses 
one of Brazil’s major petrochemical industries. Landslides 
and debris flow in the area have repeatedly caused major 
impacts to industries and infrastructure, because of land‑
slides and debris flows due to the high, steep slopes cov‑
ered by tropical residual soils from gneiss and colluvium, 
and intense rains that annually total 3000 mm but may 
reach 4500 mm.

In Brazil, the Serra do Mar escarpment extends for over 
1500 km along the east coast and is one of the areas of 
the country most affected by mass movements, especially 
shallow landslides, which occur locally every year, caus‑
ing environmental and social damage (Fig. 1a, b). Recent 
landslide disasters in Serra do Mar caused resulting in mil‑
lions of dollars in economic losses and thousands of casu‑
alties and rendered thousands more homeless. Since the 
1920s, there have been records of these processes, mainly 
debris flows and shallow landslides that caused casualties 

especially during heavy rainfall (Costa Nunes 1986; Mas‑
sad et al. 1997, 2000; Wolle and Carvalho 1989a, b).

A major landslide event occurred between January 23 and 
24, 1985, when rain gauges recorded levels above 100 mm 
of rainfall per day. One gauge, for example, located beside 
the Moji River at 820 m a.s.l., recorded 379 mm in 48 h, 
accounting for between 40 and 60% of the month’s total 
(Water Resource Management System of São Paulo State 
Department of Water and Power). This event caused around 
1742 landslides (Fig. 2a), including large debris flow that 
reached major rivers and caused extensive flooding in low‑
lying areas occupied by residential and industrial structures. 
During this event, an industrial pipe containing ammonia 
broke, causing serious environmental and social damage to 
the region (Kanji et al. 1997, 2003; Lopes 2006; Massad 
et al. 2000).

In February 1994 (9 years later), a neighboring area 
closer to Cubatão was affected by landslides that reached 

Fig. 1  Location of the Serra do Mar in Brazil (a, b). General mass‑wasting that occurred in the Serra do Mar in 2008 (c) and 2011 (d) (photo‑
graphs by Marcelo F. Gramani and Bianca Carvalho Vieira)
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the main tributary streams, and coalesced into a debris flow 
with a volume estimated at about 300,000 m3 and velocity of 
around 10 m/s, that interrupted the Petrobrás oil refinery for 
about 3 weeks, leading to economic losses of about US$40 
million (Massad et al. 1997).

Heavy rains on November 22nd and 23rd, 2008, during, 
approximately 720 mm in 3 days, triggered large, deep land‑
slides and mudflows (Fig. 1c), killing 135 people, displacing 
more than 80,000, and leaving 85 municipalities in a state 
of emergency and 14 in a state of public catastrophe (Vieira 
and Gramani 2015). After that, on January 11th and 12th, 
2011, approximately eight municipalities in Serra do Mar 
(state of Rio de Janeiro) were affected by 3562 landslides 
(Fig. 1d). They were responsible for more than 1500 deaths 
and left nearly 20,000 homeless. The disaster followed an 
interval of heavy rains between October and December, cul‑
minating in approximately 300 mm over 48 h (Avelar et al. 
2013).

We selected the 3.6 km2 Copebrás Basin (Fig. 3) for anal‑
ysis due to the presence of shallow landslides and because 
it is topographically representative of the region, as well as 
for its geographical position, near Brazilian Petrochemical 
Company (Copebrás), that was built in 1959 in Cubatão’s 
Industrial Park. Geologically, the catchment’s physical 
aspects are characterized by a predominance of migmatites 
(Embu Complex and Costeiro Complex), and the occurrence 
of biotite schist (Pilar Complex) at its base. Sixty percent of 
the hillslopes are between 400 m and 800 m in elevation, 
while 42% of the slope angles are between 30° and 40°. 
Hillslopes face mostly toward the SE, S, and SW (about 
64%) and display predominantly convex (40%) and straight 
profiles (40%) with a smaller share of them concave (20%) 
(Vieira et al. 2010).

According to field investigations (Wolle and Carvalho 
1989a, b) carried out in two areas next to Copebrás Basin 
with slopes between 40° and 43°, there are two types of 
regolith above the intensely fractured bedrock: colluvial soil 
(about 1 m depth) formed by pedogenesis over transported 
material, with a sandy‑clayey texture matrix and partially 
weathered bedrock; and saprolite (about 3 and 4 m depth), 
more sandy than the overlying horizon, with evidence of 
structures inherited from bedrock (Table 1, Fig. 4).

Methodology

Simulation of susceptibility scenarios

The topographical input to both models was generated from 
a 4‑meter‑grid digital elevation model (DEM) obtained 
from a topographical map (1:10.000 scale) and interpolated 
using the Topo to Raster module of ArcGIS 9.1. The Topo 
to Raster module is an interpolation method specifically 
designed for the creation of hydrologically correct digital 
elevation models (DEMs), imposing constraints that ensure 
a connected drainage structure and correct representation of 
ridges and streams from input contour data.

In the TRIGRS model, the DEM was used to implement 
the runoff‑routing scheme that uses the weighting factors for 
runoff distribution by TopoIndex (Topographical Index). In 
this paper, we used the “D8 flow direction” that considers 
the maximum runoff‑routing, where the “water flows down 
the steepest slope, computes the direction of steepest slope 
and attempts to direct flow in that direction by partition‑
ing the flow between the two cells nearest to the steepest 
slope direction (Baum et al. 2002)”. Alternative options for 
runoff‑routing include: (1) divert excess water only to the 
adjacent cell on the steepest downslope path; (2) distributes 
the excess water evenly among all adjacent downslope cells; 
this pattern has the greatest dispersion of all the choices and 

Fig. 2  a General view of the landslides that took place in Serra do 
Mar escarpment in 1985. b The same area in 2013, showing the resi‑
dential sites and part of Cubatão’s Industrial Park. Source: São Paulo 
State’s Technological Research Institute
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(3) flow is distributed among all downslope cells in propor‑
tion to the slope.

Based on geotechnical and hydrological parameters 
obtained by Wolle and Carvalho 1989a, b (Fig.  4) two 
groups of scenarios were simulated considering the mini‑
mum (Scenario A) and maximum (Scenario B) values of 
Colluvial soil (Soil cohesion and Total unit weight of soil) 
(Table 2). In those scenarios, soil thickness (z) of 1, 2, and 
3 m were used to generate three runs for each scenario: A1, 
A2, and A3 and B1, B2, and B3, respectively. In the two 
models, we used the lowest value of internal friction angle 
(34°) based on Table 2. This value corresponds to the mean 
value reported by other studies carried out in nearby areas 
with similar geological and geomorphological conditions, 
which obtained a range between 20° and 40° (De Campos 
1992; de Ploey and Cruz 1979; Guimarães et al. 2003). No 
soil depth maps are available for the Serra do Mar.

In the TRIGRS model the “initial height of the water 
table (d)” was the “soil maximum thickness (Zmax)” and 
constant values were used in all simulated scenarios for 
the Initial infiltration rate (ILT), hydraulic diffusivity (D0) 
and vertical saturated hydraulic conductivity (Ks). For the 
first two parameters, we used the default values of TRI‑
GRS, except the Ks that was based on data collected using 
the Guelph Permeameter in three scars in an experimental 
basin located in the Serra do Mar. In this investigation, 
80% of Ksat values concentrated between  10−6 and  10−5 
m/s. For the rainfall parameters (number of events, rain 
intensity, and duration of each event), we used three events 
each of which lasted for 6 h, between 23 and 24 January 
1985 (Table 3).

Fig. 3  Location of the Copebrás Basin in the Serra do Mar, São Paulo State, Brazil (a, b). The Copebrás basin with landslide scars triggered dur‑
ing the rainfall between January 23 and 24, 1985 (c, d)

Table 1  Values of field investigations: “γs” is the soil unit weight [kN/m3]; “c’” is the soil effective cohesion [Pa]; and “ϕ” is the soil angle of 
friction [°]. Highlighting shows the values used in the scenarios, as representative for the Serra do Mar region

Modified from (Wolle and Carvalho 1989)

Site/soil thickness (m) A1 A2

Parameters γs [kN/m3] c [Pa] ϕ [º] γs [kN/m3] c [Pa] ϕ [º]

Colluvial soil (1 m) 14.3–17.1 1000–6000 34 16.5–18.2 1000–9500 36–40
Saprolite (1–2 m) 18–19.5 4000–12,000 39–45 18.5–20.1 3500–11,000 39–45
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Landslide maps and parameter evaluation

Landslide scars were mapped on 1:25,000 aerial photo‑
graphs taken 3 months after the 1985 event. The scars were 
identified based on visual analysis of the features, using 
the following criteria: geometry, the absence of vegetation, 
contour lines and texture analysis and hillslope position 
(Fig. 5). As found in other studies in the Serra do Mar, 
shallow landslide failures occur in the upper portions of 

Fig. 4  Location of collected samples (A1 and A2) by Wolle and Carvalho (1989) and Rain Gauge used for the evaluation of rainfall data used in 
the model TRIGRS

Table 2  Mechanical and hydrological parameters used in Scenarios A and B

a Parameters used in model SHALSTAB

Scenarios Scenario A Scenario B

Parameters [unit] A1 A2 A3 B1 B2 B3

Soil  cohesiona (c) [Pa] 1000 1000 1000 6000 6000 6000
Total unit weight of  soila (γs) [kN/m3] 17.1 17.1 17.1 14.3 14.3 14.3
Soil maximum  thicknessa (Zmax) [m] 1 2 3 1 2 3
Internal angle of  frictiona (Φ) [º] 34 34 34 34 34 34
Initial height water table. (d) [m] 1 2 3 1 2 3
Initial infiltration rate ILT [m/s] 1.0 × 10−9 1.0 × 10−9 1.0 × 10−9 1.0 × 10−9 1.0 × 10−9 1.0 × 10−9

Hydraulic diffusivity  D0  [m2/s] 5.5 × 10−4 5.5 × 10−4 5.5 × 10−4 5.5 × 10−4 5.5 × 10−4 5.5 × 10−4

Vertical saturated hydraulic conductivity 
(Ks) [m/s]

1.0 × 10−6 1.0 × 10−6 1.0 × 10−6 1.0 × 10−6 1.0 × 10−6 1.0 × 10−6

Table 3  Rainfall parameters of three events which lasted for 6 h (23 
and 24 January, 1985) Source data: São Paulo’s integrated water 
resource management system of São Paulo state department of water 
and power

Accumulated duration at the end of each 
event in s (h)

Average rain intensity 
for each event, InZ 
(m/s)

0 s (0 h) 5.4 × 10−7

21,600 s (6 h) 1.7 × 10−6

43,200 s (12 h) 6.0 × 10−6
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the hillslopes, with the middle and bottom portions of scar 
being areas of transportation and deposition.

We mapped 356 scars from the 1985 event that altogether 
represent about 3.7% of the total area of the basin. Most of 
the scars (213) occupied an area of less than 300 m2. The 
largest mapped scar had an area of 2704 m2 while the small‑
est involved only 11 m2 (Fig. 6).

We used this landslide scar map to evaluate the perfor‑
mance of the susceptibility maps and using two indexes (Gao 
1993): (1) Scar Concentration (SC), the ratio of the num‑
ber of cells in each susceptibility class affected by shallow 
landslides to the total number of cells in the basin; and (2) 
landslide potential (LP), the ratio of the number of cells in 
each susceptibility class affected by the shallow landslides to 
the total number of cells in the same susceptibility class. For 

both models, we also produced the frequency (F) histogram 
of the number of cells of each susceptibility class: the ratio 
between the number of cells in each susceptibility class and 
the total number of cells in the basin (Table 4).

Also, for both models, we determined two metrics of 
spatial correspondence between observed landslide scars 
and predicted zones of landsliding: (1) areas of predicted 
landslide susceptibility where no landslides occur; and (2) 
areas where landslide scars occur in locations predicted to 
be stable. Due to the differences in the susceptibility outputs 
in the TRIGRS model the first two classes (between 0.4 and 
0.8 and between 0.8 and 1.0) were considered to be unstable 
(Fs ≤ 1) and in the SHALSTAB, only the “Unconditionally 
Unstable” were considered to be unstable and only “Uncon‑
ditionally Stable” like stable areas. Thus, even though the 

Fig. 5  a Scar landslides map; b part of landslide scars map considering only the upper part of the scars; and c example of the part of the scar 
mapped and the zones of transportation and deposition
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intermediate classes SHALSTAB may indicate potentially 
unstable areas in the landscape, here they were not consid‑
ered for this validation.

Results

Susceptibility maps derived from the TRIGRS model

In scenarios A1, A2 and A3 (Fig. 7), few variations were 
identified in the spatial distribution of susceptibility classes. 
That is, as soil depth increased from 1 m (A1) to 2 m (A2), 
the unstable areas experienced a 10% increase. Between 2 m 
(A2) and 3 m (A3), this increase was only 3%.

The most unstable class (0.4 and 0.8) occupied 9 to 18% 
of the area, whereas the next class (0.8 and 1.0) occupied 
approximately 25%. The first two classes (all unstable 

areas, with Fs ≤ 1) occupy approximately the following 
percentages of the area: 33% (A1), 40% (A2) and 43% 
(A3). The stable areas occupied 67% (A1), 60% (A2) and 
57% (A3).

Different geotechnical and hydrological parameters 
in scenarios B1, B2, and B3 resulted in important differ‑
ences, increasing the percentage of stable areas in the three 
scenarios (Fig. 8a). In scenario B1, 100% of the basin was 
classified as stable, in B2 97% and in B3 87%. Thus, in 
group B, the three scenarios had higher SC class stability, 
with only a few scars (< 5%) in scenario B3.

Figure 8b shows that the lowest Fs (between 0.4 and 
0.8) is also associated with lower values of SC: 13% (A1), 
24% (A2) and 38% (A3). However, the next class (0.8 and 
1.0) had higher but consistent SC values: 40% (A1), 40% 
(A2) and 39% (A3). The classes with Fs < 1 had the fol‑
lowing CC values: 53% (A1), 63% (A2) and 66% (A3).

Fig. 6  Size distribution of 
landslide scars  (m2). Most of 
the scars were under 200 m2, 
not including mapped areas of 
transportation and deposition; 
over 100 scars have an area 
greater than 400 m2

Table 4  Example illustrating 
the calculation of the scar 
concentration (SC) and the 
landslide potential (LP) indices

Classes Pixel Pixel with Scars F (%) SC (%) = C3/33,168 × 100 LP(%) = C3/C2 × 100

Unc. unstable 288,757 17,253 32.4 17,253/33,168 = 52.0 17,253/288,757 = 6.0
< − 3.1 113,471 3939 12.7 3939/33,168 = 11.9 3939/113,471 = 3.5
− 3.1 to − 2.8 83,562 2689 9.4 2689/33,168 = 8.1 2689/83,562 = 3.2
− 2.8 to − 2.5 112,125 3455 12.6 3455/33,168 = 10.4 3455/112,125 = 3.1
− 2.5 to − 2.2 114,137 2804 12.8 2804/33,168 = 8.5 2804/114,137 = 2.5
> − 2.2 123,172 2555 13.8 2555/33,168 = 7.7 2555/123,172 = 2.1
Unc. stable 55,857 473,00 6.3 473,00/33,168 = 1.4 473,00/55,857 = 0.8
Total 891,081 33,168 100 100 3.72%
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Susceptibility maps derived from the SHALSTAB 
model

Similar to the results of the TRIGRS model, there was a 
strong similarity in the spatial distribution of susceptibility 
classes for group A (Fig. 9). The most significant change (an 
increase of approximately 10%) occurred between scenarios 
A1 and A2 (Fig. 9a).

In those scenarios, analyzing only the Unconditionally 
Unstable class, the frequency (F) had exactly the same per‑
centage values as the unstable classes (Fs < 1) in the TRI‑
GRS model: 33% (A1), 40% (A2) and 43% (A3). We note 
that the SHALSTAB model also showed that modifying the 
geotechnical and hydrological parameters led to changes in 
the unstable and stable classes. In the simulation, setting soil 
thickness equal to 1 m (B1) resulted in the whole basin being 
classified as Unconditionally Stable.

The scar concentration (SC) in the three scenarios shows 
that there is a similar distribution of shallow landslides 
in each of the susceptibility classes (Fig. 10b). However, 
we highlight the scar percentage in the Unconditionally 

Unstable class in the scenarios (between 53 and 66%). Con‑
sidering scenario A3, for example, where cumulative per‑
centages reached almost 90% CC, 76% of the scars were 
concentrated on log class (q/T) − 3.1, 82% < of the scars 
were concentrated in log (q/T) − 2.8, and 89% < of the scars 
were concentrated in log (q/T) < −2.5. In scenarios B2 and 
B3, only 2.3 and 17% of the total number of scars, respec‑
tively, occurred in unstable areas (Fig. 10b).

LP index comparison between SHALSTAB 
and TRIGRS

The relationship between the susceptibility maps and the 
scar map of 1985 can be evaluated using the landslide poten-
tial index (LP). In the TRIGRS model (Fig. 11a), the first 
two classes (Fs < 1) had high LP values. The class from 0.4 
to 0.8 had the following LP values: 5.0% (A1), 5.7% (A2), 
and 5.9% (A3), and the class between 0.8 and 1.0 had the fol‑
lowing LP values: 6.4% (A1), 5.8% (A2), and 5.6% (A3). In 
contrast, the classes with Fs > 1 had lower values, below 1%.

Fig. 7  Susceptibility maps produced by the TRIGRS model under different conditions of cohesion, the angle of friction and soil thickness (Sce‑
narios A and B). The scenarios from group A (above) differ from those of group B (below) because of an increase in stable classes in group B
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In the B scenarios, the most unstable classes (between 
0.4 and 0.8 and between 0.8 and 1.0) exhibited LP values 
below 3%. One exception was the class between 0.8 and 1.0 
in scenario B3, which reached an LP value of approximately 
6%, equal to that of scenario A2. However, in general, stable 
classes had the highest LP values.

In the SHALSTAB model (Fig. 11b), the highest LP val‑
ues were recorded for the Unconditionally Unstable class. In 
all scenarios except B1 and B2, there was a tendency toward 
a decrease in the number of stable classes. At first, the entire 
area was designated as stable, and scenario B2 showed the 
opposite trend in LP values, which increased with the num‑
ber of stable classes.

Unstable areas without scars and stable areas 
with scars

Due to differences between the susceptibility classes of 
the models, unstable areas in the TRIGRS model were 

regarded to be the sum of the first two classes (0.4–0.8 
and 0.8–1.0) and stable areas were regarded to be the 
sum of the last three (1.0–7.0). The SHALSTAB model 
classes Unconditionally Unstable and Unconditionally 
Stable were used to calculate unstable and stable areas, 
respectively.

According to Fig. 12, there were no substantial differ‑
ences between the two groups of scenarios in both models. 
The largest differences occurred between the scenario A and 
B groups because a larger area was occupied by unstable 
classes in scenarios A1, A2 and A3 relative to scenarios 
B1, B2 and B3.

Both models resulted in scenarios with 30–40% of unsta‑
ble areas with the scar landslides from 1985. However, the 
percentage of stable areas with scars was very low in all 
scenarios for both models. These percentages demonstrate 
that the models perform well in predicting areas that are 
susceptible to shallow landslides. The large percent of areas 
in the B scenarios that were predicted to be stable scars was 

Fig. 8  a The Frequency (F) is 
similar in the A scenarios, but 
there is a significant reduction 
in unstable classes in the B 
scenarios. b The highest scar 
concentration (SC) occurred 
between 0.8 and 1.0, reach‑
ing approximately 40% in all 
scenarios
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expected based on the results of the frequency and scar con‑
centration indices.

Discussion

More significant differences were found between scenarios 
A and B than between the susceptibility maps generated by 
the two models.

The spatial distribution of unstable and stable areas 
was controlled by topographical variables, particularly the 
slope angle and slope form. Stable areas appeared as smooth 
sections on top of the main convex slopes with interfluve 
angles over 30°, whereas the unstable areas were higher 
(over 400 m) and steeper (> 40°). In the lower portion of 
the basin, near the mouth of the main river, an increase in 
stable areas was observed due to the presence of gentle inter‑
fluves (< 30°) and only a small area at the bottom of the 
basin within the main drainage bottleneck was classified as 
unstable due to higher slope angles (> 40°).

The cumulative percentage of SC in each susceptibility 
class reached values similar to those found by Montgomery 
and Dietrich (1994), approximately 90% in log (q/T) < 2.5. 
Even though the areas are quite different, the Serra do Mar 
also exhibits shallow soils over bedrock with flow into the 
highly weathered, fractured regolith.

Somewhat smaller cumulative percentages were obtained 
by Dietrich and Montgomery (1998), who identified only 
54% of the landslides in log (q/T) < − 3.1 and 68% in log 
(q/T) < − 2.8. Considering cumulative percentages and the 
limits of log (q/T), Dietrich et al. (1998) attributed varia‑
tion between SCs to the quality and resolution of the DEM 
grid. According to those authors, to capture more than 60% 
of the scars in a grid of log (q/T) < − 2.5 for a 10‑m grid, a 
limit of log (q/T) < − 2.8 is necessary. With a high‑resolution 
grid, the limit can reach log (q/T) < − 3.1. Based on these 
results, using a 4‑m resolution in the present study makes it 
possible to capture over 60% of the scars in the limit of log 
(q/T) < − 3.1.

Dietrich et al. (1998) determined this relationship from 
studies in different basins with 844 landslides triggered 

Fig. 9  Susceptibility maps generated by the SHALSTAB model under different conditions of cohesion, friction angle, and soil thickness. There 
is little difference in the distribution of classes in the various scenarios and a significant increase in the stable class in group B
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between 1978 and 1996. Using a DEM with a resolution of 
10 m2, they observed that on average, approximately 46% 
of these cases occurred in the two lower instability classes, 
Unconditionally Unstable and log (q/T) < − 3.1. Using a 
DEM of 2 m2, approximately 94% of the scars coincided 
with the Unconditionally Unstable class.

In Brazil, similar results were found by Guimarães 
et al. (2003), in applying SHALSTAB in two basins with 
similar geomorphological and geological conditions. They 
simulated scenarios of susceptibility using cohesion values 
between zero and 20 kPa. In the best‑performing scenarios, 
with zero soil cohesion, 79% of the scars coincided with the 
log (q/T) − 2.8 class and 91% < in log (q/T) < − 2.5 class. 
Using cohesion values between 10 and 20 kPa, only 37% of 
the scars coincided with the log (q/T) < − 2.8 class. These 
authors argued that the best performance occurring with no 
cohesion showed the importance of topographical control 
on triggering shallow landslides.

Previous studies that compared the two models also did 
not identify important differences between the susceptibility 

maps (Baum et al. 2005; Savage et al. 2004). These studies 
showed that the similar spatial distribution of unstable areas 
suggested by models is associated with strong topographical 
control. This result held even though soil thickness was con‑
sidered to be constant over the entire area in the SHALSTAB 
model, whereas the TRIGRS model used distinct soil thick‑
ness values derived from geological and geotechnical maps.

In other studies that compared the SHALSTAB and TRI‑
GRS models, some authors concluded that the SHALSTAB 
model overestimated unstable areas (Crosta et al. 2003; Frat‑
tini et al. 2004), while SHALSTAB showed that 46% of the 
area was unstable, the TRIGRS model predicted only 17.5%.

It is important to note, however, that the SHALSTAB 
model was designed to consider potentially unstable areas 
regardless of rainfall volume and intensity. Areas of poten‑
tially unstable terrain are identified in terms of increasing 
amounts of rainfall being necessary to trigger instability in 
different potential instability classes. In contrast, the TRI‑
GRS model was intended to simulate stable areas under 
specific rainfall conditions, which are provided during the 

Fig. 10  a The frequency (F) is 
similar between scenarios, but 
there is a significant reduction 
in unstable classes in the B 
scenarios. b The highest scar 
concentration (SC) occurred 
between 0.8 and 1.0, reach‑
ing approximately 40% in all 
scenarios
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processing of the susceptibility scenarios. We suggest that 
this potential overestimation from the SHALSTAB model 
must be weighted because the model identifies only poten-
tially unstable areas. The areas that do not have scars and 
are designated to be potentially unstable can be triggered 
under higher‑intensity rainfall conditions other than those 
recorded in January 1985.

As shown in Fig. 11, unstable areas without scars in the 
SHALSTAB model cannot be evaluated because the model 
indicates only potentially unstable areas. In contrast, the 
TRIGRS model calculates the spatial variation of the Fs for 
a specific rainfall type and amount such as that we used 
in this paper. Therefore, the models’ efficiency should be 
compared in addition to the differences between them that 
may indicate different instabilities; for example, considering 
time or a specific rainfall that triggers shallow landslides.

Fig. 11  LP Index of the TRI‑
GRS (a) and SHALSTAB (b) 
models

Fig. 12  The red line indicates the percentage of unstable areas with‑
out scars, and the blue line indicates stable areas with scars from the 
January 1985 event (S indicates SHALSTAB and T indicate TRI‑
GRS)
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Conclusions

• Both SHALSTAB and TRIGRS models were shown to be 
effective in predicting shallow landslides through com‑
parison of areas predicted to be unstable and locations 
of mapped landslides and through the use of Landslide 
Potential index.

• Differences in model performance between scenarios A 
and B, due to differences in effective cohesion and soil 
thickness values, can help evaluate appropriate values of 
geotechnical data (e.g., soil property) to incorporate into 
regional susceptibility maps.

• Due to the satisfactory results in this study, even through 
the use of secondary data, either model appears useful 
for governmental agencies interested in low‑cost methods 
for identifying potentially unstable areas, mainly where 
obtaining data in the field are costly and difficult.
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