
Vol.:(0123456789)1 3

Environmental Earth Sciences (2018) 77:251 
https://doi.org/10.1007/s12665-018-7429-z

ORIGINAL ARTICLE

Land use change modeling and the effect of compact city paradigms: 
integration of GIS‑based cellular automata and weights‑of‑evidence 
techniques

Saleh Abdullahi1 · Biswajeet Pradhan2,3 

Received: 24 March 2016 / Accepted: 19 March 2018 / Published online: 23 March 2018 
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
In recent decades, attaining urban sustainability is the primary goal for urban planners and decision makers. Among various 
aspects of urban sustainability, environmental protection such as agricultural and forest conservations is very important in 
tropical countries like Malaysia. In this regard, compact urban development due to high density, rural development con-
tainment is known as the most sustainable urban forms. This paper attempts to propose an integrated modeling approach 
to predict the future land use changes by considering city compactness paradigms. First, the cellular automata (CA) were 
applied for calculating land use conversion. Next, weights-of-evidence (WoE) which is based on Bayes theory was utilized 
to calibrate CA model and to support the transitional rule assessment. Several urban-related parameters as well as compact 
city indicators were utilized to estimate the future land use maps. The results showed how compact development parameters 
and site characteristics can be combined using the WoE model to predict the probability of land use changes. The modeling 
approach supports the essential logic of probabilistic methods and indicates that spatial autocorrelation of various land use 
types and accessibility is the main drivers of urban land use changes.
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Introduction

Background

Land use change modeling is an essential process for various 
urban-related applications. It provides baseline information 
required in the analysis of future urban growth and develop-
ment (Li and Yeh 2002). Moreover, this process can assist 
planners and decision makers in the provision of optimum 
locations for community facilities and impede different 
social and environmental issues on the way of achieving 

sustainable development (Hathout 2002). Compact cities 
due to several characteristics such as higher urban density, 
revitalization and redevelopment of central parts instead 
of rural development, efficient public transportation, and 
proper community facilities provision are one of the most 
sustainable urban forms (Burton et al. 2003; Livingstone 
and Rogers 2003). These properties are seen to contribute 
to sustainable development in the sense of social, economic 
and environmental concerns. This paper in general presents 
the application of a land use change modeling process by 
employing the optimum parameters for compact urban 
development and evaluating these parameters with respect to 
urban development and land use changes. The analysis and 
results emphasize the city compactness factors assessment 
and evaluation, growth direction of the urban land use types 
and their impacts on the loss of existing agricultural fields.

Land use change modeling

Land use change is the result of the complex interaction 
of several issues, such as environmental, physical, politi-
cal, economic and cultural (Houghton 1994; Medley et al. 
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1995). Understanding the reasons and rate of these changes 
is important because of their significant effects on the sur-
rounding natural environment, air and water quality, local 
temperature, urban economy, as well as other social impacts 
(Bingham et al. 1995; Pijanowski et al. 2002). Generally, 
the basis for land use change models is four core principles 
(Koomen and Borsboom-van Beurden 2011), namely; (1) 
historical, which is based on previous trends of land use 
changes (Kuijpers-Linde et al. 2007); (2) suitability, which 
refers to the site assessment based on several related param-
eters (Bagdanavičiūtė and Valiūnas 2013; Abdullahi et al. 
2014); (3) neighborhood, which considers neighborhood 
interaction of each cell (Kocabas and Dragicevic 2007; Li 
et al. 2008; Al-shalabi et al. 2013); and (4) actor interac-
tion which deals with evaluating the interaction of several 
agents on land use changes (Matthews et al. 2007). Fur-
thermore, Verburg et al. (2004), Heistermann et al. (2006), 
and Koomen and Stillwell (2007) categorized land use 
change models based on six main concepts; Markov chain, 
economic-based systems, agent-based systems, statisti-
cal analysis, cellular automata (CA), and artificial neural 
network (ANN). All of these concepts are always based 
on the aforementioned four core principles with the aim of 
translating the real world to a model. These concepts have 
been explained in detail by different researchers, such as 
Markov chain concept by Koomen and Borsboom-van Beur-
den (2011) and Corner et al. (2014), agent-based by Parker 
et al. (2003) and Grimm et al. (2006), statistical approaches 
by Verburg et al. (2004), ANN by Skapura (1996) and Pija-
nowski et al. (2002), and finally CA modeling by Li and Yeh 
(2002) and Li et al. (2008).

For these kinds of land use processing, accessibility of 
strong spatial data, processing tools, mapping environments 
(software) and methods are essential, which are strongly 
supported by GIS environments and remotely sensed data. 
Remote sensing provides spatial data with preferred cover-
age in reasonable time and cost-effective manner for urban-
related applications (Tan et al. 2010; Hamedianfar and Shafri 
2015). On the other hand, GIS can help in collecting, stor-
ing, organizing, analyzing, and illustrating spatial data for 
corresponding processes. Integration of GIS with remotely 
sensed data can enable tools for modeling and quantitatively 
measurement of landscape trends on high spatial scale and 
resolution. In addition, to these modeling support technol-
ogy and system, there are several sophisticated computa-
tional techniques to perform the modeling process. Cellular 
automata is one the most common method in this field which 
is based on time systems and neighborhood interaction of 
surrounding pixels that affects the transition of specific land 
use category to other. This model has several advantages and 
characteristics for land use change modeling such as apply-
ing dynamic spatial variables during the iterative looping 
(Li and Yeh 2002), new aggregate centers (Wu 1998), fractal 

properties (White and Engelen 1993), and complex patterns 
from local interactions (Batty and Xie 1994). This model is 
also based on historical concept, i.e., the trend of changes in 
past has significant effects on future changes. Hagoort et al. 
(2008) and Norte Pinto and Pais Antunes (2007) prepared 
a comprehensive review of the history of cellular automata 
and its applications in urban researches. However, deter-
mining the factor values is one of the major problem with 
CA modeling (Kamusoko et al. 2009; Corner et al. 2014). 
Complexity of this model increases when several land use 
types are included in the model (Batty et al. 1999). Another 
important issue is how to define transition rules and model 
structures, which are generally application dependent (Li 
and Yeh 2002). To address these difficulties, the CA model 
is calibrated to ensure accuracy of model performance (Wu 
1998; Li and Yeh 2002; Kocabas and Dragicevic 2007). Sev-
eral studies have reported on the integration of CA modeling 
with various techniques, such as logistic regression (Arsan-
jani et al. 2013), analytical hierarchy process (Wu 1998), 
Bayesian network (Kocabas and Dragicevic 2007), ANN 
_ENREF_38(Li and Yeh 2002), Markov chain (Al-sharif 
and Pradhan 2013), and rough set theory (Wang et al. 2011).

Another statistical global parametric approach to define 
transitional rules is probability estimation using regres-
sion model of urban changes with respect to several urban 
parameters. This transition probability estimation can be 
implemented by the weights-of-evidence (WoE) model, 
which is based on Bayes rule of conditional probability. 
Tayyebi et al. (2014) stated that regression models provide 
better explanatory power and outperformed some methods 
such as ANNs when the functional relationships between 
the dependent and independent variables are known. 
Another advantage of WoE over other techniques is that, 
WoE calculates weight for each driving factor based on 
the occurrence and non-occurrence of the events in the 
study area. One of the main assumptions of this method 
is consideration of the importance of prior knowledge on 
the past events which can be used for the future occurrence 
(Regmi et al. 2010). In addition, in spite of simplicity and 
less time consumption in data acquisition and processing, 
this method is used successfully with respect to examining 
events, spatial relationships and the distribution of features 
(Dahal et al. 2008). This technique has been examined in 
different studies such as geological and mineral mapping 
(Gettings et al. 2004; He et al. 2010; Chen et al. 2013), nat-
ural disaster management (Althuwaynee et al. 2012; Tien 
Bui et al. 2012; Youssef et al. 2015), land use dynamic 
modeling (Maria de Almeida et al. 2003; Abdullahi and 
Pradhan 2016) and especially in compact city modeling 
(Abdullahi et al. 2015b). In fact, WoE assesses the level 
of evidences in supporting and contradicting the corre-
sponding assumption (Dempster 1967; Shafer 1976). This 
model is applicable when enough information is available 
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to evaluate the relative importance of evidential themes 
through statistical concepts (Bonham-Carter 1994).

Although several application models are used in land use 
change modeling, very few studies have directly applied 
or integrated compact city concept with land use change 
modeling process. For instance, Mubareka et al. (2011) 
introduced a composite index to characterize urban expan-
sion based on the degree of compactness of urban land with 
1-km resolution land use model. Li et al. (2008) introduced a 
method for modifying urban signatures for simulating com-
pact development in large complex regions. However, the 
current study attempts to integrate compact city parameters 
with land use change modeling process to evaluate the rela-
tionship between these parameters and urban growth at the 
level of high spatial resolution land use map. In addition, this 
integration modeling approach evaluates the environmental 
perspective of compact development with respect to loss 
of agricultural and natural spaces. The proposed modeling 
is the integration of WoE, as a factor based with CA, as a 
cellular-based approach, to present effective cellular-based 
data-driven land use change modeling. WoE was applied to 
reveal the amount and trend of different land use changes 
using time series data. Additionally, this model assesses 
the level of importance of related factors in affecting the 
changes. These outputs were used to define the transitional 
rules for CA modeling and to project the future land use 
conversion of the study area.

Data and methodological process

Kajang City (21 km away from Kuala Lumpur, Malaysia) 
with total area of 60 km2 (Fig. 1) was selected as case study 
to examine the mentioned modeling approach. In recent 
years, because of adjacency to Kuala Lumpur, this city has 

faced unorganized and sprawl developments. An increasing 
proportion of brownfields and destruction of the farm lands 
are results of such sprawl developments. The western part 
of the city is mainly agricultural and forest lands. Therefore, 
the effects of growth and changes of various land use types 
can be adequately observed, particularly on the natural envi-
ronment. Although many abandoned plots exist within the 
municipality, recent growth and development are occurring 
at the outskirts of the agricultural and rural areas. This study 
seeks to provide information regarding the degradation of 
the natural environment and the possible solutions toward 
compact urban development to local planning authority.

Model development

The overall data and modeling processes of this study is 
shown in Fig. 2. The municipality of Kajang City provided 
most of the data used for this processes (Table 1). Land use 
datasets of Kajang City with the scale of 1:5000 comprise 
seven land use categories (Fig. 3).

The identification of urban changes driving factors 
starts with a conceptualized idea of compact city and its 
paradigms. Based on the literature, three general indicators 
describe urban compactness: density, mixed development, 
and intensity (Burton 2002; Abdullahi et al. 2015a). Urban 
density comprises of: population density, building density, 
residential density, and many others. Regarding the urban 
sustainability point of view, higher density is always better 
than less density. Land use diversity or mixed land use devel-
opment consists of areas used for multiple functions and 
activities. Urban intensity refers to the characteristics of an 
area regarding facility distribution, accessibility, infrastruc-
ture, public transportation, and infill development. Several 
studies have shown that higher density, land use diversity, 

Fig. 1  Kajang city, Malaysia
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Fig. 2  Flowchart of the first 
and second land use change 
modeling process

- Land use map 2008 
- Land use map 2015 

Proposed CA-WoE 
modeling approach 

Projected land use map 
for year 2022 

City compactness 
factors 

- Land use map 2008 
- Land use map 2012 

Markov chain 
analysis 

Cross-tabulation 
analysis 

WoE model 

Probability map for 
year 2016 

Projected land use 
map for year 2016 

CA model 

AUC validation with 
actual land use map 2015 

Kappa validation with 
actual land use map 2015 

Urban related 
factors 

Table 1  Data and layers used for land use modeling

Raw data and maps Details Factors

Land use map 2008 Various land use types
(scale 1:5000)

Proximity and density of various land use types:
Residential
Commercial
Industrial
Community facilities
Recreational facilities
Agricultural fields
Land use diversity

Land use map 2012 Various land use types
(1:5000)

Proximity and density of various land use types
Land use diversity

Land use map 2015 Various land use types
(1:5000)

This map was used for validation process

Road network Highways, roads, streets, etc.
(1:5000)

Proximity to strategic roads

Population Age, gender, ethnic, etc. Population density map
Public transportation Train, bus Proximity to train and bus stations
Infrastructure Water, electricity and sewerage system Availability and proximity to infrastructures
Soil map Soil properties

(1:100,000)
Soil properties

Geological map Geological properties
(1:63,360)

Geological properties

Rivers and water bodies Location of rivers and water bodies Proximity to rivers and water bodies
Flood zone Location of flood zones Proximity to flood zones
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and efficient public transportation have essential effects 
on achievement of healthy and sustainable neighborhoods 
(Ding 2004; Gainza and Livert 2013; Gu et al. 2013; Song 
et al. 2013).

Furthermore, socioeconomic and physical properties of 
the Kajang City (Table 1) were included in the analysis. 
These characteristics are known to exert direct effects on 
growth and change of various land use types.

• Land use maps: Land use and land cover maps are the 
most essential input for urban application projects. These 
data can be used to extract the trend of changes in the 
landscape. Therefore, these layers provide fundamental 
information for evaluation, analysis, modeling, and pre-
dictions of changes in the urban and rural areas. Three 
land use maps of study area were in temporal basis for 
year of 2008, 2012, and 2015 (Fig. 3). In addition, the 
master plan of Kajang City was collected and utilized to 

assure the compatibility of the model with local policy 
and decisions.

• Road network: This variable is also essential for all type 
of urban applications particularly urban planning and 
development. All the urban land uses (residential, com-
mercial, recreation, institutional, etc.) are connected to 
each other using various links by road or street networks. 
In addition, most of the community facilities, public 
transportation nodes (train, bus and taxi stations), public 
attractions, commercial buildings, and institutional and 
governmental offices are located on the major streets. 
Hence, it is important to notice that a proper accessibility 
to major roads supports public transportation and walk-
ing and cycling behaviors. The available road data of the 
study area consists of various types of roads which were 
required to remove small and secondary streets.

• Public attraction points: In general, there are several 
daily attraction locations in a city (for instance malls, 
markets, etc.) which affect traveling of the local resi-

Fig. 3  Land use map of years 2008, 2012, and 2015
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dences. Hence, consideration of these places in the anal-
ysis and modeling of an urban area is very important. 
Specifically, proximity to these locations and/or proper 
distribution of these land uses within municipality has 
several advantages from sustainable environment aspects. 
Information about this layer for Kajang City was pro-
duced by assessing daily traveling with respect to land 
use maps and collection of information from local plan-
ning authority.

• Public transportation facility: Public transportation 
facility is a shared facility of local passengers which is 
available for general public. This facility is one of the 
essential necessities of urban areas which normally con-
sists of several modes such as taxi, bus, and train. Proper 
planning and designing of transportation network in a 
community have several advantages. In regard to urban 
sustainability perspective, transit-oriented development 
(TOD) is one of the most common concept to achieve 
more sustainable neighborhoods. TOD refers to the high 
mixed land use area with availability of proper public 
transportation modes and stations. Hence, distribution 
of various land use categories of urban area in planning 
and development stage is very important because acces-
sibility and a proper distribution of public transportation 
stations reduce the utilization of private vehicles. The 
transportation network of the selected study area is facili-
tated by taxi, bus and different train networks. Keretapi 
Tanah Melayu (KTM) commuter is one of the main trans-
portation train system in Malaysia that has one station in 
Kajang City (south-central), and proposed Mass Rapid 
Transit (MRT) has several stations in central parts of the 
city.

• Hazard map (flood zones): In addition to various social 
and economic aspects of the city, safety and security 
from flood and other natural hazards are also important 
aspects during planning and development. In case of 
Kajang City, proper care should be considered for flood 
zones which are existing along central north–south areas. 
As local council has reported, new construction projects 
in these zones should be prevented based on intensity of 
the hazard.

• Population map: Evaluation and consideration of city 
population is an essential factor in urban applications. 
High and low population (or population density) are the 
main properties to characterize sprawling development 
and/or social sustainability of a neighborhood. There are 
numerous studies on the relation of population density 
and urban sustainability. The population data collected 
for this study includes detailed information about the 
local residence of Kajang City (JPBD-Department of 
Statistics).

• Soil and geological maps: Evaluation of ground stability 
regarding soil and geological properties is another sig-

nificant variable to measure the stability of land surface 
under urban structures. Therefore, these properties were 
utilized in the modeling process in the form of data layers 
(which were collected from the Department of Drainage 
and Irrigation and Department of Geoscience and Min-
eral Resources, respectively).

From the available data layers, three city compactness 
indicators of each land use map were assessed (Burton 2002; 
Abdullahi et al. 2015a, b). Urban density was evaluated by 
considering population, residential, building and road den-
sity of the Kajang City. Population density was computed 
by considering number of inhabitants of each zone per built 
up area of the corresponding zone.

For other aspects of density measurements, similar for-
mula was implemented as follows:

The resulted maps were standardized in range of 0 (as less 
compact) to 1 (as more compact).

The diversity of land uses was assessed with respect to 
existence and proximity of various land use categories of the 
Kajang City. Although several scholars have studied about 
measurements of land use diversity, still no comprehensive 
and standard solution is proposed in the literature. Hence, 
researchers have measured the diversity of land uses using 
different techniques and data layers (Abdullahi et al. 2015b). 
However, this study has evaluated the mixed development 
using proximity and distribution pattern of residential, com-
mercial, industrial, recreation and community facility land 
uses. These categories were separated as different layers and 
used in the following equations;

where  LDProx is land use diversity using proximity concept. 
Pi is the proportional percentage of the landscape area (pix-
els) with corresponding Vi value. Vi is the level of proxim-
ity of each pixel with respect to other land use categories, 
which was assessed from overlaying process that creates 

(1)

Population density of zone i =
Population of zone i

Build up area of zone i
.

(2)

Residential density of zone i =
Number of residential units of zone i

Built up area of zone i

(3)Road density of zone i =
Road length of zone i

Total area of zone i

(4)

Building density of zone i =
Built up area of zone i

Total area of zone i
.

(5)LDProx. =

m∑

i=n

P
i
⋅ V

i
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overall proximity results. Vi ranges from n (number of the 
land use categories) to m (number of the land use categories 
times number of proximity classes). In this case, n is 5, and 
m is 25, which was computed from 5 (number of land use 
types) × 5 (number of distance classes). Similarly,  LDProx 
is in the range of n–m for each landscape represents single 
land use development to highly diverse development. The 
output proximity maps were standardized and accumulated 
to extract the areas located near several land use categories.

Urban intensity was evaluated by considering the avail-
ability, quality and quantity of different urban facilities, 
public transportation and infrastructure for the study area. 
Hence, these characteristics were evaluated using detail 
information of the inhabitants of each zone. In fact, same 
concept and equation of proximity analysis were used to 
evaluate every cells of the Kajang City with respect to urban 
intensity. However, in this stage, more complex considera-
tions were involved in the process, and the analysis was not 
solely based on proximity concept. The demand of differ-
ent services and facilities was assessed by considering the 
number and characteristics of local inhabitants using avail-
able guidelines (De Chiara 2001). Lastly, the values were 
standardized from 0 to 1 based on intensity evaluation. All 
these three compactness assessment process were performed 
based on cellular basis in order to evaluate every pixels of 
the study area related to each parameter and indicator.

The next important step is to analyze and understand 
the trend of each land use change during the given period. 
For this purpose, cross-tabulation was implemented for two 
maps of 2008 and 2012. Cross-tabulation is a mathematical-
based matrix which evaluates the growth and changes in var-
ious land use types of the study area (Pontius and Millones 
2011). The result of cross-tabulation analysis between two 
available land use maps indicated that residential, commer-
cial, and industrial areas have significant growth compared 
with other land use types. These growths caused destruction 
of natural environments and valuable agricultural areas, as 
shown in Table 2. Moreover, cross-tabulation determined 
the proportional conversion of each land use, which was 

calculated from each area of change with respect to the total 
area of analysis.

In addition to cross-tabulation, it was required to predict 
land use changes quantitatively using Markov chain method. 
Markov chain model is effective in determining the probabil-
ity of land use conversions between two maps. This method 
is extensively applied to model the changes and examine 
the trend of land use/cover by summarizing the conversion 
into transitional area and transitional probability matrixes 
(Coppedge et al. 2007; Dadhich and Hanaoka 2011; Sang 
et al. 2011). In this research, the obtained matrixes were 
used to analyze and identify the scenarios of future land use 
changes based on land use maps of 2008 and 2012. How-
ever, this method did not deal with spatial aspects of change 
occurrence (Araya and Cabral 2010). The integration of cel-
lular automata with Markov chain overcome this problem 
and provided a strong statistical, spatial- and temporal-based 
land use conversion model (Corner et al. 2014).

Model integration

To determine the transitional probabilities that cause land 
use changes as functions of several factors related to com-
pact urban development, weights-of-evidence technique 
which is a probability assessment-based method was applied 
(Bonham-Carter 1994; Pradhan et al. 2010). Subsequently, 
these probabilities were used to extract and select particu-
lar cells that will be developed based on the priority rules 
estimated by cellular processing. In addition, Kajang City 
land use change process was investigated using first-order 
Markov chain process. Finally, both processes were inte-
grated with the CA model to involve neighborhood tendency 
of change of the cells to the model.

Considering that not all of the available data and 
selected factors have significant effects on land use change 
occurrence, assessing the level of importance and creating 
a shortlist of the most effective factors became necessary. 
The WoE model at the first stage evaluates the frequency 
of occurrence and non-occurrence of the phenomenon, 
which, in this case, is the land use change with respect to 

Table 2  Cross-tabulation of land use map of 2008 versus 2012 (Hectare)

Land use Agriculture Commercial Open space Housing Industry Infrastructure Facility Growth Total

Agriculture 316.5 0.3 204.7 21.5 10.0 0.3 0.8 554.1 86.2
Commercial 4.3 66.4 58.6 27.7 3.6 0.3 6.0 166.8 74.2
Open space 44.5 5.2 558.1 75.0 59.8 11.8 6.0 760.4 − 535
Housing 61.3 12.1 271.4 1065.3 10.6 1.1 4.2 1425.9 195
Industry 33.8 5.7 117.0 14.9 370.5 0.9 0.0 542.8 84.1
Infrastructure 6.8 1.0 31.3 13.7 3.3 86.6 0.2 142.9 41.7
Facility 0.7 2.0 54.7 12.7 0.9 0.4 377.1 448.5 54.3
Loss 467.8 92.7 1295.9 1230.9 458.7 101.2 394.2
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independent factors. This stage which deals with relation-
ships between land use changes and independent param-
eter was utilized to show the correlation among the input 
variables. Hence, the frequency of occurrence of resi-
dential, commercial, and industrial pixels in each param-
eter’s class was evaluated. The frequency of occurrence 
was computed using the area ratio of each land use with 
respect to each factor (consider 1 as the average value). 
A value higher than 1 denotes positive and a value less 
than 1 indicate negative correlation. Thus, if a factor does 
not show a proper trend through positive or negative cor-
relation, the absence of effect on that specific land use 
can be assumed. Each of the related factors was classified 
into three standard classes with the appropriate range (or 
scale for distance-based factors), type (or categorical for 
nominal factors) and rank (for city compactness factors). 
In this manner, relationship between growth and reduc-
tion of each land use type of the study area and involved 
factors were assessed. The factors that showed positive 
or negative effect were extracted from the list of related 
factors and were applied to create probability map for 
selected land use categories. The growth probability map 
is calculated based on Bayes rule of conditional probabil-
ity concept (Thiam 2005; Pradhan et al. 2010; Tien Bui 
et al. 2012). By overlaying each land use map (for instance 
residential category), on every factor layers, the amount 
of pixels in each class of the factors was determined. For 
these determined number of pixels N(L), containing occur-
rence of specific land use type (residential), and the total 
number of pixels of the study area (Kajang City), N(C), the 
prior probability of the residential occurrence in general 
is expressed by;

Now, by considering the involved factors, C = (Ci, i = 1, 
2, 3, …, n), if a number of pixels of residential land use in 
a specific layer is N(L ∩ C ), then the probability of resi-
dential growth is calculated using conditional probabilities 
(Bonham-Carter 1994);

The output of this calculation is the value of C/S(C) 
which shows spatial relation among various land uses and 
factor’s classes. Positive and negative of this value shows 
high and low probability of occurrence of the selected land 
use types in the corresponding class of factor, respectively.

According to Tayyebi and Pijanowski (2014), one kind 
of multiple land use change modeling is to run the model 
by several binary classification that are solved using binary 
classifier. In the current study, WoE used the same concept 

(6)P(L) =
N(L)

N(C)
.

(7)P(L|C) = P(L ∩ C)

P(L)
= P(L)

P(C|L)
P(L)

.

by decomposing the model into several binary classifica-
tions, and then evaluates the growth probability of main 
land use types separately. Normally, for these kinds of 
classification change or growth of one class is evaluated 
with respect to all others (One-Verses-All), or it can con-
sider all possible mutual binary classifiers between n avail-
able classes (All-Versus-All). These processes are lengthy 
and difficult to analyze specially for larger numbers of 
binary classifiers. However, in the current study, the WoE 
was run only for selected land use types, based on the 
cross-tabulation process.

Next, based on two matrixes computed from Markov 
chain model, specifically the transitional area matrix, 
CA-Markov integration was implemented to facilitate the 
application of the contiguity filter and consequently obtain 
the projection of the growth from 2012 to 2016. This filter 
developed spatial weighting factors, which were applied 
to each land use growth map that resulted from the WoE 
approach, in order to provide weights to areas that are proxi-
mate to existing land use as well as have higher probability 
to change. This filter ensured that the problem of Markov 
chain analysis (lack of spatial bases) could be overcome. 
Thus, land use change occurred based on related evidence 
and was not entirely random. With each pass, CA-Markov 
reweighted each land use growth map, as a result of the con-
tiguity filter on each current land use type. Once reweighting 
was completed, the revised suitability map was run through 
the model to allocate one-fourth of the required land in the 
first run and two-fourths of the required land in the second 
run. The process was continued until the full allocation of 
land for each land use class is achieved. At the end of each 
run, land use types were masked, and the contiguity filter 
was run. Subsequently, the result was multiplied to each land 
use growth map to create the input for the new run. The 
transitional area matrix has the crucial role of controlling 
the land area that can be allocated to each land use type over 
the next 4 years.

In general, for validation of the proposed modeling, the 
quantitative evaluation of the level of similarity between the 
predicted and real maps is preferable. In this study, valida-
tion of the proposed modeling approach was performed in 
two stages. At the first, three land use probability of growth 
maps created from WoE model was evaluated by actual 
land use map of year 2015 using the area under ROC curve 
(relative operating characteristic) technique (Pontius and 
Schneider 2001; Pradhan and Lee 2010; Chen et al. 2013). 
This method estimates the spatial relationship between the 
projected and reference maps. In addition, the AUC is a cal-
culation of the area under ROC curve and ranges from 0.5 
to 1. A value of 0.5 indicates a random relationship between 
input maps and value near to 1 indicates high relationship 
between the input maps which is an ideal spatial agreement 
between modeled and actual land use maps.
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In the second stage, Kappa statistic index was calculated 
to evaluate the entire projected map of year 2016 produced 
from proposed integration approach (CA-WoE). This process 
was performed to assess the validity and reliability of the 
projected map in terms of quantity and location of changes 
with respect to actual land use map of year 2015. Kappa 
index of agreement is a measure of proportional accuracy 
adjusted for chance agreement.

In addition to these validation processes, normal CA was 
also run without considering the effects of factor analysis 
using WoE approach. This process was applied on land use 
maps of years 2008 and 2012 to create the projected map for 
year 2016. This process was run to verify that the proposed 
integration model (CA-WoE) can generate more valuable 
and reliable information about the future pattern of the study 
area.

Finally, after validation of the proposed integration mode-
ling approach for the land use map of year 2016, the process 
was run with input maps of year 2008 and 2015 to predict 
the future land use map for year 2022.

Results and discussion

Quantify land use change

Table 2 summarizes the overall land use changes from year 
2008 to 2012. This table shows the area for each land use 
type that was converted to another type. The land use map 
of 2008 (columns) is cross-tabulated with the land use map 
of 2012 (rows). The interesting part of this matrix is the 
growing of residential land use on almost all other land 
use categories. The loss of 333 ha of natural environment 
and agricultural fields caused by these growths was seri-
ous disaster that could have been prevented. The growths of 
commercial and industrial areas have also caused the loss 
of 63 and 150 ha of natural spaces and agricultural fields, 
respectively. The last row and second last column of Table 2 
show the sum of growth and loss of various land use type. 
However, last column of this table shows the overall change 
of all land use types with positive and negative value. Hence, 
it can be seen that Kajang City during the selected period 
of time has lost more than 535 ha of its natural and green 
environments. However, growth of agricultural fields is a 
good effort to revitalize the existing abandoned lands for 
food production and industries. In addition, residential, com-
mercial, and industrial land use have the growth of 195, 74, 
and 84 ha, respectively. These land use transition reports 
clearly shows that residential, commercial, and industrial 
are the three main land use types that have grown more sig-
nificantly compared with other types. For this reason, this 
research focused on these three land use types to predict 
future changes in Kajang City.

As previously explained, the optimization process was 
conducted to examine and extract the most effective factors. 
For instance, the results showed that increasing the distance 
from residential areas cause noticeable reduction in growth 
of this land use type. Similarly, a reduction in growth of 
residential areas can be observed because of proximity to 
the industrial area. Therefore, the distance to the industrial 
buildings has an inverse relationship with the growth of resi-
dential areas. However, soil and geological properties do not 
have any positive or negative effect on the growth of resi-
dential land use types. One reason for these neutral effects 
is the homogeneity and distribution pattern of soils or geol-
ogy types in Kajang City. Therefore, these ineffective factors 
were excluded from further processing. In general, proximity 
to same land use types and accessibility (proximity to road 
networks and public transportation) were the most effective 
factors for the growth various land use types.

Land use change modeling using WoE

The WoE model calculated the cell transition probabilities 
for the three main land use types. The total number of cells 
in the study area was approximately 56,537,675 (1 m2 cell 
size). The total numbers of the residential, commercial, and 
industrial areas were 15,361,526; 1803,674 and 5,678,861, 
respectively. Summarized of the WoE calculation for resi-
dential, commercial and industrial land use growth is shown 
in Table 3. In this table, the value of C/S(C) indicates spatial 
relation of various land use cell and factor’s class. Similar 
land use categories increase the chance of growth of the 
corresponding category. Thus, as the distance from the resi-
dential area increases, the probability of residential growth 
decreases substantially. By contrast, there is tendency of sep-
aration between residential and industrial areas. However, 
adjacency to various community facilities is advantageous 
for residential areas.

Moreover, in Kajang City, industrial areas are located 
in rural and undeveloped areas. Consequently, in the case 
of industrial land use, a negative value can be observed 
(Table 3) in proximity of roads and public transportation 
nodes. Result of the city compactness evaluations was in 
the range of high density, high intensity, and high land use 
diversity to low domain of these indicators. These results 
were evidences of the straightforward effects of city com-
pactness on land use growth. Higher density, intensity and 
mixed development resulted in positive magnitudes of 
C/S(C) for residential and commercial areas. By contrast, 
areas with non-diverse land use types and low density and 
intensity are more suitable for industrial land use growth. 
Figure 4 illustrates growth probability maps of these land 
use categories. In general, it can be seen that, central parts of 
Kajang City have higher probability of growth for residential 
and commercial use; and eastern and western sides have 
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higher probability of growth for industrial land use. How-
ever, residential areas have broader extend rather than com-
mercial areas. The areas with higher probability of growth 
for commercial land use are mainly located along the main 
roads in central parts and passing the main public transpor-
tation of Kajang City (southern parts). In contrast, residen-
tial growth has higher probability in wider extend mainly 
in central parts. Industrial land use has higher probability 
of growth in western regions which are mainly covered by 
agricultural fields, and eastern parts near existing industrial 
buildings and open spaces.

Land use change modeling using CA‑WoE

Markov chain analysis was accomplished by developing two 
transitional matrices. Although the transitional matrixes look 
accurate, the output map showed a salt and pepper appear-
ance because of the lack of spatial distribution knowledge 
for each land use type. The transitional probability matrix 
computes the probability that each land use type will change 
to another type. This matrix was calculated from the cross-
tabulation matrix by adjusting the proportional errors. The 
transitional area matrix computes the number of pixels that 
are expected to change to another type. This matrix (Table 4) 
was obtained by considering the transitional probability 

Table 3  The WoE calculation results of residential, commercial, and industrial land use for 2008–2012 time periods

No. Factor No. Class Residential Commercial Industrial

FR C/S(C) FR C/S(C) FR C/S(C)

1 Proximity to residential 1 Near 2.40 2433.19 0.58 − 362.83 0.10 − 1085.65
2 Middle 0.44 − 1411.81 1.56 541.58 0.79 − 359.45
3 Far 0.29 − 1648.14 0.77 − 207.93 2.09 1552.90

2 Proximity to commercial 1 Near 1.18 403.05 2.05 885.46 0.53 − 726.81
2 Middle 1.09 215.69 0.22 − 648.64 1.07 112.92
3 Far 0.73 − 647.96 0.77 − 217.00 1.38 602.47

3 Proximity to industrial 1 Near 0.66 − 795.27 0.80 − 180.42 2.60 2012.03
2 Middle 1.30 673.47 1.44 408.66 0.07 − 1097.10
3 Far 1.02 53.47 0.75 − 237.41 0.39 − 941.69

4 Proximity to roads 1 Near 0.94 − 128.66 1.49 440.88 0.79 − 331.38
2 Middle 1.20 464.27 1.13 125.84 1.03 56.63
3 Far 0.85 − 360.80 0.39 − 544.39 1.17 269.17

5 Proximity to facilities 1 Near 1.21 467.06 1.36 327.13 0.31 − 1022.94
2 Middle 1.11 249.71 0.84 − 149.48 0.83 − 272.17
3 Far 0.69 − 752.38 0.81 − 177.52 1.83 1258.34

6 Proximity to public transportation 1 Near 1.15 339.15 1.38 349.98 0.66 − 535.63
2 Middle 1.09 207.42 0.85 − 141.00 0.74 − 411.55
3 Far 0.76 − 567.92 0.77 − 211.60 1.59 907.80

7 Proximity to infrastructure 1 Near 1.07 150.46 1.05 48.63 0.92 − 124.59
2 Middle 1.06 129.30 1.03 24.17 1.04 70.14
3 Far 0.88 − 283.07 0.92 − 72.13 1.03 52.55

8 Proximity to agricultural fields 1 Near 0.68 − 760.60 0.78 − 199.68 1.38 587.29
2 Middle 0.98 − 51.19 0.74 − 249.07 1.28 444.17
3 Far 1.34 743.45 1.48 441.08 0.34 − 1002.09

9 Urban density 1 Low 0.51 − 1087.37 0.41 − 486.00 1.79 1096.34
2 Middle 1.24 575.07 1.26 255.37 0.72 − 483.26
3 High 1.17 379.78 1.25 228.45 0.61 − 619.26

10 Land use diversity 1 Low (single) 0.61 − 1005.50 0.77 − 239.43 1.53 900.49
2 Middle 1.07 184.98 0.87 − 143.13 0.76 − 448.23
3 High (mixed) 1.53 855.28 1.64 437.70 0.54 − 555.88

11 Urban intensity 1 Low 0.93 − 176.19 0.92 − 74.14 1.46 715.94
2 Middle 1.01 32.38 1.26 238.67 0.91 − 139.90
3 High 1.06 142.60 0.82 − 166.38 0.62 − 599.04
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matrix values as well as the number of pixels for each land 
use type in the land use map of 2012.

Evaluating the historical land use changes from 2008 to 
2012 based on compact city evidence provides strong input 
in the form of transitional rules to train the CA modeling. 
The CA predicted the transition of land use categories to 

each other, based on transitional area matrix as well as the 
probability of growth maps from WoE model. Figure 5 
depicts the result of projected map for year 2016 based on 
the proposed integration approach of CA-WoE. In visual 
interpretation, adjacency of similar land use categories 
controlled the model more significantly than the other evi-
dences. Large amounts of agricultural areas were converted 
to industrial land use in the central and western parts of the 
city. Moreover, in the central and northeastern parts, con-
siderable conversion of agriculture to residential land use 
types can be observed. Therefore, given the strong effect of 
neighborhood cells, this parameter played a crucial role in 
the tendency of the central cell to transition to another. Other 
parameters, such as accessibility to main roads and public 
transportation, also had meaningful effects on commercial 
land use type. Most of the new commercial areas developed 
along the main roads. Thus, it can be concluded that the land 
use type with lower coverage is influenced by other param-
eters rather than the effects of neighborhood cells.

Interestingly, the effects of compact city parameters can 
also be observed on the projected land use map. Areas with 
higher degree of city compactness have growth in higher 
density (building and residential density) and more mixed 
land use, such as the southern, southeastern, and north-
western parts of the municipality. By contrast, the central, 
western, eastern, and northeastern parts of the municipality, 
although have considerable land use changes, but still these 
areas have lower diversity, density, and facility distributions.

Figure  6 illustrates the AUC results of comparison 
between probabilities of growth maps of year 2016 with 
actual map of year 2015. This graph shows the similarity 
assessment of three growth maps of residential, commercial, 
and industrial land use with actual map of these land use 
types for year 2015. All AUC value with more than 85% 
presents the fitness of the growth probability maps for all 
land use types. Commercial land use has lowest value due 
to complexity of predicting and involving more number 
of variables. In contrast, industrial land use mainly grows 
nearby the existing industrial building; or constructed in 
open spaces far from residential areas. Hence, it is less 
complicated to model and predict this land use types rather 
than other categories. In the next stage of validation process, 

Fig. 4  Probability of growth maps of residential, commercial, and 
industrial for year 2016

Table 4  Transitional area 
matrix created from Markov 
chain analysis

Land use Agriculture Commercial Open spaces Housing Industrial Infrastructure Facility

Agriculture 118,478 2335 24,369 33,687 18,507 3716 370
Commercial 264 35,453 3994 9260 4422 759 1573
Open space 49,929 14,310 105,641 66,146 28,543 7646 13,363
Housing 16,727 21,524 58,263 413,686 11,645 10,725 9867
Industry 6855 2475 41,115 7317 145,648 2251 584
Infrastructure 256 251 11,815 1098 869 42,838 361
Facility 1376 10,491 10,544 7382 0 344 146,349
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the entire projected map of year 2016 was compared with 
land use map of year 2015. The results of three measures of 
Kappa statistic index of agreement were 0.92, 0.94 and 0.91 
for Kappa for no information, Kappa for location and Kappa 
standard, respectively. Therefore, the results of both valida-
tion stages proved that the WoE performed well, especially 
in determining the factors that have significant effect on the 
changes of each land use types. Similarity results indicated 
that the proposed CA-WoE model by selection and analysis 
of important parameters as well as city compactness factors, 
can model the land use changes with reliable and acceptable 
accuracy.

By running normal CA process (without factor 
assessment using WoE approach) on maps of year 2008 

and 2012 to create projected map for year 2016 and its 
comparison with actual land use map (2015), it was 
observed that the projected map created from CA-WoE 
produced more informative and reliable results. Normal 
CA predicted the future pattern mainly based on simple 
rules about spatial adjacency effects and local relation 
between various land use categories. On the other hand, 
the results revealed that normal CA lacks the relation-
ship and interaction between parameters. However, CA-
WoE created links between various social, physical, 
environmental, etc., characteristics of the sites; thus, 
the model provides more realistic and behavior-oriented 
transitional rules in CA environment. In general, by 
using CA-WoE approach, due to capability of factors 
analysis and assessment, various scenarios and ideas 
can be examined and proposed.

After confirmation about the validity of the mod-
eling approach, the process was applied for land use 
map of year 2008 and 2015 to create the future map for 
year 2022. Figure 7 depicts the predicted map for year 
2022. In this map, similar to previous growth trend 
of the city, significant growth of commercial land use 
along the main roads especially around train station 
can be observed. New industrial buildings have grown 
in vicinity of previous industrial sites in central-west 
areas. The loss agricultural fields in these areas due 
to growth of industrial land use can be seen clearly. 
In northern parts of the city also a gradual growth of 
industrial parcels can be observed, which can be due to 
inside or outside of industrial existence effects. Same 
condition occurred for residential land use which has 
growth near to existing residential area in entire city. It 
can be seen that, due to growth of urban settlement, the 
loss of agricultural and natural environments insider 
and near urban areas cannot be absolutely stopped. 
However, by controlling the growth direction especially 

Fig. 5  Projected land use map for year 2016 using proposed CA-WoE 
modeling approach
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through abandoned lands and brownfields exist inside 
the border of the city (with the aim of brownfield 
revitalization and redevelopment which is one of the 
objectives of compact city) the loss of these green and 
productive environments can be reduced and controlled 
significantly.

Conclusion

Unorganized and fast urban growth has caused widespread 
loss of valuable agricultural and green fields, particularly 
in underdevelopment countries and tropical regions. In this 
context, projection of growth and changes of urban areas 
according to sustainable development paradigms such as 
compact city is crucial because it provides advantageous 
information and vision for local planning authority. Never-
theless, modeling and projection of changes in urban land 
uses are complex and complicated processing because of 
several difficulties and uncertainties existed in urban sys-
tem. However, these issues can be addressed with the use 
of multidisciplinary geospatial techniques and systematic 
approaches.

This paper presents the results of the application of 
a hybrid model incorporating CA as a cellular-based 
approach and probabilistic WoE as a factor-based approach 
to predict future land use changes. The developed model 
has the following strengths and benefits: (1) The model is 
based on real trends of changes in Kajang City. The evalu-
ation of historical trends showed the significant growth of 
residential, commercial, and industrial areas rather than 
other. (2) The model is based on several parameters related 
to city compactness and urban issues. Analysis of these 
parameters proved the essential role of the model in under-
standing the spatial structure of land use changes. (3) The 
calculation of parameter weights (evidence) is based on 
statistical and historical analyses instead of the subjective 
choice of weighting parameters. For this reason, the maps 
obtained using the WoE showed better and more reliable 
results rather than the map created by expert knowledge 
or simple weighting techniques. (4) The model is dynamic 
and considers the spatial complexity of the problem. The 
CA model normally incorporates simple rules regard-
ing spatial neighborhood effects that govern the system 
dynamics to determine land use changes.

Hence, the integration of the CA model with WoE suc-
cessfully established the functional relationship between 
important parameters and development of the various 
land use categories. In fact, WoE provided a simple and 
straightforward approach for the selection of effective 
factors and then statistically utilized them to assess the 
growth probability for various land use types. It is con-
cluded that the integration of this model with GIS-based 

CA is a strong approach for modeling land use changes for 
spatially complex urban areas.

Finally, the results showed strong neighborhood effects 
and spatial autocorrelation of urban patterns. Majority of 
the land use types revealed the tendency to expand right 
next to already existing same land use types. In addition, 
some land use types were preferably located at a distance 
from other land use types, such as residential and indus-
trial areas, which led to negative spatial autocorrelation. 
This important structural spatial dependency provides 
a channel for the formulation of valuable guidelines in 
understanding land use change modeling. Moreover, the 
final outputs provide a proper perspective about the poten-
tial effects of urban changes on rural areas, which can be 
used as reference for local planners and resource manag-
ers. Specifically, the projected land use maps indicated that 
the growth of land use types based on the compact city 
principle could decrease the loss of agricultural fields and 
result in a more sustainable city development.
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