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Abstract
In geomechanics, constitutive models, which relate strains to stresses, have particular importance. This research concerns 
with developing a constitutive model for rock discontinuities. A large number of research works in this area have shed light 
on the most important aspects of the shear behavior of rock fractures. However, the constitutive models have been mostly 
developed in form of empirical functions best representing the experimental data by means of mathematical regression 
techniques. Thus, now there is room to upgrade the classic regression methods to the more robust modeling techniques 
which better capture the nonlinearity of constitutive response. In this paper, the support vector regression (SVR) enhanced 
with a search algorithm has been employed to construct a constitutive model for rock fractures. A series of 84 direct shear 
tests was conducted on concrete and plaster replicas of natural rock fractures under different levels of normal stress. The 
specimens had also different mechanical and morphological characteristics. The SVR constitutive model was developed 
based on the shear test data. The proposed model indicates significant superiority in estimating the shear strength and peak 
shear displacement compared to Barton–Bandis model for rock fractures.

Keywords  Constitutive model · Rock fracture · Shear behavior · Support vector regression · Barton–Bandis model

Introduction

Constitutive models of geomaterials, which relate strains 
to stresses, are of great importance in geomechanics. Rock 
mass is a system composed of rock material and rock dis-
continuities, and hence, is described by discontinuum con-
stitutive models. In this study, a constitutive model for rock 
discontinuities is developed for rock discontinuities. A large 
number of research works have been presented in this sub-
ject (Jaeger 1959, 1971; Patton 1966; Ladanyi and Archam-
bault 1969; Barton 1972, 1973, 1976; Goodman 1974, 1976; 
Barton and Choubey 1977; Bandis et al. 1981, 1983; Barton 

et al. 1985; Desai and Fishman 1987; Aydan et al. 1990; 
Cundall and Lemos 1990; Gens et al. 1990; Desai and Fish-
man 1991; Homand et al. 2001; Olsson and Barton 2001; 
Huang et al. 2002; Zhang and Sanderson 2002; Wang et al. 
2003; Grasselli and Egger 2003; Asadollahi and Tonon 
2010; Babanouri et al. 2011; Amiri Hossaini et al. 2014; 
Hou et al. 2016; Azinfar et al. 2016). However, there are 
generally two approaches used for establishing a model of 
rock fracture behavior: the empirical approach and theoreti-
cal approach (Jing and Stephansson 2007).

In the empirical approach, the model is developed in form 
of empirical functions best representing the experimental 
data by means of mathematical regression techniques. No 
constraint is considered for respecting the second law of 
thermodynamics in this approach. However, such models 
can provide agreeable results if the loading conditions and 
parameter ranges are suitably considered. In contrast, the 
theoretical approach has the thermodynamic considerations 
which guarantee the model obeying the second law. Never-
theless, the model parameters may not have clear physical 
meanings or are difficult to determine by experiments (Jing 
and Stephansson 2007).
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A great number of the constitutive models presented for 
rock fractures over the years have shed light on the most 
important aspects of the shear behavior of rock mass. Thus, 
now there is room to upgrade the classic regression methods 
to the more robust modeling techniques which better cap-
ture the nonlinearity of constitutive response. The power of 
the today’s computers along with the extreme complexity 
of shear behavior of rock joints makes it quite reasonable 
to suggest the application of computational intelligence for 
constitutive modeling.

The support vector regression (SVR) has been success-
fully used as a modeling tool in facing a variety of geome-
chanics problems (Mahdevari et al. 2014; Bagheripour et al. 
2015; Elbisy 2015; Chen et al. 2016; Dai et al. 2016; Fattahi 
2016; Zhu et al. 2016). However, no attempts have already 
been made to model the shear behavior of rock fractures 
using SVR.

In this paper, the support vector regression enhanced with 
a search algorithm has been employed to construct a consti-
tutive model for rock fractures. A series of 84 direct shear 
tests was conducted on concrete and plaster replicas of natu-
ral rock fractures under different levels of normal stress. The 
specimens had also different mechanical and morphological 
characteristics. The SVR constitutive model was developed 
based on the experimental data. Finally, the results of the 

proposed model were compared to the performance of Bar-
ton–Bandis model for rock fractures.

Experimental study

Sample preparation

To keep mechanical and morphological characteristics of 
fractures (e.g., wall strength, and roughness) under control, 
a number of concrete and plaster replicas were constructed 
from natural rock fractures. Parent rock fractures with dif-
ferent values of the joint roughness coefficient (JRC) were 
chosen from the Gol-e-Gohar iron ore mine (Iran), and their 
silicon molds were prepared (Fig. 1a, b). For each of the 
parent surfaces, 11 digitized roughness profiles along the 
shear direction were considered to estimate the JRC value 
(Fig. 1c). Then, the average JRC values of the natural mor-
phologies were calculated as 18.9, 12.4, 7.1, and 4.1, using 
the following relationship presented by Tse and Cruden 
(1979):

where Z2 is the root mean square (RMS) of the first deriva-
tive of the profile, calculated as follows (Myers 1962):

(1)JRC = 32.2 + 32.47 logZ2,

Fig. 1   Preparing silicon molds 
of parent rock fracture (a), plas-
ter replicas with different values 
of JRC (b), location of digitized 
roughness profiles along the 
shear direction (c)
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where N is the number of discrete measurements of profile 
coordinates (l, h).

Several superimposed pairs of each morphology were 
produced with different concrete and plaster materials. The 
specimens were cast in a cylindrical shape with a diameter 
of 60 mm.

To have the plaster samples cured, they were kept in a 
desiccator at 40 °C for 7 days. The concrete replicas were 
preserved in a water bath for the same time. Besides the 
fracture replicas, a number of intact cylindrical specimens 
from each material were produced. These samples were then 
used to measure the mechanical properties of the materials 
used (Fig. 2). Table 1 presents the measured mechanical 
parameters of the concrete and plaster materials. In this way, 
a series of fracture replicas with different values of rough-
ness and mechanical properties was prepared.

Direct shear test

Direct shear testing of fracture replicas was conducted under 
the constant normal load (CNL) condition. The shear box 
was wedge type, originally pertaining to a portable shear 
machine (Fig. 3). Shear and normal actuators worked with 
two hydraulic pumps equipped with pressure adjustment and 
relief valves. Each actuator had a loading capacity of 50 
kN, and a load cell with an accuracy of 0.04 kN measured 
its force. One and two LVDTs with an accuracy of 0.03 mm 
were in charge of measuring the shear and normal displace-
ment, respectively. Shear load was applied to the upper part 
of the sample at a constant rate of about 0.5 mm/min, while 
the lower part was kept fixed. During the shear test, the nor-
mal displacement, normal force, shear displacement, and 
shear force were recorded every 0.25 s using a data acquisi-
tion system connected to a computer.

(2)Z2 = RMS
(
Δh

Δl

)
=

(
1

N

N∑
i=1

(
hi+1 − hi

li+1 − li

)2
)1∕2

,

Figure 4 shows shear and dilation curves for a number of 
the performed direct shear tests. The parameters of peak shear 
stress (τp), peak shear displacement (δpeak), and dilation angle 
(d) were extracted from the behavior curves (Fig. 5). Table 2 
summarizes the specifications and results of the whole tests.

Background theories

The idea behind the proposed model is to optimize values 
of SVR parameters using a search algorithm. In this section, 
the SVR technique is explained, followed by describing the 
employed optimization algorithm.

Support vector regression

The support vector regression (SVR) uses the same principles 
as the support vector machine (SVM) for classification, with 
only a few minor differences. In linear SVR, a linear relation-
ship between input data (x) and output data (y) is considered 
(Fig. 6a):

The SVR method aims at minimizing the following term 
(Hong 2011):

(3)y = wx + b,

Fig. 2   Measurement of mechanical properties of materials: intact cylindrical specimen (a), uniaxial compressive test (b), tilt test (c)

Table 1   Mechanical characteristics of materials

a Uniaxial compressive strength
b Young’s modulus
c Basic friction angle

ID Material σc (MPa)a E (GPa)b ϕβ (°)c

C1 Concrete 52.5 11.91 28
C2 Concrete 37.4 7.54 28
C3 Concrete 17.5 5.32 28
C4 Concrete 8.0 2.88 28
P1 Plaster 52.1 11.36 34
P2 Plaster 41.6 8.66 34
P3 Plaster 17.2 3.86 34
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with the constraints:

The first term of Eq. (4), implying the concept of maxi-
mizing the distance of two separated training data, is used 

(4)Minimize
1

2
||w|| + C

N∑
i=1

(
�∗
i
, �i

)
,

(5)

yi − wxi − b ≤ � + �i,

− yi + wxi + b ≤ � + �∗
i

�i, �
∗
i
≥ 0.

to regularize weight sizes, to penalize large weights, and 
to maintain regression function flatness. The second term 
penalizes training errors. C is a parameter to trade off these 
two terms. Training errors above ε are denoted �

i
 , whereas 

training errors below − ε are denoted as �∗
i
 (Fig. 6a). After 

the quadratic optimization problem with inequality con-
straints is solved, the vector w is obtained in terms of two 
Lagrangian multipliers.

In nonlinear SVR, which is used in this study, the ker-
nel functions transform the data into a higher-dimensional 
feature space to make it possible to perform the linear sepa-
ration (Fig. 6b). The value of the kernel equals the inner 

Fig. 3   Direct shear test apparatus

Fig. 4   Behavior curves for three of fracture replicas: shear curve (a), dilation curve (b)
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product of two vectors, xi and xj, in the feature space �(xi) 
and �(xj) as follows (Hong 2011):

There are several types of kernel function, but in this 
study, we used a most common and powerful of them. This 
kernel function is called radial basis kernel function (RBF) 
defined as below:

C, σ, and ε are three main parameters of the SVR that are 
optimized in training state.

BBO search algorithm

The biogeography-based optimization (BBO) is similar to 
other population-based optimization techniques where popu-
lation of candidate solutions {x} is represented as a vector 

(6)K
(
xi, xj

)
= �(xi)�(xj).

(7)K
�
xi, xj

�
= exp

⎛⎜⎜⎝
−

���xi − xj
���

2�2

⎞⎟⎟⎠
.

of real numbers (Simon 2008). A pseudo-code for the BBO 
algorithm used in this study is given in Fig. 7. Each element 
in the solution array is considered as one suitability inde-
pendent variable (SIV). Fitness of each set of candidate solu-
tion is evaluated using a fitness function. The probability of 
emigration, μ, for each solution is calculated proportionally 
to its fitness, and the probability of immigration is calculated 
as λ = 1 − μ.

The emigration and immigration probabilities of each 
solution are used to probabilistically share information 
between habitats. Using habitat modification probability, 
each solution is modified based on other solutions. Immi-
gration probability of each solution is used to probabilis-
tically decide whether or not to modify each SIV in that 
solution. After selecting SIV for modification, emigration 
probabilities of other solutions are used to probabilisti-
cally select which solutions among the population set will 
migrate. In order to prevent the best solutions from being 
corrupted by the immigration process, few elite solutions 
are kept in the BBO algorithm. Like most other evolutionary 
algorithms, BBO includes mutation of a percent of solutions 
to increase diversity among the populations. Here, mutation 
of a selected solution is performed simply by replacing it 
with randomly generated new solution set. Other than this, 
any other mutation scheme that has been implemented for 
genetic algorithm can also be implemented for BBO (Roy 
et al. 2010).

SVR‑BBO constitutive modeling of rock 
fractures

Inputs and output data

The inputs of the model were once considered to be JRC, 
joint wall compressive strength (JCS) which is equal to 
uniaxial compressive strength (σc), Young’s modulus (E), 
normal stress (σn), and basic friction angle (ϕb), while the 
outputs were τp, δpeak, and d. Although the basic friction 
angle of rock fractures has generally a limited range, this 
parameter plays an important role and cannot be ignored in 
constitutive modeling of rock joints. The deformability of 
rock fracture asperities (represented by the Young’s modulus 
of rock materials in this study) influences the contact area 
during shearing and consequently affects the shear behav-
ior of fractures. In fact, the incorporation of the Young’s 
modulus is a step forward in constitutive modeling of rock 
fractures. However, since the Young’s modulus of rock frac-
ture asperities may not always be measured, the model was 
construted another time excluding the parameter of E from 
the inputs. The dataset was randomly divided into two sets 
of training and testing with 67 and 17 samples, respectively.

Fig. 5   Extraction of shear behavior parameters from shear and dila-
tion curves
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Table 2   Specifications of direct 
shear tests along with measured 
values of rock joint shear 
strength

Test no. Mat. ID JRC σn (MPa) τp (MPa) δpeak (mm) d (°)

1 C1 18.9 0.57 0.67 0.42 15.9
2 C1 18.9 1.3 1.31 0.39 13.7
3 C1 18.9 2 1.67 0.35 11.3
4 C1 18.9 2.5 2.54 0.29 10.7
5 C1 4.1 0.57 0.46 0.87 3.9
6 C1 7.1 0.57 0.45 0.52 4.4
7 C1 12.4 0.57 0.45 0.48 10.6
8 C1 12.4 1.3 1.24 0.45 10.1
9 C1 7.1 1.3 1.07 0.50 3.4
10 C1 4.1 1.3 1.00 0.75 4.2
11 C1 4.1 2 0.94 0.64 0.0
12 C1 12.4 2 1.46 0.44 7.8
13 C1 7.1 2 1.05 0.48 3.6
14 C1 12.4 2.5 2.09 0.40 5.7
15 C1 4.1 2.5 1.45 0.60 0.0
16 C1 7.1 2.5 1.82 0.44 3.3
17 C3 18.9 0.57 0.68 0.61 18.2
18 C3 4.1 0.57 0.48 0.82 3.5
19 C3 7.1 0.57 0.42 0.99 4.9
20 C3 12.4 0.57 0.49 0.74 8.8
21 C3 18.9 1.3 1.03 0.48 10.0
22 C3 4.1 1.3 0.72 0.87 0.0
23 C3 12.4 1.3 0.94 0.69 7.4
24 C3 7.1 1.3 0.77 0.75 3.8
25 C3 7.1 2 1.23 0.46 2.5
26 C3 18.9 2 1.67 0.37 8.5
27 C3 12.4 2 1.37 0.40 5.7
28 C3 4.1 2 1.22 0.52 0.0
29 C2 7.1 0.57 0.40 0.70 4.9
30 C2 7.1 1.3 0.82 0.65 3.5
31 C2 18.9 0.57 0.75 0.52 15.1
32 C2 12.4 0.57 0.50 0.63 9.5
33 C2 7.1 2 1.30 0.52 2.8
34 C2 18.9 1.3 1.34 0.50 11.3
35 C2 12.4 1.3 0.92 0.60 7.6
36 C2 18.9 2 1.82 0.46 9.9
37 C2 12.4 2 1.08 0.52 6.0
38 C2 18.9 2.5 2.04 0.40 8.5
39 C2 12.4 2.5 1.44 0.40 5.0
40 C4 18.9 0.57 0.57 1.11 8.7
41 C4 12.4 0.57 0.46 0.87 5.6
42 C4 7.1 0.57 0.40 0.35 2.5
43 C4 7.1 2 1.13 0.47 0.6
44 C4 18.9 1.3 1.08 0.75 6.8
45 C4 18.9 2 1.30 0.72 4.8
46 C4 12.4 1.3 0.90 0.64 4.9
47 C4 12.4 2 1.27 0.58 3.5
48 C3 7.1 2.5 1.08 0.33 0.0
49 C3 12.4 2.5 1.42 0.40 4.3
50 C3 18.9 2.5 1.69 0.40 4.3
51 P3 4.1 0.57 0.51 0.75 2.3
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Table 2   (continued) Test no. Mat. ID JRC σn (MPa) τp (MPa) δpeak (mm) d (°)

52 P3 7.1 0.57 0.57 0.87 3.9
53 P3 12.4 0.57 0.71 0.93 8.9
54 P3 18.9 0.57 0.74 0.98 11.8
55 P3 4.1 1.3 1.05 0.62 0.0
56 P3 7.1 1.3 1.16 0.64 2.7
57 P3 12.4 1.3 1.22 0.70 6.9
58 P3 18.9 1.3 1.32 0.80 9.2
59 P3 4.1 2 1.61 0.60 0.0
60 P3 7.1 2 1.67 0.64 2.2
61 P3 12.4 2 1.85 0.70 4.9
62 P2 4.1 0.57 0.37 0.75 3.4
63 P2 7.1 0.57 0.46 0.70 4.1
64 P2 18.9 0.57 0.62 0.58 13.1
65 P2 4.1 1.3 0.84 0.64 2.7
66 P2 7.1 1.3 0.87 0.64 3.1
67 P2 12.4 1.3 1.27 0.60 6.7
68 P2 18.9 1.3 1.33 0.52 10.4
69 P2 4.1 2 1.57 0.57 2.5
70 P2 7.1 2 1.64 0.55 2.6
71 P2 12.4 2 1.83 0.46 7.4
72 P2 18.9 2 2.29 0.40 9.2
73 P1 4.1 0.57 0.39 0.52 3.9
74 P1 7.1 0.57 0.39 0.81 4.2
75 P1 12.4 0.57 0.58 0.64 10.6
76 P1 18.9 0.57 0.58 0.58 14.5
77 P1 4.1 1.3 0.64 0.55 3.1
78 P1 7.1 1.3 0.90 0.50 3.4
79 P1 12.4 1.3 1.12 0.46 9.9
80 P1 18.9 1.3 1.10 0.34 10.8
81 P1 4.1 2 1.12 0.52 0.6
82 P1 7.1 2 1.38 0.50 3.4
83 P1 12.4 2 1.61 0.44 7.8
84 P1 18.9 2 2.06 0.50 9.6

Fig. 6   Support vector regression: linear SVR (a), nonlinear SVR (b) (www.saeds​ayad.com 2018)

http://www.saedsayad.com
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Hybrid SVR‑BBO model

The generalization capability of SVR is extremely dependent 
upon its learning parameters, i.e., the regularization param-
eter C ∈

[
2−5, 215

]
 , the RBF kernel parameter � ∈

[
2−5, 23

]
 , 

and the error margin � ∈ [0.01, 0.6] , to be set correctly. Find-
ing the best combination of the hyper-parameters is often 
troublesome due to the highly nonlinear space of the model 
performance with respect to these parameters. In this paper, 
a BBO algorithm was adopted in order to improve the learn-
ing procedure of SVR through finding optimal values of its 
parameters. Figure 8 introduces the flowchart of the hybrid 
SVR-BBO model used in this study.

Preprocessing of data

In data-driven system modeling methods, some preprocess-
ing steps are commonly implemented prior to any calcula-
tions in order to eliminate any outliers, missing values, or 
bad data. This step ensures that the raw data retrieved from 
the database are perfectly suitable for modeling. In order for 
softening the training procedure and improving the accuracy 
of prediction, all data samples are normalized to adapt to the 
interval [-1, 1] according to the following linear mapping 
function:

where x is the original value from the dataset, xM is the 
mapped value, and xmin (xmax) denotes the minimum (maxi-
mum) raw input values, respectively.

(8)xM = 2

(
x − xmin

xmax − xmin

)
− 1,

Results

Parameter regularizations for running the optimization mod-
els were obtained by trial-and-error procedure (Tables 3, 4, 
5). The values of the adjusted parameters {C, �, �} producing 
maximal accuracy were considered to be the most appro-
priate values of the parameters. The best parameter values 
obtained by each model are presented in Tables 6, 7, 8. The 
optimal values were then used to retrain the SVR models.

Figures 9, 10, and 11 show the performance of the consti-
tutive model with E for the different shear behavior param-
eters in the training and testing stages. As can be seen, the 
model has provided agreeable results in both the training and 
testing phases. The performance of the model in the train-
ing phase shows its capability to capture the input–output 
patterns, and the performance at the testing phase shows the 
power of the model in facing unseen data.

Discussion

In order to better evaluate the proposed model, it was com-
pared to the well-known Barton–Bandis (BB) constitu-
tive model for rock fractures. The BB model is a series of 
empirical relationships developed to describe deformation 
and strength of rock fractures (Barton 1972, 1973, 1976; 
Bandis et al. 1981, 1983; Barton et al. 1985). The shear 
strength, peak shear displacement, and dilation angle are, 
respectively, estimated as below (Barton 1973, 1976; Barton 
and Choubey 1977; Barton et al. 1985):

(9)�p = �n tan

[
�b + JRC ⋅ log10

(
JCS

�n

)]
,

Fig. 7   Pseudo-code for BBO 
algorithm used in this study 
(after Wikipedia Contributors 
2017)
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(10)�peak =
Ln

500

(
JRC

Ln

)0.33

,

Fig. 8   Process of optimizing the 
SVR parameters by BBO

Table 3   Regulated parameters of BBO algorithm for estimation of 
shear strength

Definition Value

Number of habitats (population size) 50
Highest number of repeat algorithm steps 600
Percentage of mutation 0.11
Percentage of old population that is directly transferred to the 

new population
0.2

Table 4   Regulated parameters of BBO algorithm for estimation of 
peak shear displacement

Definition Value

Number of habitats (population size) 45
Highest number of repeat algorithm steps 700
Percentage of mutation 0.1
Percentage of old population that is directly transferred to the 

new population
0.2

Table 5   Regulated parameters of BBO algorithm for estimation of 
dilation angle

Definition Value

Number of habitats (population size) 50
Highest number of repeat algorithm steps 650
Percentage of mutation 0.09
Percentage of old population that is directly transferred to the 

new population
0.2

Table 6   Optimal parameters of SVR obtained by BBO for estimation 
of shear strength

Optimal value of σ 
parameter

Optimal value of C 
parameter

Optimal value of ε 
parameter

3.3529 2714 0.279
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where Ln is the rock fracture length which is given in meters 
as well is δpeak.

The BB model does not incorporate Young’s modulus. 
Therefore, it was compared to the SVR model developed 
without E. Figures 12, 13, and 14 show the performance 
of the BB model in comparison with the proposed model 
for predicting the different parameters. As can be seen, 
the values of root mean square error (RMSE) indicate 
significant superiority of the developed model in esti-
mating the shear strength and peak shear displacement, 
compared to the BB model. Especially, the BB model 
is unable to provide a good estimation of δpeak and to 

(11)d = 0.5JRCmob ⋅ log

(
JCSn

�n

)
,

Table 7   Optimal parameters of SVR obtained by BBO for estimation 
of peak shear displacement

Optimal value of σ 
parameter

Optimal value of C 
parameter

Optimal value of ε 
parameter

3.3539 2824 0.286

Table 8   Optimal parameters of SVR obtained by BBO for estimation 
of dilation angle

Optimal value of σ 
parameter

Optimal value of C 
parameter

Optimal value of ε 
parameter

1.3585 2722 0.151

Fig. 9   Performance of SVR constitutive model for shear strength in training stage (a) and testing stage (b)

Fig. 10   Performance of SVR constitutive model for peak shear displacement in training stage (a) and testing stage (b)
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capture the nonlinearity of the problem. However, in case 
of the dilation angle, both the models demonstrate the 
same performance.

The scale effect is beyond the scope of this research; 
therefore, the obtained results cannot be directly extended 
to large scale behavior. However, since the developed model 

Fig. 11   Performance of SVR constitutive model for dilation angle in training stage (a) and testing stage (b)

Fig. 12   Performance of BB 
model in comparison with pro-
posed model for shear strength
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Fig. 13   Performance of BB 
model in comparison with 
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is a JRC–JCS model, it can benefit from the relationships 
presented for upscaling of JRC and JCS (Bandis et al. 1981; 
Barton et al. 1985) to consider the effect of scale.

Conclusions

This research developed a constitutive model for rock dis-
continuities in which the support vector regression was used 
instead of classic techniques of regression. The model was 
established based on the results of a systematic set of 84 
direct shear tests. The efficiency of SVR in capturing the 
nonlinear behavior of rock fractures was enhanced through 
its combination with a search algorithm.

The performance of the developed constitutive model 
for estimating τp, δpeak, and d based on JRC, JCS, (E), σn, 
and ϕb was promising in spite of high nonlinearity of shear 
behavior of rock fractures. The model proved its capability 
to capture the input–output patterns, and its power when 
facing unseen data.

On the other hand, comparative investigations revealed 
that the Barton–Bandis model had a good performance only 
for estimating the dilation angle and was incapable of mod-
eling the more complicated parameters such as peak shear 
displacement. Hence, the application of computational intel-
ligence for constitutive modeling is recommended in line 
with increasing the power of computers.
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