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Abstract
Mining activities, and especially open-pit mines, have a significant impact on the Earth’s surface. They influence vegetation 
cover, soil properties, and hydrological conditions, both during mining and for many years after the mines have been deac-
tivated. Exploring a fast, accurate, and low-cost method to monitor changes, through years, in such an anthropogenic envi-
ronment is, therefore, an open challenge for the Earth Science community. We selected a case study located in the northeast 
of Beijing, to assess geomorphic changes related to mining activities. In 2014 and 2016, an unmanned aerial vehicle (UAV) 
collected two series of high-resolution images. Through the structure-from-motion photogrammetric technique, the images 
were used to generate high-resolution digital elevation models (DEMs). The assessment of geomorphic changes was carried 
out by two methodologies. At first, we quantitatively estimated the detectable area, volumetric changes, and the mined ton-
nage by using the DEM of difference (DoD), which calculated the differences between two DEMs on a cells-by-cells basis. 
Secondly, the slope local length of autocorrelation (SLLAC) allowed determining the surface covered by open-pit mining by 
using an empirical model extracting the extent of the open-pit. The analysis of the DoD allows estimating the areal changes 
and the volumetric changes. The analysis of the SLLAC and its derived parameter allows for the accurate depiction of ter-
races and the extent of changes within the open-pit mine. Our results underlined how UAVs equipped with high-resolution 
cameras can be fast, precise, and low-cost instruments for obtaining multi-temporal topographic information, especially when 
combined with suitable methodologies to analyze the surface geomorphology, for dynamic monitoring of open-pit mines.
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Introduction

Anthropogenic landscapes cover a significant extent of the 
Earth’s surface, to the point that the concept of Anthropo-
cene has been widely discussed also in geomorphology 
(Brown et al. 2017; Lewin and Macklin 2014; Tarolli and 
Sofia 2016). In many of these landscapes, the impact of 
mining activities on the geomorphic system is significant 
(Chen et al. 2015; Ellis 2011; Sofia et al. 2014; Tarolli and 
Sofia 2016). In particular, open-pit mines can influence 

vegetation cover, soil properties, and hydrological condi-
tions, by changing the surface hydrology, flow paths, and 
groundwater level (Osterkamp and Joseph 2000; Mossa and 
James 2013; Tarolli 2014). The most recent reviews (Mossa 
and James 2013; Tarolli and Sofia 2016) about mining sum-
marized four main issues related to the impact of mining 
on geomorphic systems: erosion, subsidence, hazards, and 
runoff. It is not possible to overcome these critical impacts 
in short time, as they continue even years after mining activi-
ties stopped. Even when reclaimed, the landscape is left in a 
condition hydrologically more similar to urban areas, rather 
than a natural reclaimed landscape (Tarolli and Sofia 2016). 
Mining activities always accompany human development 
and progress. In recent years, the rapid urbanisation and 
industrialization are spurring a rising demand for building 
materials, base metals, and industrial minerals (Kobayashi 
et al. 2014), and this trend will not cease by 2050 according 
to the predictions (Vidal et al. 2013). Therefore, monitoring 
of open-pit mines in anthropogenic landscapes represents a 
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challenge for better supporting a sustainable environment 
planning.

The analysis of open-pit mines through geomorphol-
ogy can improve the understanding of the mechanisms 
responsible for environmental effects, and help to find the 
most appropriate strategies for reclamation (Toy and Had-
ley 1987; Wilkinson and McElroy 2007). This monitoring 
requires a continuous assessment of the extent of the mine, 
of the surface topography, and a detection of surface changes 
that could be related to extraction activities. In the last dec-
ade, recent advances in ground-based, airborne-based, and 
remotely sensed surveying technologies, such as aerial and 
terrestrial light detection and ranging (LiDAR) and struc-
ture from motion (SfM), revolutionized the collection of 
topographic data. However, limitations arise when using 
some technologies for real-time or near-real-time monitor-
ing of open-pit mines. Ground surveys are time-consuming 
and have sparse spatial coverage (Turner et al. 2015). Ter-
restrial laser scanners have problems with inhomogeneous 
point densities and data holes in shadowed areas (Haas 
et al. 2016). LiDAR high-resolution topographic surveying 
requires traditionally high capital and logistical costs. Also, 
the spatial resolution of the majority of existing active and 
passive remote sensors is typically too coarse to create digi-
tal elevation models (DEMs) for detailed geomorphological 
applications (Westoby et al. 2012).

In recent years, the low-cost photogrammetric method 
SfM ideally suited for low-budget research and applications 
emerged as a new efficient monitoring technology (Eltner 
et al. 2016; Westoby et al. 2012). Coupled with unmanned 
aerial vehicles (UAVs), and with the developments of auto-
pilot systems, high-quality digital cameras and miniature 
GPS, it offers a perfect tool to collect ultra-high-resolution 
imagery (Colomina and Molina 2014; Lucieer et al. 2014; 
Turner et al. 2015). These advances make monitoring geo-
morphic changes through repeated topographic surveys and 
the application of morphological algorithms a tractable, 
affordable approach. By now, the scientific community, in 
general, provided different analyses on geomorphic changes 
using UAVs in various environment context (Jaakkola et al. 
2010; Niethammer et al. 2012; Westoby et al. 2012; Colo-
mina and Molina 2014; Immerzeel et al. 2014; Lucieer et al. 
2014; Turner et al. 2015; Woodget et al. 2015; Francioni 
et al. 2015; Neugirg et al. 2016; Yucel and Turan 2016; Elt-
ner et al. 2016; Fernández et al. 2016; Haas et al. 2016; Cook 
2017). Haas et al. (2016) estimated the net change in stor-
age for morphological sediment budgets; Immerzeel et al. 
(2014) monitored the Himalayan glacier dynamics; Turner 
et al. (2015) assessed landslide dynamics.

Although there are plenty of examples of UAVs and SfM 
technologies applications in geomorphology in the last few 
years, there are only a few publications related to their appli-
cability in the monitoring of surface mining. McLeod et al. 

(2013), Hugenholtz et al. (2015), Lee and Choi (2015), and 
Shahbazi et al. (2015) used UAVs to measure fracture ori-
entation in open-pit mine, calculate the earthwork volume, 
analyze details of topography, and model the mines using 
3D point clouds, respectively. Esposito et al. (2017) used 
UAV derived point clouds for multi-temporal estimation of 
the surface extent and volume changes in an open-pit mine 
in Sardinia. Francioni et al. (2015) and Tong et al. (2015) 
assessed the slope stability of an open-pit using a 3D finite 
difference method based on the 3D model derived by UAVs 
and TLS.

A further step, in term of open-pit mine analysis, was 
provided by Chen et al. (2015). That research proposed a 
useful framework to detect the extent of the open-pit, based 
on the landscape metric slope local length of autocorrelation 
(SLLAC, Sofia et al. 2014), and high-resolution topogra-
phy derived by UAV and SfM. Haas et al. (2016) provided 
a quantification and analysis of geomorphic processes of 
a cultivated iron mine on the Italian island of Elba using 
photographs from TLS and UAV over a period of 5 years.

The purpose of this contribution, starting from the out-
comes and future challenges suggested by Chen et al. (2015), 
is to establish a fast, accurate and low-cost workflow to 
assess the geomorphic changes through times. To this pur-
pose, the method is based on multi-temporal high-resolution 
DEMs derived from UAV and SfM. This methodology could 
not only to support effective management of mining but also 
sustainable environmental planning.

Study area

The Miyun Iron Mine is located in the Juge Town 
(116°58′12″E, 40°22′46″N), approximately 80 km north-
east of Beijing and about 6 km from the Miyun Reservoir, 
which is a primary source of drinking water in Beijing 
(Fig. 1) (Huang et al. 2013). The climatic conditions of the 
region are characterized by a mean annual rainfall of around 
780 mm, with main precipitation occurring during the sum-
mer period and an average temperature of 10 °C. This area 
has a long history in iron extraction. The Miyun Mine was 
founded in 1959 and became operational in 1970. It spans 
from − 40 to 240 m a.s.l., and it covers an area of about 
17 km2. This mine is one of the largest mines in Beijing 
district, reserving more than 140 million tons of iron ore, 
and it consists of two open-pit mines: Weike and Shouyun 
(referred to as Mine I and Mine II, as in Chen et al. 2015) 
represented, respectively, in Fig. 1b, c. The mine areas 
include active extraction sites (about 1.6 km2 in mine I and 
1.5 km2 in mine II), administrative areas and small villages.

Geologically, the Miyun iron deposit belongs to the Jidong-
Mihuai ore concentrated belts in the North China Craton and 
occurred in the Dacao formation of Miyun Group. The rocks 
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are mostly gneisses, pyroxenites, granulites, and magnetite 
quartzite. The metallogenic type of this mine is a volcanic-
sedimentary metamorphic type, which is an important iron 
type in the world due to its vast reserves (Zhao et al. 2014; 
Chen et al. 2016). In its early stage, activities in the mine were 
mainly underground. After more than 40 years of exploitation, 
the mine activities switched to open-pit mine in 2010. The 
natural vegetation in the study area is dominated by grass, 
about 10–30 cm high. Other vegetation types include a small 
number of isolated trees with crowns up to ~ 2 m in diameter. 
There is no vegetation and no grass within the active extrac-
tion site, the region of interest for this monitoring project. All 
these conditions offer the excellent opportunity to perform a 
UAV survey.

Methodology

Field campaigns and data acquisition

In this study, the Miyun Iron Mine was surveyed by a UAV 
during two campaigns in August 2014 (Chen et al. 2015) 
and October 2016. To minimize the sources of the error, 
we used the same UAV system: an autonomously flying 
UAV and a camera set to take photographs at a fixed inter-
val automatically. The UAV is a small, fixed-wing UAV 
(Skywalker X5, Fig. 2b), measuring 0.6 m in length and 
with a 1.2 m wings span. It can fly for up to 40 min using 
4 cell 3500 mA lithium polymer batteries, and it weighs 

Fig. 1   Location map of the Miyun Iron Mine (a) and pictures of the analyzed open-pit mines (Beijing District, People’s Republic of China): 
Mine I (b) and Mine II (c)
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about 2.5 kg. The camera used was a Sony QX100 cam-
era (20.9 M pixel resolution) (Fig. 2c) with a Carl Zeiss 
10.4–37.1 mm lens. The camera was fixed to the UAV 
using a simple homemade camera mount.

The UAV can be operated both manually by the remote 
control and autonomously by using an external PC and a 

flight plan. We designed the flight plan between 250 and 
350 m above the ground, with a minimum of 80% over-
lap for a single stripe and a 40% overlap between stripes. 
Ten flight lines were set for each of mines. Due to the time 
limitation of the UAV, the survey was planned separately 
for the two sites. Based on the fight plan, photographs were 

Fig. 2   Field campaigns and data acquisition. a The mission planning 
and location of flight, green and red point represent the trigger point 
in 2014 (Chen et al. 2015) and 2016, respectively. b The Skywalker 
X5 UAV used in this study. c Sony QX100 camera with 20.9 M pixel 

resolution. d Ground control point marked with red cloth and disk. e 
UAV photograph from the October 2016 survey; inset shows a close-
up of a GCP in the picture

Table 1   Overview of both UAV campaigns in 2014 (Chen et al. 2015) and 2016

UAV campaign Flight height 
(relative, m)

Number of 
pictures

Photointer-
val (m)

Number of 
stripes

Stripes inter-
val (m)

Overlap single 
stripe (%)

Overlap 
between 
stripes (%)

Aug. 2014 Mine I 291 437 40 8 190 81 40
Mine II 267 973 40 9 150 81 62

Oct. 2016 Mine I 353 657 40 10 150 80 52
Mine II 321 669 40 10 150 80 45
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automatically taken. Table 1 shows the detail information 
about the data acquisition.

Because the photographs from UAV are not associated 
with any position information, ground control points (GCPs) 
are required for both relative and absolute topographic 
accuracy (Cook 2017). For this research, red targets with 
a centrally located reflector (of about 50 cm, Fig. 2d) were 
distributed over the Mine to serve as GCPs. In August 2014 
Chen et al. (2015) considered 8 GCPs for Mine I and 9 GCPs 
for Mine II; in October 2016, we used 28 GCPs for Mine I 
and 7 GCPs for Mine II (Table 2). The location of the GCPs 
was measured using a dual-frequency RTK DGPS, providing 
GCP coordinates with an absolute accuracy of 0.02–0.04 m. 
The dual-frequency RTK DGPS was used to enhance the 
GPS reading accuracy of coordinates measurements.

Digital elevation model generation

The UAV-collected photographs were processed to obtain 
orthophotographs and DEMs using the standard SfM work-
flow (Immerzeel et al. 2014). Some SfM software packages 
are nowadays available, free or commercial (James and Rob-
son 2012; Hsieh et al. 2016; Messinger et al. 2016). For this 
study, we applied the Agisoft PhotoScan® software pack-
age (version 1.2.5, build 2594, http://www.agiso​ft.com/). A 
general overview of the SfM procedure with PhotoScan is 
described in (Verhoeven 2011). Briefly, this procedure com-
prises four main steps: (1) Image alignment, by identification 
of images with common features, solving camera position 
and reconstructing 3D scene with no information about 
the spatial scale; (2) Georeferencing, by using the GCPs 
to improve the absolute accuracy of the bundle adjustment 
and the 3D model; (3) Optimization of image alignment; 
(IV) Dense geometry reconstruction. By this last step, it is 
possible to export both an orthophotograph for a visual inter-
pretation/validation of the results and a dense point clouds 
for the subsequent processing steps. The software reports the 
number of tie points, ground resolution and georeferentiation 
errors obtained by the SfM methodology (Table 2).

The point clouds were further processed using the open 
source program CloudCompare® (http://www.danie​lgm.net/
cc/), to remove the additional noise. In this study, a filter 
automatically removed positive and negative outlier points 

in CloudCompare®. Further, points clearly outside the range 
of the elevation values of the mine sites were cleaned manu-
ally. Since a separate workflow georeferenced each survey, 
it was necessary to co-register the datasets to allow a multi-
temporal analysis and to evaluate correctly any change. To 
this point, within CloudCompare®, each pair (for the two 
surveys) of cleaned point clouds was run with an Iterative 
Closest Point (ICP) algorithm to estimate the transforma-
tion matrices, which include rotational parameters, transla-
tion and scale parameters. Each pair of cleaned point clouds 
(from which the DEMs are created) was co-registered in 
CloudCompare® using the co-registration matrices. The 
final co-registered point clouds offered then the basis for 
the creation of high-resolution (1 m) DEM, based on the 
natural neighbors interpolation algorithm (Sibson et al. 
1981) (Fig. 3).

An assessment of the geometric accuracy was carried out 
for the two DEMs (for 2014 survey, the readers should refer 
to Chen et al. 2015). Vertical accuracy of a flat unchanged 
area was assessed by the use of the RMSE (root mean 
squared error) considering about 30 checkpoints for each 
mine. The result shows that the vertical accuracy of DEMs 
ranges from 0.053 up to 0.055 m, an acceptable error for 
the geomorphic analysis and in line with previous works on 
UAV and SfM (Chen et al. 2015; Haas et al. 2016). Using 
the stable area approach that will be explained in the next 
subsection, we evaluated the co-registration errors (Westa-
way et al. 2000). Table 2 reports the georeferentiation and 
co-registration errors.

DEM of difference (DoD)

The DoD approach subtracts an earlier terrain elevation from 
a later one, by keeping into account uncertainty (denoted as 
�z ) of the DEMs themselves. The components of �z include 
measurement errors, sampling bias, and uncertainties due to 
interpolation methods among others (Wheaton et al. 2010).

For a quantification of the error in DEMs, we assume 
that the errors of the grid cells follow a normal distribu-
tion with a mean of zero. Therefore, the overall DEM error 
can be expressed by the standard deviation (Haas et al. 
2016). Brasington et al. (2003) showed that the propagated 

Table 2   Report about the 
number of tie points, ground 
resolution, georeferentiation 
errors and co-registration errors

UAV campaign Tie points Ground 
resolution 
(m)

GCPs (m) XY error (m) Z error (m) Co-registra-
tion error 
(m)

Mine I Aug-14 382,238 0.064 8 0.069 0.059 0.523
Oct-16 585,257 0.056 28 0.058 0.055

Mine II Aug-14 399,131 0.081 9 0.054 0.059 0.373
Oct-16 677,083 0.072 7 0.083 0.053

http://www.agisoft.com/
http://www.danielgm.net/cc/
http://www.danielgm.net/cc/
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Fig. 3   Digital elevation models (DEMs) at 1 m resolution and mining 
area (extract from orthophotograph). DEM of a Mine I and c Mine II 
generated from the August 2014 survey (Chen et al. 2015); DEM of 

b Mine I and d Mine II generated from the October 2016 survey; yel-
low arrow marked the changed extent
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uncertainty ( �DoD ) into the DoD can be calculated using a 
Gaussian error propagation as:

where �znew and �zold are the individual errors in DEMnew 
and DEMold , respectively. We assumed that the DoD uncer-
tainty is spatially uniform, and this allows estimating the 
total volumetric error of all n raster cells with cell size c in 
the DoD (Lane et al. 2003).

In standard DoD analysis using SfM, the use of spa-
tially uniform uncertainty is typical, to distinguish real 
changes from noise (Brasington et al. 2000; Lane et al. 
2003; Wheaton et al. 2010; Prosdocimi et al. 2016; Haas 
et al. 2016; Sofia et al. 2017). A key limitation of this 
approach is that the error statistic is averaged across the 
whole surface. This practice may result in under- and/or 
overestimates of elevation changes in some parts of the 
DEM. However, while this is of crucial significance in sit-
uations when changes are very subtle in nature, this is suit-
able if the signal-to-noise ratio is very high (Passalacqua 
et al. 2015), such as the case of this study or other studies 
in mining research (Haas et al. 2016). In this case, the 
dataset is used to differentiate target features on the order 
of tens of meters in height, and thousands of m2 in width, 
compared to an error of ~ 0.5 m. Furthermore, given the 
acquisition parameters for the surveys, and the DEM gen-
eration approach, the assumption of uniform uncertainty is 
reasonable. To refine the DoD uncertainty, the most com-
monly adopted procedure involves specifying a level of 
detection (Lod) to distinguish the real geomorphic changes 
from noise (Lane et al. 1994, 2003; Brasington et al. 2003; 
Bennett et al. 2012; Turner et al. 2015). Elevation changes 
that are beneath the detection limit (Lod) are typically 
discarded. Meanwhile, those that are above it are treated 
as real (Prosdocimi et al. 2016).

Brasington et al. (2003) and Lane et al. (2003) show how 
probabilistic thresholding can be carried out with a user-
defined confidence interval. The absolute value of each grid 
cell in the DoD ( ||Znew − Zold

|| ) is related to �DoD to calculate 
a t score. Then, the probability can be calculated by relating 
the t-statistic to the cumulative distribution function of a t 
score (Wheaton et al. 2010).

In Eq. (3), the �DoD can be estimated by using the stable area 
approach, and the stable areas are selected from two periods 
of orthophotograph very carefully. The standard deviation 

(1)�DoD =

√(
�znew

)2
+
(
�zold

)2

(2)�DoD

√
nc2

(3)t =
||Znew − Zold

||
�DoD

.

of the original DoD cells in these stable areas represents the 
value �DoD from Eq. (2) (Westaway et al. 2000).

In this study, we considered as error the co-registration 
error of each DEM, and we used a probabilistic thresholding 
method, with a confidence interval of 95%. We calculated 
the geomorphic changes by using the Geomorphic Change 
Detection 6 (GCD 6) toolbar embedded in ArcGIS 10.3, 
freely downloadable from http://gcd.joewh​eaton​.org/downl​
oads. We analyzed the DoD in the mining areas (extract from 
the aerial photographs) because vegetation and buildings are 
present in the area outside the mine, which will influence the 
accuracy of DEMs. Also, two big holes filled with water in 
Mine I (Fig. 6a) were masked for the DoD.

Slope local length of autocorrelation (SLLAC)

Unlike natural geomorphic processes, the work done by 
humans is focused in specific locations with well-defined 
intent (Ghosh et al. 2015). In particular, the open-pit mine 
has a significant characteristic of anthropogenic topographic 
signatures (e.g., well-organized bench and terraced wall). 
The second indicator used to analysis the multi-temporal 
UAV data was the slope local length of autocorrelation 
(SLLAC) proposed by Sofia et al. (2014), which was suc-
cessfully applied in mining landscape in Chen et al. (2015). 
The SLLAC metric quantifies the local self-similarities of 
slopes based on a 2D cross-correlation between a slope 
patch and its surrounding areas (Tarolli and Sofia 2016). 
The SLLAC calculation begins with a slope map derived 
from the DEM, by computing the slope as a derivative of the 
biquadratic function proposed by Evans (1980). A moving 
window (kernel) approach is then used in the subsequent 
steps (Fig. 4).

Step one, we calculated the correlation R (Fig.  4b) 
between a slope template (T in Fig. 4a) and its neighbouring 
area (W in Fig. 4a), by using the formula (Eq. 4) described 
in (Haralock and Shapiro 1991; Lewis 1995):

Assuming a kernel W having a size M ×M , and a slope 
template T of size N × N (Fig. 4), indices (i, j) are the row 
and column position of each pixel within the W and they are 
valid in 1 ⩽ i ⩽ (M − N) and 1 ⩽ j ⩽ (M − N) , while indices 
(u, v) run across 1 ⩽ u ⩽ N  and 1 ⩽ v ⩽ N  , w̄ is the local 
mean slope of the kernel W underneath the slope patch T 
whose top left corner lies on pixel (i, j), and T̄  is the mean 
value of the slope patch.

As a second step, the procedure identifies the character-
istic length of correlation, by choosing by definition 37% of 

(4)R(i,j) =

∑
u,v

�
w(i+u,j+v) − w̄i,j

��
Tu,v − T̄

�

�∑
u,v

�
w(i+u,j+v) − w̄i,j

�2 ∑
u,v

�
Tu,v − T̄

�2�0.5
.

http://gcd.joewheaton.org/downloads
http://gcd.joewheaton.org/downloads
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the maximum correlation value as a threshold according to 
ISO standards (ISO 2013). As shown in Fig. 4c, the correla-
tion length is the longest line passing through the central 
pixel, and that connects two boundary pixel in the extracted 
area. In this study, we applied the kernels identified in (Sofia 
et al. 2014; Chen et al. 2015). (100 m × 100 m for the moving 
window and 10 m × 10 m for slope template).

After that, the SLLAC map is produced. For further anal-
ysis, the Spc (surface peak curvature) parameter was used 
to uniquely characterize the SLLAC map (Stout 2000). The 
Spc is defined as for every peak:

A peak is defined as a pixel where all eight surrounding pix-
els are lower in value, n is the number of peaks automatically 
identified within a map, z corresponds to the SLLAC value, 
and x and y represent the cell spacing (Stout 2000).

Chen et al. (2015) developed a polynomial approach 
defining a specific relationship between theSpc and the 
extent of anthropogenic surface within the analyzed area, 
that follows equation

where Art% is the percentage of anthropogenic extent, Spc 
comes from Eq. 5 and j1–j4 are empirically derived coef-
ficients with values 2.402e + 07, − 2.892e+06, 1.087e+05, 
and − 1209 respectively.

From a geomorphometric and geomorphologic per-
spective, the core idea behind the SLLAC is that human 

(5)Spc = −
1

2n

n∑

i=1

(
�
2z(x, y)

�2x

)

+

(
�
2z(x, y)

�2y

)

.

(6)Art% = j1Spc
3 + j2Spc

2 + j1Spc + j4,

structures and activities lead to more organized and uni-
form slopes within a neighborhood, rather than natural 
processes, so slope values are locally highly correlated 
(longer correlation length). Such correlation is highly 
organized in space (low Spc, Eq. 5) (Sofia et al. 2016), 
and this different organization of the topography can be 
empirically related to the amount of human-made altera-
tions to the terrain (Chen et al. 2015). It is, therefore, pos-
sible to automatically track changes in the extent of the 
mines during time using the polynomial approach.

Further, in this study, we considered m-times the stand-
ard deviation of the SLLAC ( �SLLAC ) as the threshold for 
the recognition of the mining area. To assess the quality 
of the automatic extraction of the mining area, we used a 
quality index (Heipke et al. 1997).

where true positive (TP) represents the extracted pixels that 
are within the mining area; false positive (FP) represents 
the extracted pixels that lie outside the mining area; false 
negative (FN) represents the pixels within the mining area 
that are not extracted.

(7)Q =
TP

(TP + FP + FN)

Fig. 4   An example of the calculation of SLLAC for a single moving 
window (W). a For each moving window (W), a slope template T is 
identified, having the center at the center of W. The cross-correlation 
between T and W is computed (b). The resulting map is thresholded 
at 37% of its maximum value (c). The length of correlation is then the 

length of the longest line passing through the central pixel (blue dot) 
and connecting two boundary pixels in the extracted area connected 
to the central pixel. (The figure is modified, and simplified from Chen 
et al. 2015)
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Result and discussion

DoD analysis

Figure 5 shows the obtained DoD map and the histogram 
of areal and volumetric elevation change distributions 
(ECDs) for the two mines.

In Eq. (3), the �DoD can be estimated by using the sta-
ble area approach (the �DoD for Mine I is 0.523 m, and 
for Mine, II is 0.373 m). Figure 5a and Fig. 5b refer to the 
thresholded DoD map according to a spatially uniform 
Lod (Lod = 0.129 m for Mine I, Lod = 0.094 m for Mine 
II). The elevation changes range between 45 to − 49 m for 
mine I and between 25 to − 83 m for mine II.

The main extraction areas are distributed in the central 
part of Mine I (Fig. 5c), and the southeastern part of Mine 
II (Fig. 5d). The elevation changes in this area of Mine 
I range between − 20 to − 40 m. The average elevation 
change in the specific area of Mine II is about − 70 m: 
this location witnessed the creation of well-organized ter-
raced walls. These volumetric changes mainly represent 
the extracted ore. For Mine I, the main accumulation areas 
are located in the southeast part (Fig. 5e), which is the 
tailings dump. The elevation changes in this area range 
between 20 to 40 m. For Mine II, the main accumulation 
areas are in the central and north-western part, and they 
do not refer to a specific tailing dump. In these accumula-
tion areas, the volumetric changes mainly represent the 
increase of the tailings in the two considered years.

The areal elevation change distributions (ECDs) are his-
tograms showing the total area experiencing a given mag-
nitude of elevation change in each bin, and the volumetric 
ECDs reflecting the area multiplied by the magnitude of 
elevation change (Wheaton et al. 2010). The areal ECDs 
(Fig. 5f, h) have a high peak roughly corresponding to an 
elevation change of 0 m, but they are mostly asymmetrical. 
Mine I appears more balanced than Mine II, comparing 
their accumulation and extraction (45 to − 49 m for Mine 
I and 25 to − 83 m for Mine II). Mine I has a second peak 
around − 30 m and a third peak about − 40 m (Fig. 5f). 
Mine II has a series of small peaks (such as − 14, − 23, 
− 68 m). These peaks have highly correlated with the pro-
cedure of open-pit mining. This is because, during the 
extraction procedure, the bench of the pit was generated 
with 10–15 m high. The volumetric ECDs dramatically 
amplified the peaks far away from zero and reduced the 
peaks near zero, because these are multiplied by different 
elevation changes (Fig. 5g, i). Due to discarding DoDs 
whose elevation changes are beneath the detection limit 
(Lod), there is some information lost in the DoD map. 
The yellow and green histograms represent the discarded 
information of extraction and accumulation, respectively.

Table 3 reports the areal and volumetric DoDs, the mined 
ore tonnage, and the tailings tonnage for the two mines.

These results prove in quantitative terms what emerged 
visually from Fig. 5. We can calculate the loss of infor-
mation by subtracting the LoD from the Raw in Table 3. 
In this regard, the change of area for Mine I is 75,835 m2 
(35,657 m2 for the extraction area, and 40,178 m2 of the 
accumulation area), and for Mine, II is 69,975 m2 (34,897 m2 
for extraction area, and 35,078 m2 for accumulation area).

The DoDs of two mines entail a net negative volume, 
which is in line with the fact that the two mines remained 
active during these 2 years. The geomorphic changes could 
be used to quantitative assessments of the mined tonnage 
and the tailings tonnage. The extraction volume mainly rep-
resents the volume of the extraction ore, which if multiplied 
by the average ore-bearing rate, density and ore grade could 
represent the mined ore tonnage. Similarly, we can estimate 
the tailings tonnages by using the accumulation volume mul-
tiplies the density of residues. For example, we estimated 
the mined tonnage and the tailings tonnage (Table 3) by the 
related parameters (the average of ore-bearing rate of about 
20%; the average ore grade of about 30%; the average den-
sity of iron ore of about 4 t/m3, and the density of tailings 
of about 2.5 t/m3). As to the volume errors, Mine II show 
smaller errors than Mine I. This is because Mine II has a 
smaller Lod and detectable area.

SLLAC analysis

Figure 6 shows the SLLAC map obtained from UAV DEMs 
for the two mines in 2014 and 2016.

As we can see, the SLLAC map texture is characterized 
by the elongated elements, defined as fibers in Sofia et al. 
(2014). These fibers are mainly located within the mining 
area, and a higher degree of order is visible corresponding 
to the terraces walls. Moreover, the higher the Spc, the lower 
the area within the study site covered by terraces (Sofia et al. 
2014; Chen et al. 2015). In this regard, the two mines have 
a Spc of 0.038 m−1 (Mine I) and 0.039 m−1 (Mine II) in 
2014, and 0.037 m−1 (Mine I) and 0.038 m−1 (Mine II) in 
2016. By using the polynomial approach (Chen et al. 2015), 
the terraced surface increased from 63 to 70% for mine I, 
and from 56 to 63% for mine II. It means an increase of 
mining areas about 0.24 km2 for Mine I and 0.21 km2 for 
Mine II. However, the areal changes do not come only from 
the open-pit mine itself, when comparing the mining areas 
extract from the orthoimages. The yellow arrow marked 
the modified area of the open-pit mine in Fig. 6, and we 
can measure a total mining area changes of about 0.07 km2 
for both mines. Other anthropogenic elements (roads and 
buildings) contribute to creating fibers on the SLLAC. Thus 
they are included in the Spc evaluation. For example, in the 
northeastern part of Mine II, there is some highway captured 
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by the DEM that represents high SLLAC value (Fig. 6c, d). 
Another example is the southeastern part of Mine I; there 
are buildings and roads that belong to the company (Fig. 6a, 
b). By including all of the anthropogenic surfaces, the result 
of the empirical model is in line with the resulting extract 
from the orthoimage (Chen et al. 2015). Figure 7 shows the 
boxplot of SLLAC values considering the area inside the 
mine as compared the area outside the pit for mining sites I 
and II in 2014 and 2016.

As we can see, the difference of SLLAC is evident in 
both mines, for both time frames. It is clear that areas 
within the mines have a higher mean SLLAC if compared 
to areas outside. For Mine I, the median SLLAC within the 
mined area is 43.43 m in 2014 and 38.63 m in 2016, and the 
median value outside the mined area is 9.22 m in 2014 ver-
sus 11.72 m in 2016. For Mine II, the inside median SLLAC 
is 35.17 m in 2014 versus 34.02 m in 2016, while the outside 
median value is 12.19 m in 2014 and 7.29 m in 2016, respec-
tively. Also, areas within the mine have a higher SLLAC 
variability than the area outside the pit, as represented by 
the IQR box in the boxplot. In this regard, for the Mine I, 
the IQR of areas in mine varies from 55.25 m in 2014 to 
55.78 m in 2016, while the outside IQR is 18 m in 2014 and 
20.75 m in 2016. For the Mine II, the inside IQR varies from 
47.21 m in 2014 to 55.22 m in 2016, while the outside IQR 
is 21.01 m in 2014 and 14 m in 2016. The reason for these 
differences is that the mining area has a well-organized ter-
raced wall and different physical lengths. In contrast, vegeta-
tion and buildings create small and scattered shapes in the 
area outside the mine.

Considering the change of SLLAC from 2014 to 2016, for 
the area within the Mine I, the median of SLLAC decreased. 
This is because there were no terraces built in main extrac-
tion area (Fig. 9c, d). Instead, the increasing water levels 
detract the original terraced wall (Fig. 6a, b). The IQR and 
median of SLLAC of outside the Mine I increased, because 
there are some road and buildings in the south part of Mine I 
captured by the DEM. For the Mine II, the SLLAC of inside 
mine seems few changes, but the IQR and median of SLLAC 
of outside decreased, this is because the expanded boundary 
of mine reduced the noise related to the road (yellow arrow 
in Fig. 6d).

Figure 8 shows the extraction result by using m-times 
standard deviation as the threshold and the quality index (Q).

As we can see, with the increase in m, the Q becomes 
smaller. However, by using only one time the standard 

deviation, the extraction appears very noisy. On the other 
hand, not enough information is left to depict the bound-
ary of the mine by using three times the standard devia-
tion. When using the 1.5–2.5 times standard deviation as 
the threshold, the extent of the mining area is correctly 
extracted. For Mine I, because there are too many road 
and buildings in the south part, the optimum extraction is 
obtained by using 2.5 (or 2) times the standard deviation as 
a threshold to reduce the noise. For Mine II, some similar 
results are obtained applying 1.5 (or 2) times the threshold. 
Therefore, we recommend 2 times the standard deviation of 
SLLAC as an indicative measure to extract the extent of the 
open-pit mine.

Discussion

Considering the results obtained with the DoD and SLLAC 
(see Fig. 9 for details), we can affirm that both of them are 
robust method to detect the geomorphic changes in open-pit 
mining and to monitor the whole mining production process, 
when remote sensing multi-temporal data (e.g., UAV sur-
veys) are available. Comparing to the previous works about 
the quantification and analysis of geomorphic processes 
in mining areas, some similarities and differences arises. 
This research is using multi-temporal SLLAC to automati-
cally detect the extent of the mine, both in terms of cover-
age (through the Spc approach), and in terms of location of 
the terraces (through the thresholding approach). Previous 
works in the literature (e.g., Haas et al. 2016; Esposito et al. 
2017) estimated the volumetric changes in the mines, but the 
approach was not automatic.

The DoD is an already established method in literature, 
while the SLLAC is an approach proposed to characterize 
surface morphologies (Sofia et al. 2014) for agricultural ter-
races detection. We can summarize advantages and critical 
issues of the two methods as follows:

•	 Consistency The main changed surfaces are related to the 
high value of DoD and SLLAC changes. However, the 
two metrics are not correlated. For example, the change 
of SLLAC appears to be small in the central part of the 
changed areas. This is because terraces are always dis-
tributed around the mining area, rather than in the flat 
part at the center of the mining area.

•	 Changes Given multi-temporal DEMs, the SLLAC could 
calculate the areal changes of the open-pit by extracting 
its extent. The Spc could estimate the areal change of the 
anthropogenic surface by using the polynomial approach. 
The DoD could calculate the volumetric changes, while 
the areal change of DoD means the detectable area (ele-
vation change beyond the Lod). Indeed, the SLLAC is 

Fig. 5   DEMs of difference (DoD) for the period from 2014 to 2016. 
a, b Thresholded DoD according to Lod; c, d main production areas 
for Mine I and II: e a tailings dump for Mine I: f, h areal ECDs for 
Mine I and Mine II; g, i volumetric ECDs for Mine I and Mine II; 
yellow arrow marked the changed extent; the yellow and green histo-
gram represent the discarded information

◂
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Table 3   Report about the areal and volumetric DoD, the mined ore tonnage and the tailings tonnage for two mines

Raw represent unthresholded DoD

Attribute Mine I Mine II

Raw Thresholded Error Raw Thresholded Error

Extraction area (m2) 685,087 649,430 NA 911,034 876,137 NA
Accumulation area (m2) 831,600 791,422 NA 550,494 515,416 NA
Change of area (m2) 1,516,687 1,440,852 NA 1,461,528 1,391,553 NA
Extraction volume (m2) 9,188,963 9,186,694 ± 83,582 13,974,619 13,973,070 ± 78,852
Accumulation volume (m2) 3,093,291 3,090,662 ± 101,856 1,129,807 1,128,240 ± 46,387
Total net volume (m2) − 6,095,672 − 6,096,032 ±131,759 − 12,844,812 − 12,844,831 ± 91,485
The mined ore tonnage (t) 2,205,351 2,204,806 ± 20,060 3,353,908 3,353,537 ± 18,924
The tailings tonnage (t) 7,733,227 7,726,655 ± 254,640 2,824,517 2,820,600 ± 115,967

Fig. 6   SLLAC maps for mining sites I and II in 2014 and 2016. Mine I SLLAC: a in 2014 and b in 2016; Mine II SLLAC: c in 2014 and d in 
2016; yellow arrow marked the changed extent
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able to detect the geomorphic changes in the horizontal 
direction and the DoD in the vertical direction.

•	 Accuracy The SLLAC is easily influenced by anthropo-
genic elements in general (roads, buildings, etc.), and the 
accuracy of the extracted extent of about 28–35% (using 
2 times the standard deviation as a threshold, Fig. 8). 
This value is, however, higher than other works dealing 
with feature extractions in other contexts (Tarolli et al. 
2012; Sofia et al. 2016). The error of DoD comes mainly 
from the uncertainty in the DEM and the co-registration 
error. The percentage of volumetric error is about 1–4% 
(Table 3).

Summarizing, SLLAC could be used to extract the extent 
of open pit, due to its sensitiveness to the terraced walls, 
which are always located around the open pit. The Spc helps 
to provide a suitable estimation of the percentage of the 
anthropogenic surface by using the polynomial approach, 
proposed by Chen et al. (2015). While such extraction is 
affected by some noise due to other anthropogenic features 
that could be present on the surface (e.g., roads), it can be 
useful for large-scale analysis where the purpose is to ana-
lyze the topographic signature human activities (Tarolli 
et al. 2017). A 2D automatic classification of features from 
a purely computational point of view, might be achieved in 
multiple ways, and the use of remote sensing in mining areas 
has been widely used to characterize land cover changes 
(Esposito et al. 2017), using methods that include change 
detection algorithms from imagery, and compound analyses, 
e.g., (Townsend et al. 2009; Asner et al. 2013). Other detec-
tion algorithms also exist in the literature, for different tar-
get objects (e.g., roughness analysis, or geostatistics). How-
ever, these classifications produce classes of homogeneous 

identities that do not necessarily refer to useful information 
(such as specific land uses). Thus expert criteria are needed 
(interpretation of the results) to identify further which class 
corresponds, for example, to the mining area. As well, the 
presence of vegetation and other objects on the surface may 
degrade the DEM for the purpose of identifying a specific 
feature. The SLLAC and the derived Spc allows to quantify 
directly a percentage of anthropogenic surface, and this has 
been tested in multiple natural Vs. artificial landscapes, thus 
it is more robust and objective. On the other hand, within the 
mining area, the DoD can provide a detailed quantification 
of areal and volumetric changes by subtracting an earlier 
terrain elevation from a later one. The usefulness of DoD for 
geomorphic change detection is a confirmation on what the 
Earth science community has been highlighting in the last 
few years: the importance of using multi-temporal DEMs. 
Respect to other works (Esposito et al. 2017; McLeod et al. 
2013; Hugenholtz et al. 2015; Lee and Choi 2015; Shahbazi 
et al. 2015), using a DEM approach is quicker, and easier 
to handle than using point clouds. As well, the high number 
of values in a point cloud does not necessarily define a bet-
ter topographic information respect the 2.5D information 
contained in a DEM. With the progressive advances and 
improvements of remote sensing techniques, multi-temporal 
analysis of Earth surface processes and their quantification 
using DEM, among other approaches, will be one of the 
Earth science challenges in the future (Tarolli 2014).

This work, Esposito et al. (2017), focuses on changes 
due to mechanisation and human activities, rather than 
to natural processes, and we underlined an extension and 
deepening of the mining areas during the years. As found 
in (Hu et al. 2017) deformation in the local mining area 
can expand to the surrounding areas. Our results suggest 

Fig. 7   A boxplot of SLLAC values considering the area inside the mine as compared the area outside the mine in 2014 and 2016. a Correspond 
to Mine I and b refer to Mine II
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that acute deformation such as large movements of mate-
rials is greater in magnitude, with respect to the material 
moved by natural erosive/depositional processes in aban-
doned mines. These large-scale changes can be automati-
cally monitored using DSMs derived from SfM. (Hancock 
et al. 2006, 2008; Haas et al. 2016) highlighted how geo-
morphic processes in closed mines lead not only to high 
amounts of erosion and deposition, but also to changes 
in the hydrological conditions. To add to these results, 
this research shows that a careful scrutiny of the human-
induced changes is critical and should be used as a basis 
to predict further changes to processes, to prevent possible 
damages or disasters caused by ground deformation.

Final remarks

Open-pit mining has a significant influence on the environ-
ment. This contribution provides a useful framework for 
monitoring open-pit mines and for a better understanding 
of mining environmental effects. It could also be useful 
for a sustainable environmental planning. Two open-pit 
mines near Beijing (People’s Republic of China) were 
considered as study areas. The analysis demonstrated that 
unmanned aerial vehicle (UAV), as a robust and low-cost 
technique, could be used routinely to collect a substantial 
time series of data, and to generate, using structure from 

Fig. 8   Areas having correlation lengths larger than m standard deviation of SLLAC for mining sites I and II in 2014 and 2016 (m represent the 
m-times standard deviation; Q represent the quality index)
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motion photogrammetry, accurate DEMs to monitor the 
open-pit mine. While this result should be obvious looking 
at the recent literature on the application of UAV, the real 
achievement of this study was the geomorphic changes 
analysis and their quantification using two methodologies: 
DoD (DEM of Difference) and SLLAC (slope local length 
of autocorrelation). The analysis of the DoD, a well-estab-
lished method in the Earth science community, allowed 
for the areal changes and the volumetric changes. This 
information should help mining companies to do thought-
ful planning for production and environmental recovery. 
The analysis of the SLLAC and its derived parameters 
(Spc, Surface Peak Curvature) allows for a detailed depic-
tion of terraces, and of the extent of the open-pit mine. 
Other geomorphometric approaches (e.g., local spectral 
analysis, wavelets, and image texture approaches) might 
be followed for a 2D identification of the mine extent; 
however, they require expert criteria (interpretation of the 
results) to fully identify the feature of interest. The SLLAC 
and the derived Spc allow to quantify directly a percentage 

of anthropogenic surface and thus is suitable for a quick 
estimate over time. Also, due to the ability of the SLLAC 
to detect the terraces, it could be used for future monitor-
ing of the stability of terraces within the mines, without 
requiring additional datasets (e.g., imagery, other geomor-
phic parameters). Once the hazards happen (e.g., slope 
failure), we can quickly detect it. The step forward for this 
work will involve continuous improvement of the accu-
racy, e.g., the accuracy of DEMs and co-registration, and 
also the accuracy of auto-extracting the extent of the min-
ing area.

The methodology described in this paper advances the 
knowledge in that it offers a convenient tool to assess the 
open-pit mine’s state rapidly and efficiently. This tool makes 
it possible to get high-resolution topographic information 
during the entire mine’s life. Based on this information and 
the application of the DoD and SLLAC, it is possible to 
understand in details of the morphological dynamics of a 
mine’s life. Therefore, this could provide a substantial time 
series datasets (such as orthophotograph, DEM, geomorphic 

Fig. 9   Details of the DoD and SLLAC in the areas subject to terrain extraction and accumulation. a–e Terrain extraction area of Mine I; f–j ter-
rain accumulation area of Mine I; k–o terrain extraction area of Mine II
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changes), which could be used to support sustainable envi-
ronmental planning and/or to mitigate the consequences of 
anthropogenic alterations due to mining.

Acknowledgements  The author would like to acknowledge the Miyun 
mine company for their cooperation, and we would like to thank Zhen 
Yanwei for manipulation of UAV, Zheng Yongxin, Lai Zili and Huang 
Haozhong for assisting with the processing of the data. The technical 
support for the UAV 2014 survey was provided by Sky View Technol-
ogy Co., Ltd. (Taiwan). This research was financially supported by 
the National Key Technology Research and Development Program of 
the Ministry of Science and Technology of China (2006BAB01A01), 
Joint Evaluation of Geological Hazards in Beijing by Beijing Educa-
tion Commission (2015282-49), and China MOST project “Method 
and model for quantitative prediction of deep geologic anomalies” 
(2017YFC0601502). The algorithms used in this works were elabo-
rated and tested by the digital terrain analysis research group at Uni-
versity of Padova (Italy), and supported by the grant 60A08-5455/15 
“the analysis of the topographic signature of anthropogenic processes”.

References

Asner GP, Llactayo W, Tupayachi R, Luna ER (2013) Elevated rates 
of gold mining in the Amazon revealed through high-resolution 
monitoring. Proc Natl Acad Sci USA 110:18454–18459. https​://
doi.org/10.1073/pnas.13182​71110​

Bennett GL, Molnar P, Eisenbeiss H, Mcardell BW (2012) Erosional 
power in the Swiss Alps: characterization of slope failure in the 
Illgraben. Earth Surf Process Landf 37:1627–1640. https​://doi.
org/10.1002/esp.3263

Brasington J, Rumsby BT, McVey RA (2000) Monitoring and model-
ling morphological change in a braided gravel-bed river using high 
resolution GPS-based survey. Earth Surf Process Landf 25:973–
990. https​://doi.org/10.1002/1096-9837(20000​8)25:9<973:AID-
ESP11​1>3.0.CO;2-Y

Brasington J, Langham J, Rumsby B (2003) Methodological sensitivity 
of morphometric estimates of coarse fluvial sediment transport. 
Geomorphology 53:299–316

Brown AG, Tooth S, Bullard JE et al (2017) The geomorphology of 
the Anthropocene: emergence, status and implications. Earth Surf 
Process Landf 42:71–90. https​://doi.org/10.1002/esp.3943

Chen J, Li K, Chang KJ et al (2015) Open-pit mine geomorphic changes 
analysis using multi-temporal UAV survey. Int J Appl Earth Obs 
Geoinf 42:76–86. https​://doi.org/10.1016/j.jag.2015.05.001

Chen J, Xiang J, Hu Q et al (2016) Quantitative geoscience and geolog-
ical big data development: a review. Acta Geol Sin 90:1490–1515. 
https​://doi.org/10.1111/1755-6724.12782​

Colomina I, Molina P (2014) Unmanned aerial systems for photogram-
metry and remote sensing: a review. ISPRS J Photogramm Remote 
Sens 92:79–97. https​://doi.org/10.1016/j.isprs​jprs.2014.02.013

Cook KL (2017) An evaluation of the effectiveness of low-cost UAVs 
and structure from motion for geomorphic change detection. 
Geomorphology 278:195–208. https​://doi.org/10.1016/j.geomo​
rph.2016.11.009

Ellis EC (2011) Anthropogenic transformation of the terrestrial bio-
sphere. Philos Trans A Math Phys Eng Sci 369:1010–1035. https​
://doi.org/10.1098/rsta.2010.0331

Eltner A, Kaiser A, Castillo C et  al (2016) Image-based surface 
reconstruction in geomorphometry-merits, limits and develop-
ments. Earth Surf Dyn 4:359–389. https​://doi.org/10.5194/esurf​
-4-359-2016

Esposito G, Mastrorocco G, Salvini R et  al (2017) Application 
of UAV photogrammetry for the multi-temporal estimation 

of surface extent and volumetric excavation in the Sa Pigada 
Bianca open-pit mine, Sardinia, Italy. Environ Earth Sci 76:103. 
https​://doi.org/10.1007/s1266​5-017-6409-z

Evans IS (1980) An integrated system of terrain analysis and slope 
mapping. Z Geomorphol 36:274–295

Fernández T, Pérez JL, Cardenal J et al (2016) Analysis of land-
slide evolution affecting olive groves using UAV and photo-
grammetric techniques. Remote Sens 8:837–865. https​://doi.
org/10.3390/rs810​0837

Francioni M, Salvini R, Stead D et al (2015) An integrated remote 
sensing-GIS approach for the analysis of an open pit in the Car-
rara marble district, Italy: slope stability assessment through 
kinematic and numerical methods. Comput Geotech 67:46–63. 
https​://doi.org/10.1016/j.compg​eo.2015.02.009

Ghosh R, Chakraborty D, Halder M, Baidya TK (2015) Manganese 
mineralization in Archean greenstone belt, Joda-Noamundi sec-
tor, Noamundi basin, East Indian Shield. Ore Geol Rev 70:96–
109. https​://doi.org/10.1016/j.orege​orev.2015.04.007

Haas F, Hilger L, Neugirg F et al (2016) Quantification and analysis 
of geomorphic processes on a recultivated iron ore mine on the 
Italian island of Elba using long-term ground-based lidar and 
photogrammetric SfM data by a UAV. Nat Hazards Earth Syst 
Sci 16:1269–1288. https​://doi.org/10.5194/nhess​-16-1269-2016

Hancock GR, Grabham MK, Martin P et al (2006) A methodol-
ogy for the assessment of rehabilitation success of post min-
ing landscapes–sediment and radionuclide transport at the 
former Nabarlek uranium mine, Northern Territory, Australia. 
Sci Total Environ 354:103–119. https​://doi.org/10.1016/j.scito​
tenv.2005.01.039

Hancock GR, Crawter D, Fityus SG et al (2008) The measurement and 
modelling of rill erosion at angle of repose slopes in mine spoil. 
Earth Surf Process Landf 33:1006–1020. https​://doi.org/10.1002/
esp.1585

Haralock RM, Shapiro LG (1991) Computer and robot vision. Addison-
Wesley Longman Publishing Co., Inc, Boston

Heipke C, Mayer H, Wiedemann C, Jamet O (1997) Automated recon-
struction of topographic objects from aerial images using vec-
torized map information. Int Arch Photogramm Remote Sens 
23:47–56

Hsieh YC, Chan YC, Hu JC (2016) Digital elevation model differenc-
ing and error estimation from multiple sources: a case study from 
the Meiyuan Shan landslide in Taiwan. Remote Sens. https​://doi.
org/10.3390/rs803​0199

Hu W, Wu L, Zhang W et al (2017) Ground deformation detection 
using China’s ZY-3 stereo imagery in an opencast mining area. 
ISPRS Int J Geo-Inf 6:361. https​://doi.org/10.3390/ijgi6​11036​1

Huang X, Zhu Y, Ji H (2013) Distribution, speciation, and risk assess-
ment of selected metals in the gold and iron mine soils of the 
catchment area of Miyun Reservoir, Beijing, China. Environ 
Monit Assess 185:8525–8545. https​://doi.org/10.1007/s1066​
1-013-3193-4

Hugenholtz CH, Walker J, Brown O, Myshak S (2015) Earthwork volu-
metrics with an unmanned aerial vehicle and softcopy photogram-
metry. J Surv Eng 141:6014003. https​://doi.org/10.1061/(ASCE)
SU.1943-5428.00001​38

Immerzeel WW, Kraaijenbrink PDA, Shea JM et al (2014) High-reso-
lution monitoring of Himalayan glacier dynamics using unmanned 
aerial vehicles. Remote Sens Environ 150:93–103. https​://doi.
org/10.1016/j.rse.2014.04.025

ISO B (2013) 25178-2: geometrical product specifications (GPS)-sur-
face texture: areal-part 2: terms, definitions and surface texture 
parameters

Jaakkola A, Hyyppä J, Kukko A et al (2010) A low-cost multi-sensoral 
mobile mapping system and its feasibility for tree measurements. 
ISPRS J Photogramm Remote Sens 65:514–522. https​://doi.
org/10.1016/j.isprs​jprs.2010.08.002

https://doi.org/10.1073/pnas.1318271110
https://doi.org/10.1073/pnas.1318271110
https://doi.org/10.1002/esp.3263
https://doi.org/10.1002/esp.3263
https://doi.org/10.1002/1096-9837(200008)25:9<973:AID-ESP111>3.0.CO;2-Y
https://doi.org/10.1002/1096-9837(200008)25:9<973:AID-ESP111>3.0.CO;2-Y
https://doi.org/10.1002/esp.3943
https://doi.org/10.1016/j.jag.2015.05.001
https://doi.org/10.1111/1755-6724.12782
https://doi.org/10.1016/j.isprsjprs.2014.02.013
https://doi.org/10.1016/j.geomorph.2016.11.009
https://doi.org/10.1016/j.geomorph.2016.11.009
https://doi.org/10.1098/rsta.2010.0331
https://doi.org/10.1098/rsta.2010.0331
https://doi.org/10.5194/esurf-4-359-2016
https://doi.org/10.5194/esurf-4-359-2016
https://doi.org/10.1007/s12665-017-6409-z
https://doi.org/10.3390/rs8100837
https://doi.org/10.3390/rs8100837
https://doi.org/10.1016/j.compgeo.2015.02.009
https://doi.org/10.1016/j.oregeorev.2015.04.007
https://doi.org/10.5194/nhess-16-1269-2016
https://doi.org/10.1016/j.scitotenv.2005.01.039
https://doi.org/10.1016/j.scitotenv.2005.01.039
https://doi.org/10.1002/esp.1585
https://doi.org/10.1002/esp.1585
https://doi.org/10.3390/rs8030199
https://doi.org/10.3390/rs8030199
https://doi.org/10.3390/ijgi6110361
https://doi.org/10.1007/s10661-013-3193-4
https://doi.org/10.1007/s10661-013-3193-4
https://doi.org/10.1061/(ASCE)SU.1943-5428.0000138
https://doi.org/10.1061/(ASCE)SU.1943-5428.0000138
https://doi.org/10.1016/j.rse.2014.04.025
https://doi.org/10.1016/j.rse.2014.04.025
https://doi.org/10.1016/j.isprsjprs.2010.08.002
https://doi.org/10.1016/j.isprsjprs.2010.08.002


Environmental Earth Sciences (2018) 77:220	

1 3

Page 17 of 18  220

James MR, Robson S (2012) Straightforward reconstruction of 3D 
surfaces and topography with a camera: accuracy and geo-
science application. J Geophys Res Earth Surf. https​://doi.
org/10.1029/2011j​f0022​89

Kobayashi H, Watando H, Kakimoto M (2014) A global extent site-
level analysis of land cover and protected area overlap with min-
ing activities as an indicator of biodiversity pressure. J Clean 
Prod 84:459–468. https​://doi.org/10.1016/j.jclep​ro.2014.04.049

Lane SN, Richards KS, Chandler JH (1994) Developments in moni-
toring and modelling small-scale river bed topography. Earth 
Surf Process Landf 19:349–368

Lane SN, Westaway RM, Hicks DM (2003) Estimation of erosion 
and deposition volumes in a large, gravel-bed, braided river 
using synoptic remote sensing. Earth Surf Process Landf 
28:249–271. https​://doi.org/10.1002/esp.483

Lee S, Choi Y (2015) Topographic survey at small-scale open-pit 
mines using a popular rotary-wing unmanned aerial vehicle 
(drone). Tunn Undergr Space 25:462–469

Lewin J, Macklin MG (2014) Marking time in geomorphology: 
should we try to formalise an Anthropocene definition? Earth 
Surf Process Landf 39:133–137. https​://doi.org/10.1002/
esp.3484

Lewis JP (1995) Fast template matching. Vision interface 95, Cana-
dian image processingand pattern recognition society. Quebec 
City, Canada, May 15–19, pp 120–123

Lucieer A, de Jong SM, Turner D (2014) Mapping landslide dis-
placements using structure from motion (SfM) and image cor-
relation of multi-temporal UAV photography. Prog Phys Geogr 
38:97–116. https​://doi.org/10.1177/03091​33313​51529​3

McLeod T, Samson C, Labrie M et al (2013) Using video acquired 
from an unmanned aerial vehicle (UAV) to measure fracture 
orientation in an open-pit mine. Geomatica 67:173–180

Messinger M, Asner G, Silman M (2016) Rapid assessments of ama-
zon forest structure and biomass using small unmanned aerial 
systems. Remote Sens 8:615. https​://doi.org/10.3390/rs808​0615

Mossa J, James LA (2013) Impacts of mining on geomorphic sys-
tems. In: Treatise on geomorphology, vol. 13. Geomorphology 
of human disturbances, Climate change, and natural hazards. 
Academic Press, San Diego, CA, pp 74–95 

Neugirg F, Stark M, Kaiser A et al (2016) Erosion processes in 
calanchi in the Upper Orcia Valley, Southern Tuscany, Italy 
based on multi-temporal high-resolution terrestrial LiDAR 
and UAV surveys. Geomorphology 269:8–22. https​://doi.
org/10.1016/j.geomo​rph.2016.06.027

Niethammer U, James MR, Rothmund S et al (2012) UAV-based 
remote sensing of the super-sauze landslide: evaluation and 
results. Eng Geol 128:2–11. https​://doi.org/10.1016/j.engge​
o.2011.03.012

Osterkamp WR, Joseph WL (2000) Climatic and hydrologic factors 
associated with reclamation. In: Barnhisel RI, Darmody RG, 
Daniels WL (eds) Reclamation of drastically disturbed lands. 
American Society of Agronomy, Madison, pp 193–215

Passalacqua P, Belmont P, Staley DM et al (2015) Analyzing high 
resolution topography for advancing the understanding of mass 
and energy transfer through landscapes: a review. Earth Sci Rev 
148:174–193. https​://doi.org/10.1016/j.earsc​irev.2015.05.012

Prosdocimi M, Calligaro S, Sofia G et al (2016) Bank erosion in 
agricultural drainage networks: new challenges from structure-
from-motion photogrammetry for post-event analysis. Earth 
Surf Process Landf 40:1891–1906. https​://doi.org/10.1002/
esp.3767

Shahbazi M, Sohn G, Théau J, Ménard P (2015) UAV-based point 
cloud generation for open-pit mine modelling. Int Arch Photo-
gramm Remote Sens Spat Inf Sci ISPRS Arch 40:313–320. https​
://doi.org/10.5194/isprs​archi​ves-XL-1-W4-313-2015

Sibson R et al (1981) A brief description of natural neighbour inter-
polation. Interpret Multivar Data 21:21–36

Sofia G, Marinello F, Tarolli P (2014) A new landscape metric for 
the identification of terraced sites: the slope local length of 
auto-correlation (SLLAC). ISPRS J Photogramm Remote Sens 
96:123–133. https​://doi.org/10.1016/j.isprs​jprs.2014.06.018

Sofia G, Bailly J-S, Chehata N et al (2016) Comparison of pleia-
des and LiDAR digital elevation models for terraces detection 
in farmlands. IEEE J Sel Top Appl Earth Obs Remote Sens 
9:1567–1576. https​://doi.org/10.1109/JSTAR​S.2016.25169​00

Sofia G, Masin R, Tarolli P (2017) Prospects for crowd sourced 
information on the geomorphic “engineering” by the invasive 
Coypu (Myocastor coypus). Earth Surf Process Landf. https​://
doi.org/10.1002/esp.4081

Stout KJ, Blunt L, Dong WP et al (2000) Development of methods 
for the characterisation of roughness in three dimensions, 1st 
edn. Penton Press, Luxembourg

Tarolli P (2014) High-resolution topography for understanding 
earth surface processes: opportunities and challenges. Geo-
morphology 216:295–312. https​://doi.org/10.1016/j.geomo​
rph.2014.03.008

Tarolli P, Sofia G (2016) Human topographic signatures and derived 
geomorphic processes across landscapes. Geomorphology 
255:140–161. https​://doi.org/10.1016/j.geomo​rph.2015.12.007

Tarolli P, Sofia G, Dalla Fontana G (2012) Geomorphic fea-
tures extraction from high-resolution topography: landslide 
crowns and bank erosion. Nat Hazards 61:65–83. https​://doi.
org/10.1007/s1106​9-010-9695-2

Tarolli P, Sofia G, Ellis E (2017) Mapping the topographic finger-
prints of humanity across earth. Eos (Washington DC). https​://
doi.org/10.1029/2017E​O0696​37

Tong X, Liu X, Chen P et al (2015) Integration of UAV-based pho-
togrammetry and terrestrial laser scanning for the three-dimen-
sional mapping and monitoring of open-pit mine areas. Remote 
Sens 7:6635–6662. https​://doi.org/10.3390/rs706​06635​

Townsend PA, Helmers DP, Kingdon CC et al (2009) Changes in 
the extent of surface mining and reclamation in the central 
appalachians detected using a 1976–2006 Landsat time series. 
Remote Sens Environ 113:62–72. https​://doi.org/10.1016/j.
rse.2008.08.012

Toy TJ, Hadley RF (1987) Geomorphology of disturbed lands. Aca-
demic Press, New York

Turner D, Lucieer A, de Jong SM (2015) Time series analysis of 
landslide dynamics using an unmanned aerial vehicle (UAV). 
Remote Sens 7:1736–1757. https​://doi.org/10.3390/rs702​01736​

Verhoeven G (2011) Taking computer vision aloft–archaeological 
three-dimensional reconstructions from aerial photographs with 
photoscan. Archaeol Prospect 18:67–73

Vidal O, Goffé B, Arndt N et al (2013) Metals for a low-carbon soci-
ety. Nat Geosci 6:894–896. https​://doi.org/10.1038/ngeo1​993

Westaway RM, Lane SN, Hicks DM (2000) The development of an 
automated correction procedure for digital photogrammetry for 
the study of wide, shallow, gravel-bed rivers. Earth Surf Process 
Landf 25:209–226

Westoby MJ, Brasington J, Glasser NF et al (2012) “Structure-from-
Motion” photogrammetry: a low-cost, effective tool for geosci-
ence applications. Geomorphology 179:300–314. https​://doi.
org/10.1016/j.geomo​rph.2012.08.021

Wheaton JM, Brasington J, Darby SE, Sear DA (2010) Account-
ing for uncertainty in DEMs from repeat topographic surveys: 
improved sediment budgets. Earth Surf Process Landforms. 
https​://doi.org/10.1002/esp.1886

Wilkinson BH, McElroy BJ (2007) The impact of humans on 
continental erosion and sedimentation. Geol Soc Am Bull 
119:140–156

https://doi.org/10.1029/2011jf002289
https://doi.org/10.1029/2011jf002289
https://doi.org/10.1016/j.jclepro.2014.04.049
https://doi.org/10.1002/esp.483
https://doi.org/10.1002/esp.3484
https://doi.org/10.1002/esp.3484
https://doi.org/10.1177/0309133313515293
https://doi.org/10.3390/rs8080615
https://doi.org/10.1016/j.geomorph.2016.06.027
https://doi.org/10.1016/j.geomorph.2016.06.027
https://doi.org/10.1016/j.enggeo.2011.03.012
https://doi.org/10.1016/j.enggeo.2011.03.012
https://doi.org/10.1016/j.earscirev.2015.05.012
https://doi.org/10.1002/esp.3767
https://doi.org/10.1002/esp.3767
https://doi.org/10.5194/isprsarchives-XL-1-W4-313-2015
https://doi.org/10.5194/isprsarchives-XL-1-W4-313-2015
https://doi.org/10.1016/j.isprsjprs.2014.06.018
https://doi.org/10.1109/JSTARS.2016.2516900
https://doi.org/10.1002/esp.4081
https://doi.org/10.1002/esp.4081
https://doi.org/10.1016/j.geomorph.2014.03.008
https://doi.org/10.1016/j.geomorph.2014.03.008
https://doi.org/10.1016/j.geomorph.2015.12.007
https://doi.org/10.1007/s11069-010-9695-2
https://doi.org/10.1007/s11069-010-9695-2
https://doi.org/10.1029/2017EO069637
https://doi.org/10.1029/2017EO069637
https://doi.org/10.3390/rs70606635
https://doi.org/10.1016/j.rse.2008.08.012
https://doi.org/10.1016/j.rse.2008.08.012
https://doi.org/10.3390/rs70201736
https://doi.org/10.1038/ngeo1993
https://doi.org/10.1016/j.geomorph.2012.08.021
https://doi.org/10.1016/j.geomorph.2012.08.021
https://doi.org/10.1002/esp.1886


	 Environmental Earth Sciences (2018) 77:220

1 3

220  Page 18 of 18

Woodget AS, Carbonneau PE, Visser F, Maddock IP (2015) Quanti-
fying submerged fluvial topography using hyperspatial resolu-
tion UAS imagery and structure from motion photogrammetry. 
Earth Surf Process Landf 40:47–64. https​://doi.org/10.1002/
esp.3613

Yucel MA, Turan RY (2016) Areal change detection and 3D mod-
eling of mine lakes using high-resolution unmanned aerial 

vehicle images. Arab J Sci Eng 41:4867–4878. https​://doi.
org/10.1007/s1336​9-016-2182-7

Zhao Y, Feng C, Li D (2014) The major ore clusters of super-large iron 
deposits in the world, present situation of iron resources in China, 
and prospect. Acta Geol Sin (English Ed) 88:1895–1915

Affiliations

Jie Xiang1 · Jianping Chen1   · Giulia Sofia2 · Yi Tian3 · Paolo Tarolli2

	 Jie Xiang 
	 xiangjie@cugb.edu.cn

	 Giulia Sofia 
	 giulia.sofia@unipd.it

	 Yi Tian 
	 tianyi@cugb.edu.cn

	 Paolo Tarolli 
	 paolo.tarolli@unipd.it

1	 School of Earth Sciences and Resources, China University 
of Geosciences, Beijing 100083, China

2	 Department of Land, Environment, Agriculture and Forestry, 
University of Padova, Agripolis, viale dell’Università 16, 
35020 Legnaro, PD, Italy

3	 School of Land Sciences and Technology, China University 
of Geosciences, Beijing 100083, China

https://doi.org/10.1002/esp.3613
https://doi.org/10.1002/esp.3613
https://doi.org/10.1007/s13369-016-2182-7
https://doi.org/10.1007/s13369-016-2182-7
http://orcid.org/0000-0003-1503-4679

	Open-pit mine geomorphic changes analysis using multi-temporal UAV survey
	Abstract
	Introduction
	Study area
	Methodology
	Field campaigns and data acquisition
	Digital elevation model generation
	DEM of difference (DoD)
	Slope local length of autocorrelation (SLLAC)

	Result and discussion
	DoD analysis
	SLLAC analysis

	Discussion
	Final remarks
	Acknowledgements 
	References




