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Abstract
Interpreting and predicting variations of the water cycle are a significant concern given the emerging threat of climate change. 
Generically, hydrological components of the water cycle are routinely observed with ground-based measurements, yet it 
is difficult to measure their spatiotemporal variability. Remote sensing approach is recognized as one of the most promis-
ing tools to obtain continuous data over large areas, thereby offering the unique possibility to assess the complicated and 
non-local features of hydrological phenomena. To estimate water budget components using remote sensing, this research 
considers precipitation (P), evapotranspiration (ET), and the change in water storage (∆S) calculated from satellites (i.e., 
Communication, Ocean and Meteorological Satellite; COMS, and Gravity Recovery and Climate Experiment; GRACE) and 
the Global Land Data Assimilation System (GLDAS) model-based datasets in South Korea from April to December 2011. 
The P estimates from the COMS rainfall intensity (COMS RI), COMS CM (which employs conditional merging [CM] to 
improve the accuracy of COMS RI), and GLDAS were compared with the measured P values from the two flux towers on a 
monthly scale. These results showed that COMS CM and GLDAS are in reasonable agreement, and additionally, their cor-
relation, bias, and root-mean-square errors are favorable compared to the original COMS RI. The ET estimation of GLDAS 
and COMS applied from the revised RS-PM method were compared which indicated reasonable agreement with the two 
flux tower measurements. The derived runoff from COMS RI, COMS CM, and GLDAS was evaluated with that of the flux 
towers. The statistical results indicated that COMS CM and GLDAS were slightly better than that of COMS RI. The spatial 
distribution of P from COMS CM and GLDAS indicated similar pattern with that of ground-based measurement with the 
exception of COMS RI. ET from COMS and GLDAS showed slightly analogous pattern. The spatial distribution of runoff 
from both COMS and GLDAS showed evidence of a seasonality, which mainly resulted from the seasonally varying effects 
of ET and P. This research shows that it is possible to conduct the analysis of COMS products for efficient water resource 
planning, monitoring, and water budget modeling.
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Introduction

Under the warming that frequently accompanies global cli-
mate change, there is a potential increase in the rate of major 
natural disasters, and altered hydro-meteorological variables 

may significantly affect both human life and socioeconomic 
conditions (Mitsch and Gosselink 2000; Thomas et  al. 
2014). Regrettably, the issue of worldwide climate change 
on water resources is rather hard to define precisely (Oki and 
Kanae 2006). The hydrological cycle is expected to become 
more extreme, and thus, the quantification of hydrology and 
related energy cycles are crucial for understanding the feed-
backs and relationships between essential water and energy 
components (Sahoo et al. 2011).

The traditional way of detecting key components of the 
hydrological cycle is through the use of traditional ground-
based measurements. However, in many cases, ground-based 
observations are not suitable to be used in quantification 
of data over a large area due to the lack of consistency, 
transparency, quality of data, scarcity of dense in  situ 
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measurements, and high cost of establishing the infrastruc-
ture and management for such observations (Sheffield et al. 
2009; Thiemig et al. 2012; Oliveira et al. 2014). Therefore, 
for many applications, it is a challenge to draw conclusions 
from research and analysis restricted only to ground-based 
observations. Satellite remote sensing has the potential to 
provide unprecedented spatiotemporal resolutions and to 
overcome the limitations of ground measurements, espe-
cially with regard to giving continuous estimates of the 
water cycle over regional and even global scales (Sheffield 
et al. 2009). As a result of the development of science and 
technology, novel approaches for the retrieval of hydrologi-
cal components have been developed that are estimated from 
remote sensed datasets (Munier et al. 2014). In addition, 
the various observational products from satellites can be 
quantified, either specifically or generically, across various 
scales of time and space (Sahoo et al. 2011; Sheffield et al. 
2009). Furthermore, the increasing number of satellite prod-
ucts provides a chance to understand phenomenon of water 
balance and budget at regional and at global scale (Wang 
et al. 2014). Commonly, the water budget is composed of the 
four major components: precipitation (P), evapotranspira-
tion (ET), runoff (R), and the change in water storage (∆S) 
at the Earth’s surface. Examples of precipitation products 
include the Tropical Rainfall Measuring Mission (TRMM), 
the Global Precipitation Measurement (GPM), the Global 
Satellite Mapping of Precipitation Microwave-IR Combined 
Product (GSMaP_MVK), the Climate Prediction Center 
(CPC) MORPHing (CMORPH), and Precipitation Estima-
tion from Remotely Sensed Information using Artificial 
Neural Networks (PERSIANN). The aforementioned precip-
itation products use data from recent and ongoing satellite 
missions, while using a variety of infrared and microwave 
sensor-based rainfall retrieval techniques, and can be used 
to cover the various regions of the world (Sheffield et al. 
2009; Baik et al. 2016). Global evapotranspiration, which 
is estimated from energy balance and empirical models 
using satellite-based net radiation, vegetation characteris-
tics, and meteorology parameters, can be obtained from the 
MODIS Global Evapotranspiration Project (MOD16) and 
Global Land Evaporation: the Amsterdam Model (GLEAM) 
(Miralles et al. 2011). Despite the importance of the change 
in water storage, it is not easy to measure at large scales 
because of the lack of adequate monitoring. In addition, 
there is a great deal of local spatial variability, and there are 
non-uniform local observations of variables such as ground 
water and soil moisture (Li et al. 2016). Therefore, to detect 
and quantify the water storage variation and hydrology fluxes 
for validation of water balance models, the Gravity Recov-
ery And Climate Experiment (GRACE) has been applied 
at a global scale (Li et al. 2016). The use of hydrological 
components having high spatiotemporal resolution makes it 
possible to understand trends of the water budget and cycle 

(Oliveira et al. 2014). The water budget model, using hydro-
logical components of various satellite products on local and 
global scales, has been studied in previous works (Sahoo 
et al. 2011; Sheffield et al. 2009; Oliveira et al. 2014; Munier 
et al. 2014; Wang et al. 2014). However, most previous stud-
ies focused on the Northern Hemisphere and Australia at the 
basin scale (Wang et al. 2014; Oliveira et al. 2014). These 
studies utilized multiple satellite-based hydrological prod-
ucts to improve and examine the water balance. However, 
it is difficult to definitively characterize the water budget 
due to the uncertainties of products and the spatiotemporal 
mismatches between satellite products (Wang et al. 2014). 
These studies also demonstrated that the largest uncertainty 
in the components of the overall water balance results from 
the large error of remotely sensed precipitation (Sheffield 
et al. 2009; Oliveira et al. 2014).

The primary objective of this study is to investigate 
hydrological components estimated from the Communica-
tion, Ocean and Meteorological Satellite (COMS), which is 
a geostationary satellite, and assess the water budget over 
South Korea, which has a complex and mountainous terrain. 
Further, we also improved the quantification of precipita-
tion using a merging technique (i.e., conditional merging; 
CM) for reducing the uncertainty of precipitation of the 
COMS product. In addition, we use the GRACE dataset to 
estimate the change in water storage. Finally, we compared 
the results of the water budget equation, which are estimated 
from the COMS and Global Land Data Assimilation Sys-
tem (GLDAS) products, to the measurements at the two flux 
tower sites, and analyzed quantitatively and qualitatively to 
assess the spatial patterns of the GLDAS and COMS dataset 
from April to December 2011.

Data and methodology

Study area

South Korea (32.51N–40.00N, 124.49E–130.00E) is 
located in Far East Asia and has a relatively heterogeneous 
land cover, with mountainous terrain covering approxi-
mately 70% of the area. South Korea’s latitude results in 
four distinctive seasons of spring, summer, autumn, and 
winter (Fig. 1). Both the spring and fall seasons in South 
Korea have relatively dry weather because of a migratory 
anticyclone. The mean annual precipitation and tempera-
ture in the study area ranges from 859.1 to 1403.8 mm 
(~ 60–70% of the annual average precipitation falls during 
the monsoon season) and from 10 to 15 °C with January 
and August as the coldest (− 6 to 3 °C) and the hottest 
(23–26 °C) months, respectively (Im et al. 2016). This 
study area is categorized as a region that suffers from 
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water shortage with heterogeneous topography and veg-
etation conditions (Kang et al. 2003; Park and Lee 2007; 
Nam et al. 2015).

The data quality of the Automatic Synoptic Obser-
vation System (ASOS) sites was maintained using the 
Korean Meteorological Administration (KMA). Further, 
we obtained ground-based precipitation data taken at 1-h 
intervals, from the Water Management Information System 
(WAMIS). As mentioned above, in order to improve the 
reliability of satellite-based precipitation data, this study 
utilized a conditional merging method, which leverages the 
benefits of each dataset (i.e., 93 ASOS sites and satellite-
based datasets). Specific site characteristics are detailed in 
Fig. 1 and Table 1.

To evaluate the monthly evapotranspiration estimates of 
COMS and GLDAS, ground-based evapotranspiration was 
obtained from flux tower sites based on eddy covariance 
systems. The Sulma (SMC) and Cheongmi (CFC) flux tow-
ers, managed by the Hydrological Survey Center (HSC), 
provide ET data at half hour intervals and are used to obtain 
meteorological and energy flux datasets from April 01 to 
December 31, 2011. These sites have two different land 
cover types: mixed forest cover for the SMC site and rice 
farmland for the CFC site (Park et al. 2017). To measure the 
net radiation, two CNR-2 (Kipp & Zonen Inc., Delft, Neth-
erlands) flux towers have been installed at 9.7 m and 19.2 m 
above the ground surface at the CFC and SMC, respectively. 
Moreover, at the flux tower sites, 3D sonic anemometers 

Fig. 1   Geographical location of the ASOS and flux tower sites

Table 1   Summary of the 
different dataset (i.e., 
observation and satellite– 
and model-based datasets) 
containing data sources 
(i.e., precipitation (P), 
evapotranspiration (ET), change 
of water storage (ΔS)

The reference for the used dataset are as follows: COMS RI (Baik and Choi 2015a, b, c, 2016) COMS ET 
(Baik and Choi 2015a, b, c, 2016)

Name Dataset Source Resolution Reference

Spatial Temporal

COMS ET, P Satellite 0.01°, 0.04° 15 min Baik and Choi (2015a, b, c, 2016)
GLDAS ET, P Reanalysis 0.25° 3 h, Monthly https​://ldas.gsfc.nasa.gov/gldas​/
GRACE ΔS Satellite 0.5° Monthly http://grace​.jpl.nasa.gov/
ASOS P Gauges – 30 min http://www.kam.go.kr/

http://www.wamis​.go.kr/
Flux tower ET, P Gauges – 30 min http://hsc.re.kr/

https://ldas.gsfc.nasa.gov/gldas/
http://grace.jpl.nasa.gov/
http://www.kam.go.kr/
http://www.wamis.go.kr/
http://hsc.re.kr/
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and open-path CO2/H2O analyzers, have been installed for 
observing the sensible heat flux and latent heat flux (2.1, 3.5, 
and 10.2 m in CFC; 2.0, 15.0, and 19.2 m in SMC), using 
the eddy covariance. A data logger (CR3000, CR800, and 
CR1000, Campbell Scientific Inc., USA) is used for record-
ing the data.

COMS

COMS, Korea’s first geostationary multi-purpose satellite, 
was launched on June 27, 2010 (Park et al. 2011). It was 
equipped with two types of sensors, the Meteorological 
Imager (MI) managed by the National Meteorological Sat-
ellite Center (http://nmsc.kma.go.kr/) and the Geostationary 
Ocean Color Imager (GOCI) managed by the Korea Ocean 
Satellite Center (http://kosc.kordi​.re.kr/) (Ryu et al. 2012; 
Baik and Choi 2015b). In this study, we use the MI sen-
sor product, which provides 16 meteorological factors (i.e., 
cloud analysis, cloud-top temperature/pressure, atmospheric 
motion vectors, cloud detection, etc.). The MI sensor with 
five bands (visible, shortwave, infrared, water vapor, infrared 
1, and infrared 2) records the data at 15-min intervals and 
at 1- and 4-km spatial resolutions, covering most of Asia 
and Australia.

To estimate evapotranspiration from COMS, this study 
used a revised RS-PM model presented by Mu et al. (2007). 
Fundamentally, a revised RS-PM model, based on the Pen-
man–Monteith equation, considers both vegetation transpi-
ration and soil evaporation to calculate evapotranspiration 
(Baik and Choi 2015a; Mu et al. 2007; Sahoo et al. 2011). 
The detailed description of the COMS ET calculation imple-
mented in this study can be found in Baik and Choi (2015b).

Among the COMS products, the COMS Rainfall Inten-
sity (RI), provided by the NMSC, is based on the infrared 
rainfall retrieval method (An 2007; Baik and Choi 2015c). 
The COMS RI dataset has a temporal resolution of 15-min 
and a spatial resolution of 4 km. A previous study was dedi-
cated to the assessment of the COMS RI (Baik and Choi 
2015c). Baik and Choi (2015c) validated the satellite-based 
observations (COMS RI and TRMM 3B42 V7) with ref-
erence to ground-based measurements over the center of 
South Korea at different time scales. Their results indicated 
that COMS RI potentially succeeded in detecting the spatial 
variability of precipitation. Moreover, they also reported the 
need for improving the accuracy of quantitative precipita-
tion estimates from COMS RI due to the limitation of the 
infrared rainfall retrieval method. In order to overcome this 
problem, previous researchers have developed various merg-
ing techniques that combine precipitation from point meas-
urements and remote sensing techniques and hence have 
taken advantage of the complementary merits of each data-
set (Woldemeskel et al. 2013; Sinclair and Pegram 2005). 
Baik et al. (2016) utilized three merging techniques (CM, 

Geographic Difference Analysis, and Geographic Ratio 
Analysis) for improving the satellite-based rainfall product. 
The results indicated that three different merging techniques 
showed the capability to improve the accuracy of COMS RI. 
In particular, the CM technique showed better results than 
the other merging techniques. The detailed information for 
improving precipitation estimates using the CM method and 
the COMS data, as well as the description of COMS, are 
given in Baik et al. (2016).

GLDAS

The GLDAS dataset is obtained by the combination of satel-
lite and ground-based measurements through the four mod-
els: the Common Land Model (CLM), the Mosaic Land 
Surface Model (LSM), the Noah LSM, and the Variable 
Infiltration Capacity (VIC) model, which provides 3-hourly 
and monthly datasets with 0.25 and 1.0-degree spatial reso-
lution datasets (Rodell et al. 2004; Baik and Choi 2015b) 
(Table 1). The detailed description of GLDAS is available 
at NASA’s Hydrology Data and Information Services Center 
(http://disc.sci.gsfc.nasa.gov/hydro​logy). In this study, we 
used the GLDAS 0.25° products of version 1 (GLDAS_
NOAH025_M), which were obtained from the NASA Land 
Information System and Goddard Earth Sciences Data and 
Information Services Center (Marshall et al. 2013).

GRACE

The GRACE satellite was launched for observing tiny changes 
in the Earth’s gravitational field by measuring the distance 
between two orbiting satellites, launched in 2002 (Lee et al. 
2014; Ramillien et al. 2008; Schmidt et al. 2008). It is the 
first satellite remote sensing mission that can observe tempo-
ral variations of Earth’s gravitational potential and examined 
long-term variation of terrestrial water storage (TWS) under 
all types of terrestrial conditions on the earth’s surface (Rodell 
et al. 2004). This data provides variances of vertically inte-
grated TWS, which is the sum of all surface water, soil mois-
ture, snow, and ground water availability. The TWS generally 
includes all phases of water storage above (e.g., reservoirs 
and lakes) and below the surface of the Earth (Hassan and Jin 
2014). The GRACE product is provided by three processing 
centers, including Geoforschungs Zentrum Potsdam (GFZ), 
the Jet Propulsion Laboratory (JPL), and the Center for Space 
Research (CSR) at the University of Texas (Jin et al. 2012). 
These datasets have been used in several studies around the 
world, including India (Rodell et al. 2008), East Africa (Becker 
et al. 2010), Turkey (Lenk 2013), China (Cao et al. 2015; Li 
et al. 2016), and South Korea (Lee et al. 2014; Seo and Lee 
2016). Tapley et al. (2004) compared the variation in the geoid 
height from the GRACE and Global Land Data Assimila-
tion System (GLDAS) over a global scale. Lee et al. (2014) 

http://nmsc.kma.go.kr/
http://kosc.kordi.re.kr/
http://disc.sci.gsfc.nasa.gov/hydrology
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validated a terrestrial water storage model by comparing its 
estimates to the GLDAS and GRACE datasets on the Korean 
peninsula. Cao et al. (2015) also validated the terrestrial water 
storage change from GRACE as compared to that simulated 
from a hydrological model over northwest China from the year 
2003–2012. Li et al. (2016) studied the water storage variation 
in the Yellow river basin using GRACE and other satellite 
datasets. Mo et al. (2016) compared the water storage variation 
measured from GRACE with the output of GLDAS in China. 
In this study, monthly GRACE mascons (i.e., mass concentra-
tion solutions) from the Center for Space Research (CSR RL05 
mascons) (Save et al. 2016) dataset, which has a spatial resolu-
tion of 0.5° × 0.5° was used. Save et al. (2016) and Scanlon 
et al. (2016) demonstrated that this dataset provided reducing 
leakage effect of land and ocean.

Water budget equation

Generally, the water balance shows seasonal patterns. In wet 
seasons, P is larger than ET, thereby creating a water surplus. 
However, in dry seasons, ET necessarily exceeds P (Zhang 
et al. 2008; Chen et al. 2013; Greve et al. 2016). Therefore, 
either the water surplus decreases or water deficits occur dur-
ing dry seasons. The water budget is based on the principle of 
mass conservation, also known as the continuity equation. This 
can be defined through Eq. 1 as the balance between P, ET, and 
the change in water storage at the Earth’s surface.

where ΔS is the change in water storage and N is the satel-
lite- and ground-based measurement period. In this study, in 
order to estimate the water budget on a monthly timescale, 
the estimated ET and P are obtained from the COMS and 
GLDAS datasets. The TWS estimated from GRACE is a 
combined contribution of soil moisture in all layers, accu-
mulated snow, plant canopy surface water and ground water 
(Zhou et al. 2016). Thus, in order to estimate the change in 
water storage on water budget equation (Eq. 1), we used the 
central difference method (Riegger and Tourian 2014) that 
was the difference of month to month variations of the TWS 
estimated from GRACE (Seo and Lee 2017). The summaries 
of satellite and model datasets used in this study for estimat-
ing the water budget are given in (Table 1).

(1)QN = PN − ETN − ΔSN

(2)ΔSN = SN − SN−1

Results and discussion

Intercomparison of GLDAS, and COMS with flux 
tower

Evapotranspiration

Figure 2 shows the temporal variation of ET from the flux 
tower, COMS, and GLDAS for both CFC and SMC sites. 
Figure 2 shows that GLDAS and COMS ET patterns varied 
depending on the vegetative growth conditions, and also 
showed a reasonable trend, with increasing ET coinciding 
with warm temperatures and high humidity in the sum-
mer monsoon season. The COMS and GLDAS datasets 
tend to show a slight underestimation of ET at the CFC 
site better than that of SMC site. Similar results and dis-
crepancies were also found by Baik and Choi (2015a, b). 
In particular, as shown in Fig. 2, the GLDAS ET showed 
underestimation compared to flux tower measurement. The 
tendency for GLADS to underestimate ET is supported by 
Kalma et al. (2008), who demonstrated that uncertainty 
of GLDAS ET product results in errors greater than 25%. 
Smith et al. (2001) reported that this discrepancy may be 
caused by uncertainties of GLDAS datasets, which inher-
ently result from the process of assimilating forcing data. 
Additionally, Baik and Choi (2015b) attributed the errors 
in ET estimates to incorrect information resulting from 
scale mismatches between different datasets. The statisti-
cal results of ET estimation for each dataset are presented 
in Table 2. The comparison between COMS ET and flux 
tower ET showed that the bias, root-mean-square rrror 
(RMSE), and correlation coefficient (R) were −  2.50, 
39.64 mm/month, and 0.84 at CFC and 17.54, 23.73 mm/
month, and 0.93 at SMC, respectively. The comparison 
between GLDAS and the flux tower ET showed that the 
bias, RMSE, and R were − 31.73, 45.17 mm/month, and 
0.89 at CFC, − 15.51, 15.02 mm/month, and 0.97 at SMC, 
respectively (Table 2).

Precipitation

For analyzing the precipitation results, two flux tower 
sites were selected for validation before estimating the 
water budget equation using COMS RI, COMS CM, and 
GLDAS, and the two flux tower sites. A monthly time 
series of the precipitation measured at each of the two 
flux tower sites, from the months of April to Decem-
ber, 2011, is shown in Fig. 3, and the statistical results 
of the precipitation from each dataset are summarized in 
Table 2. As shown in Fig. 3, the precipitation of COMS 
RI showed under- and overestimation patterns, although 
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that of each dataset showed reasonable agreement when 
compared to the flux tower. Similar results were also found 
in previous studies. Baik and Choi (2015c) reported that 
the COMS RI is computed using the relationship between 
cloud brightness temperature and SSM/I rainfall data. 
For this reason, the discrepancy between COMS RI and 
ground-based measurement was attributed to the differ-
ences in measurement techniques (i.e., the infrared rainfall 
retrieval algorithm) of COMS. As expected, the time series 
of accumulated precipitation from COMS CM showed an 
improvement when it was compared with COMS RI at the 
two flux tower sites (Fig. 3). The statistical results of the 
COMS CM (R of 0.99 and 0.99 at CFC and SMC, respec-
tively) showed better performances than that of the COMS 

RI (R of 0.91 and 0.92 at the CFC and SMC, respectively). 
Also, the COMS CM (bias of − 7.99 and 30.93 mm/month, 
and RMSE of 49.98 and 43.04 mm/month at CFC and 
SMC sites, respectively) showed improvement by reduc-
ing bias and RMSE compared to the COMS RI (bias of 
− 82.20 and − 42.38 mm/month, and RMSE of 161.87 
and 147.49 mm/month at the CFC and SMC sites, respec-
tively). As shown in Table 2, the monthly and accumulated 
precipitation estimated from GLDAS showed reasonable 
agreement with that of the flux towers, though precipi-
tation was underestimated at both flux towers (bias of 
− 22.22 and − 23.36 mm/month, and RMSE of 78.40 and 
103.67 mm/month at CFC and SMC sites, respectively) 
due to differences in the forcing datasets.

Fig. 2   Monthly and accumulated evapotranspiration estimated from model- and satellite-based dataset and measured from flux tower at CFC and 
SMC sites
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Runoff

Figure 4 shows the variation of change in water storage esti-
mated from GRACE TWS. As expected, this figure indicates 
that the seasonal cycles of the change in water storage results in 
a variation of between − 40 and 50 mm/month with a positive 
change mostly in the summer season and a negative change in 
the winter and spring seasons. Similar variation of the change 
in water storage was reported in the previous study (Seo and 
Lee 2017). Seo and Lee (2017) indicated that the change in 
water storage on the summer season showed a distinct pat-
tern in relation to the heavy precipitation. If the precipitation 
increases in the summer season, more water resources can be 
stored in an area (Haile 2011). Thus, it can be inferred that an 
increase in the change in water storage estimated from GRACE 
can be associated with an increase in the amount of P or a 
decrease in ET (Li et al. 2016). A comparison of runoff esti-
mated from ground data and another dataset using the change 

in water storage estimated from GRACE showed reasonable 
agreement (Fig. 4). As expected, the runoff estimated from 
COMS CM showed improved correlation, bias, and RMSE 
compared to that of the original COMS RI (Table 2; Fig. 4). 
In the CFC site, the results of monthly and accumulated runoff 
showed a reasonable correspondence among in situ, GLDAS, 
and COMS CM (Fig. 4) measurements. However, in the SMC 
site, accumulated runoff results of COMS CM and GLDAS 
indicated a slight tendency toward over- and underestimation 
compared to that of in situ measurements due to the mountain-
ous topographical characteristics of the SMC site.

Table 2   Comparison between hydrological variables estimated from each datasets

The Bias and RMSE have units mm/month

Dataset Site COMS ET GLDAS

Evapotranspiration (ET)
CFC
Bias − 2.50 − 31.73
RMSE 39.64 45.17
R 0.84 0.89
SMC
Bias 17.54 − 15.51
RMSE 23.73 15.02
R 0.93 0.97

Dataset Site COMS RI COMS CM GLDAS

Precipitation (P)
CFC
Bias − 82.20 − 7.99 − 22.22
RMSE 161.87 49.98 78.40
R 0.91 0.99 0.96
SMC
Bias − 42.38 30.93 − 23.36
RMSE 147.49 43.04 103.67
R 0.92 0.99 0.96

Runoff (R) Site COMS RI COMS CM GLDAS

CFC
Bias − 71.96 2.26 0.46
RMSE 149.69 42.53 62.28
R 0.66 0.99 0.96
SMC
Bias − 49.70 23.60 − 7.63
RMSE 140.82 43.24 89.93
R 0.74 0.99 0.96
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Spatial comparison of hydrological variables 
from GLDAS and COMS

Precipitation

Figures 5 and 6 show the spatial distribution of monthly 
precipitation and correlation maps of precipitation 
reported by each dataset over the study period. The spatial 
distribution of the ASOS is produced from 93 meteorolog-
ical station datasets collected from the KMA. Overall, the 
accumulated precipitation ranged from 100 to 1100 mm, 
showing an increase from May to August and a decrease 
from September to November. Figure 5 shows that there is 
a slightly difference in spatial distributions between ASOS 

and COMS RI datasets over the entire territory of South 
Korea. The COMS RI displayed an overestimation pat-
tern in pre-monsoon periods and showed underestimation 
during monsoon seasons. Similar uncertainties were also 
found in Baik et al. (2016) and Tuttle et al. (2008). Baik 
et al. (2016) reported that these uncertainties of COMS 
RI arose from its indirect rainfall estimation algorithm 
(i.e., infrared rain-retrieval method) that relies on the 
cloud-top brightness temperature in the infrared or vis-
ible bands (Scofield and Kuligowski, 2003; Tuttle et al. 
2008). For this reason, COMS RI may be missing heavy 
and light precipitation in mountainous areas and may not 
capture rapid convective rainfall, hence resulting in under- 
and overestimation patterns (Baik and Choi 2015c). To 

Fig. 3   Monthly and accumulated precipitation estimated from model- and satellite-based datasets and obtained from flux tower dataset at CFC 
and SMC sites
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reduce this uncertainty, the use of COMS CM applying 
the CM method showed good agreement with the spatial 
distribution of ASOS. These results were influenced by 
adopting the advantages of both ground-based and spa-
tially distributed COMS RI data (Baik et al. 2016). As 
expected, the results of COMS CM presented in this study 
indicate that the use of the CM method has the potential 

to improve the COMS RI datasets. Moreover, as shown 
in Fig. 6, the COMS CM data showed a close similarity 
with the distribution of ASOS, with a level of agreement 
that rivaled that of other datasets. The spatial distribution 
of GLDAS, which combines a reanalyzed dataset using 
information such as ground-based and remote sensing 
observations (Rodell et al. 2004; Wang and Zeng 2012), 

Fig. 4   Monthly and accumulated runoff estimated from model- and satellite-based datasets and obtained from flux tower dataset at CFC and 
SMC sites
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Fig. 5   Maps of precipitation from Interpolated ASOS, COMS RI, COMS CM, and GLDAS
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showed similar patterns compared with that of ASOS and 
COMS CM. However, GLDAS show different patterns 
in coastal and mountain areas relative to the ASOS data. 
Furthermore, the precipitation GLDAS dataset showed a 
low correlation with the distribution map of ground-based 
precipitation, except in flat areas. The reason for this dis-
crepancy may be the coarse resolution of GLDAS data, 
which makes it difficult to record the spatial–temporal 

variability of precipitation within its pixels. Kalma et al. 
(2008) and Rodell et al. (2004) noted that precipitation 
dataset is among the most uncertain GLDAS datasets, with 
an uncertainty greater than 10%. Overall, the correlation 
analysis of COMS CM and GLDAS showed strong posi-
tive relationships when compared to the correlations of 
COMS RI. Based on these results, precipitation estimates 
from COMS CM and GLDAS provide results superior 

Fig. 5   (continued)
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to those for COMS RI in terms of the water budget over 
South Korea.

Evapotranspiration

Figure 7 shows the spatial distribution of monthly ET from 
COMS and GLDAS over the study period. The ranges of 
ET estimated from COMS and GLDAS in each season are: 
spring (0–50 mm/month), summer (50–250 mm/month), 
autumn (20–150  mm/month), and winter (0–50  mm/
month). As shown in Fig. 7, ET estimated from COMS 
captured all the pixels with more detail compared with 
the resolution of GLDAS. The spatial distribution of the 
COMS and GDLAS data showed slightly similar patterns 
(e.g., reached a maximum value in summer and decreased 
again in autumn) over South Korea. In other words, the 
onset of a temperature increase in the spring season ini-
tiates increases in the runoff and evaporative losses and 
hence decreases water storage, and the temperature and 
ET decrease at the end of the summer season. Neverthe-
less, the spatial distribution of the GLDAS data exhibited 
a lack of ability to observe ET near coastal regions due 
to its coarse resolution, whereas COMS can capture the 
ET in coastal areas due to its high spatial resolution. In 
the summer season, the spatial distribution of two data-
sets (i.e., COMS and GLDAS) displayed slightly different 
and distinct rainfall patterns. Figure 8 shows the average 
ET and the correlation maps of ET from the COMS and 
GLDAS satellites. Although the average patterns of COMS 
and GLDAS showed similar overall tendencies, the spa-
tial distribution of the correlation between the COMS and 
GLDAS showed slight differences. This difference was 
attributed to the scale mismatch between COMS (1 km) 
and GLDAS (25 km) (Baik and Choi 2015b).

Runoff

Figure 9 shows the runoff as measured by COMS and 
GLDAS and the change in water storage of GRACE 
over the study period. Monthly runoff from both datasets 
ranged from − 100 to 1200 mm/month [e.g., spring (− 100 
to 200 mm/month), summer (− 100 to 1200 mm/month), 
autumn (− 100 to 200 mm/month), and winter (− 100 to 
100 mm/month)]. The runoff begins to rise gradually in 
May and increases rapidly with the start of the monsoon 
season. This change indicates that the increasing and 
decreasing trends of runoff are related to the patterns of 
precipitation and evapotranspiration (Li et al. 2016). As 
shown in Fig. 9, the runoff estimated from both datasets 
showed a reasonable agreement, although they showed dif-
ferent patterns in coastal and mountain areas. The correla-
tion map of runoff between COMS and GLDAS in Fig. 10b 
also indicates a relatively better performance except for 
the mountainous territory in the East of South Korea and 
coastal areas on the three sides of the dataset. Accord-
ing to the above-mentioned results of precipitation and 
evapotranspiration, discrepancies in the results of GLDAS 
can be attributed to the impact on complex mountainous 
terrain (i.e., heterogeneous topography) and coastal areas 
that are poorly mapped due to the low spatial resolution 
of 25 km. As expected, the annual rainfall decreases in 
southern areas. The average map of the runoff estimated 
from COMS and GLDAS (Fig. 10a) and the annual pre-
cipitation provided by the annual climatological report of 
the KMA over South Korea (Fig. 10c) displayed similar 
patterns because the amount of runoff is directly affected 
by the precipitation. The spatiotemporal comparison of 
COMS and GLDAS over the study period showed very 
similar patterns. However, the slight discrepancy between 
COMS and GLDAS is attributed to the spatiotemporal 

Fig. 6   Spatial patterns of correlation precipitation map for COMS RI, COMS CM, and GLDAS. a ASOS versus COMS RI, b ASOS versus 
COMS CM, c ASOS versus GLDAS
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Fig. 7   Spatial distribution of the monthly evapotranspiration estimated from COMS dataset using the revised RS-PM model and provided from 
GLDAS dataset over the study periods (April 1–December, 2011)
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scale mismatch and the differences in measurement tech-
niques (Baik and Choi 2015a).

Conclusion

The main objective of this study was to estimate the water 
budget from satellite-based datasets over South Korea. 
In order to apply the water budget equation, this study 
considered the P, ET, ∆S, and R quantities estimated 
and calculated from multiple remote sensing and model 
datasets (COMS, GLDAS, and GRACE). First, the ET is 
estimated from the revised RS-PM model using datasets 
from geostationary (COMS) satellites and from GLDAS. 
Theses ET estimates were evaluated at two flux tower sites 
(CFC and SMC) in South Korea. The statistical results of 
GLDAS and COMS ETs showed a reasonable agreement 
at the two flux towers. The spatial mapping of the COMS 
and GDLAS showed slightly similar patterns (e.g., reached 
a maximum value of ET in summer and decreased again 
in spring). Second, before considering the water budget 
equations over South Korea, this study compared precipi-
tation estimated from GLDAS, COMS RI, and COMS CM, 
which uses the conditional merging method to improve 
the accuracy of the COMS RI quality, and evaluated 
these estimates at the two flux tower sites. The statistical 
results of COMS CM showed substantial improvements 
over COMS RI, as measured using the flux tower rain-
fall at the two flux tower sites. The spatial distribution of 
COMS CM and GLDAS data exhibited spatial patterns 
similar to the ASOS data, and again showed better agree-
ment than the COMS RI dataset. Finally, this paper evalu-
ated the water budget for South Korea from the various 

hydrological factors (i.e., P, ET, and R) estimated from 
the satellite products. The results showed that the run-
off estimated from COMS CM improved the correlation, 
bias, and RMSE when compared to the runoff estimated 
from the original COMS RI. The correlation coefficients of 
COMS CM and GLDAS showed comparable agreements 
with the flux towers (0.99 and 0.96 at CFC, respectively, 
and 0.99 and 0.96 at SMC, respectively). The spatial pat-
terns of runoff showed that the runoff distributions also 
behave similarly across models due to the influence of the 
rainfall distribution. However, the low spatial resolution 
of GLDAS means that it does a poor job of estimating 
meteorological variables in complex mountainous terrain 
(i.e., heterogeneous topography) in the Eastern region of 
South Korea. The spatial distribution of runoff estimated 
from COMS CM and GLDAS showed a reasonable perfor-
mance. However, the slight difference between the COMS 
CM and GLDAS can be attributed to the spatial and tem-
poral scale mismatch in the process of integrating the each 
dataset and differences in the algorithms for estimating the 
hydrological variables. Overall, the performance of COMS 
CM was comparatively superior due to its high spatial and 
temporal resolutions.

Possible causes of water shortages include increases in 
water usage, lack of available water resources in periods 
of drought, and the unequally distributed water resources 
under geographically biased rainfall patterns. Therefore, 
an accurate and consistent estimation of various hydro-
logical variables is essential for understanding integrated 
water resource management, and for developing efficient 
water resource planning and monitoring projects. Further 
research and quantitative analysis is needed to realize the 
uses and dynamics of water resources, and to analyze and 

Fig. 8   Spatial patterns of average and correlation evapotranspiration maps for COMS and GLDAS over South Korea: a average map of COMS 
(left side) and GLDAS (right side) and b correlation map (GLDAS vs. COMS)
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Fig. 9   Monthly runoff esti-
mated from COMS (1 km) 
and GLDAS (25 km) dataset 
and monthly change in water 
storage estimated from GRACE 
(100 km) dataset in South Korea 
during April to December, 2011
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understand the spatio-temporal variability of P, ET, and 
R. The advantage of the COMS geostationary satellite is 
that it can be more widely applied across microclimates for 

analyzing complex hydrological phenomena, allowing for 
more efficient water resource planning and monitoring, and 
drought monitoring. The conditionally merged data from 

Fig. 9   (continued)
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COMS are highly useful for obtaining valuable information 
at all-time steps and are available for analyzing hydrological 
phenomenon across Korea.
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