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Abstract
The Indian River Lagoon (IRL) estuary system is of concern to environmental scientists, because its water quality has been 
deteriorating in the past several decades. To understand spatial variability and temporal changes of surface water quality in 
the central IRL area, cluster analysis, principle component analysis, and nonparametric trend analysis were conducted for 
a dataset of 27,648 observations, collected for twelve parameters of surface water quality over the period of 1998–2013 at 
twelve monitoring stations. The cluster analysis separated the data into four groups, which are closely related to the loca-
tions of the monitoring stations. The principal component analysis was applied to each of the four groups to determine the 
important water quality parameters. In each group, five principal components explain 75–85% of the total data variance, and 
the components include the following water quality parameters: nutrient species (nitrogen and phosphorus), physicochemical 
parameters (salinity, specific conductivity, pH, and DO), and erosion factors (total suspended solids and turbidity). Statisti-
cally significant trends in these water quality parameters were detected by applying the Mann–Kendall trend test, and abrupt 
trend shifts were detected by applying the sequential Mann–Kendall trend test. The trends and trend shifts are attributed to 
land use changes, projects of lagoon restoration, and the 2006 drought conditions in the study area. The results of this study 
can be of direct use to management projects for improving surface water quality at the central IRL area.
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Introduction

The Indian River Lagoon (IRL) estuary system is located 
on the east coast of Florida and has the highest species 
diversity in North America (Graves et al. 2004; SFWMD 
2011). In the past several decades, a decline in the ecological 
and biological integrity at IRL has been observed, and an 
ecological shift from seagrass to macroalgae has occurred 
(Riegl and Foster 2011). The decline is in part caused by 
deterioration of water quality in the IRL due to increased 
nutrient level (Sigua et al. 2000; NEP 2007), as excessive 
nutrient to IRL may lead to large phytoplankton blooms, 
loss of submerged macrophytes, decline of fish habitats, 
and anoxia (Gray 1992). Nutrients (and other pollutants) 
may enter the estuary waters from both natural sources (e.g., 
surface runoff, erosion, and atmospheric deposition) and 
anthropogenic sources (e.g., septic systems, agriculture, and 
reclaimed water irrigation) in the IRL basin (Doering 1996; 
Badruzzaman et al. 2012; Lapointe et al. 2015). Anthropo-
genic influences on water quality can be negative or positive. 
Negative influences include adverse water quality impacts 
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from extensive commercial and residential development 
along the IRL over past decades; positive influences include 
a variety of major restoration projects (e.g., rediversion pro-
ject for canal C-1, dragline ditch restoration, connection of 
residential areas served by septic tanks to central sewer, and 
storm water treatment projects) that have been implemented 
by local governments and water management districts with 
funding support from the Florida Department of Environ-
mental Protection (FDEP) (CCMP 2008; BMAP 2013). 
For protecting the IRL ecosystem and water resources, it 
is important to understand spatial variation and temporal 
changes of the water quality in IRL due to the impacts of 
natural and anthropogenic factors.

Spatial and temporal variation of the water quality in IRL 
has been reported in the literature. Based on surface water 
quality data collected in the period of 1988–1994, Sigua 
et al. (2000) found that the total nitrogen (TN) concentra-
tion was high (1.25 mg/L) in the northern IRL, but lower 
(0.89 mg/L) in the southern IRL. The spatial pattern of the 
total phosphorous (TP) concentration was opposite, with 
higher TP concentration in the northern IRL and lower con-
centration in the southern IRL. With respect to temporal 
variation of the water quality, Qian et al. (2007a) found that, 
for the St. Lucie Estuary in the southern IRL area, water 
quality was better in wet seasons than in dry seasons. Qian 
et al. (2007b) further studied nutrient trend of the same 
region and found a significant increase in orthophosphate 
loadings from 1979 to 2004. For the north part of the IRL 
area, Riegl and Foster (2011) evaluated the biomass of drift 
macroalgae and found that the biomass was 102,162 metric 
tons in 2010, significantly more than the biomass of 69,859 
metric tons evaluated in 2008. These findings indicate that it 
is necessary to study spatial and temporal variation of water 
quality in IRL for water quality management.

This study conducted multivariate statistical analysis and 
trend analysis for understanding spatial variation and tempo-
ral changes of surface water quality in the central IRL area, 
which includes Brevard and Indian River Counties (Fig. 1). 
In comparison with the water quality in the south and north 
IRL areas, less attention has been paid to water quality in 
the central IRL area. This study is therefore necessary for 
water quality management of the entire IRL area. The sta-
tistical analysis of this study is based on the surface water 
quality data collected from 1998 through 2013 in the central 
IRL area. Since these data are more recent than those used 
in the studies discussed above, the results of this analysis 
can better reflect spatial variability and temporal change of 
surface water quality in the study area over a more recent 
time period.

Based on the compiled data, clustering analysis and 
principal component analysis were used to evaluate spatial 
variability of water quality, and trend analysis was used to 
evaluate temporal variability of water quality. The three 

techniques of statistical analysis have been widely used for 
water quality study (Singh et al. 2004; Ouyang 2005; Castro 
et al. 2017; Pant et al. 2018). Clustering analysis is often 
used to group water quality data with similar characteris-
tics, which simplifies subsequent statistical analysis such 
as principal component analysis (Legendre and Legendre 
1998; Simeonov et al. 2003). Principal component analysis 
can reduce the dimensionality of data by selecting a small 
number of principal components that can explain most of 
the variance of the original data with minimal information 
loss (Park et al. 2002; Bengraine and Marhaba 2003). Trend 
analysis is to detect whether the variables of interest are 
increasing, decreasing, or have no trend over time (Helsel 
and Hirsch 1992). A particular feature of this study is that 
it uses the sequential Mann–Kendall method for analyz-
ing temporal changes of water quality, which has not been 
reported in the literature. The statistical results of this study 
are expected to be useful for understanding temporal changes 
of surface water quality in the central IRL area.

Monitoring stations and dataset

The surface water quality data for the central IRL area 
were downloaded from the STOrage and RETrieval 
(STORET) data warehouse website (http://www.epa.gov/
store​t/) of the U.S. Environmental Protection Agency 
(EPA). The dataset used in this study was selected based 
on the following two criteria: (1) the data should be recent 
and from a long monitoring period and (2) the data should 
be from routine monitoring with the amount of missing 
data as small as possible. The second criterion is neces-
sary for the Mann–Kendall and sequential Mann–Kendall 
methods, and missing data were filled with mean values 
of the neighboring data for performing the multivariate 
statistical analysis and trend analysis. The dataset includes 
twelve water quality parameters collected monthly for 
the period from January 1, 1998 to December 31, 2013. 
The twelve parameters are as follows: nitrite and nitrate 
(NOx, mg/L), total Kjeldhal nitrogen (TKN, mg/L), total 
nitrogen (TN, mg/L), total phosphorus (TP, mg/L), total 
suspended solids (TSS, mg/L), turbidity (NTU), dissolved 
oxygen (DO, mg/L), pH (pH units), specific conductiv-
ity (SC, µS/cm or µmho/cm), salinity (parts per thousand 
or gm/L), color (PCU), and water temperature (T). The 
data were collected at twelve monitoring stations shown in 
Fig. 1, which include eight stations in the Brevard County 
and four in Indian River County. The twelve stations are 
representative of hydrologic conditions within the IRL, 
because they are not close to transitional areas such as 
point source mixing zones and nearshore regions. It should 
be noted that the monitoring data were collected at routine 
monitoring schemes, not to capture specific flow or rain-
fall events, which may significantly affect water quality 

http://www.epa.gov/storet/
http://www.epa.gov/storet/
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(Lapointe et al. 2012). In addition, data of biochemical/
chemical oxygen demand are not available in the STORET 
database for the twelve monitoring stations, probably 
because water sample used for measuring the water qual-
ity parameters is subjected to short holding time less than 
1 day, as explained in Qian et al. (2007a). Since low dis-
solved oxygen in the lagoon has not been a major issue 
(except in several rare occasions such as the Super Algal 
Bloom happened in 2010–2011), there are only few sites 

where biochemical/chemical oxygen demand is occasion-
ally measured (Kroening 2008; Gao 2009; Gao and Rhew 
2012).

Since land uses (e.g., citrus, pasture, urban, natural wet-
land, row crop, dairy, and golf courses) may be a major fac-
tor impacting water quality in the St. Lucie Estuary (Graves 
et al. 2004), land cover and land use data for Brevard and 
Indian River Counties were downloaded from the SJR-
WMD website (http://www.sjrwm​d.com/gisde​velop​ment/

Fig. 1   Location of twelve monitoring stations in the central Indian River Lagoon area

http://www.sjrwmd.com/gisdevelopment/docs/themes.html
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docs/theme​s.html). The data from the website were avail-
able for 2 years, 2000 and 2009. The data for four land use 
classifications (agriculture and pasture land, built-up land, 
forest land, and golf course) that could contribute nutrients 

to the IRL are shown in Fig. 2a, b for 2000 and 2009, respec-
tively. The boxes in Fig. 2 delineate the boundary of Indian 
River County. The area of the Brevard County is 1557 mi2 
(996,480 acres), about 2.52 times as large as the area of 

Fig. 2   Four categories of major land cover and land use in the study 
area for a year 2000 and b year 2009. The bar chart in Figure (c) 
shows the areas (acres) of the four categories, and the table in Figure 

(c) lists the increasing (+) or decreasing (−) areas of the four catego-
ries from 2000 to 2009

http://www.sjrwmd.com/gisdevelopment/docs/themes.html
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617 mi2 (394,880 acres) for Indian River County. While 
Indian River County has less built-up land and forest land 
than Brevard County, it has more agriculture and pasture 
land, as shown in Fig. 2c. The graphic in Fig. 2c shows the 
changes in the four land uses from 2000 to 2009. The usage 
of agricultural land decreased in the both counties, while the 
built-up and golf course land increased. Figure 2a, b shows 
that most of the increased built-up lands (red) were located 
next to the lagoon, resulting increased septic tank effluents 
to the lagoon. 

Methods

This section gives a brief description of the methods of 
clustering analysis, principal component analysis, and trend 
analysis. More details of the methods are referred to the 
literatures given below.

Cluster analysis and principal component analysis

Clustering analysis was applied in this study to separate the 
twelve monitoring stations into groups with similar water 
quality characteristics. Clustering analysis is an unsuper-
vised pattern detection technique used to classify objects 
into clusters (categories) based on similarity of the objects 
(Vega et al. 1998). The similarity between two objects is 
typically measured by Euclidean distance. Clustering analy-
sis is a sequential process, starting from the most similar 
objects and forming desired clusters gradually so that the 
magnitude of association is strong for objects in the same 
cluster, but weak among different clusters (Otto 1998). A 
hierarchical agglomerative clustering was performed for the 
normalized data (standardization by the z-transformation) 
using the Ward’s method (Winderlin et al. 2001; Simeonov 
et al. 2003) implemented in MATLAB. The method mini-
mizes the sum of squared distances of centroids from any 
two groups formed at each step of clustering analysis. The 
linkage distance is expressed as Dlink/Dmax × 100, where 
Dlink is the linkage distances for a particular cluster and Dmax 
is the maximal linkage distance (Singh et al. 2004). The 
linkage distance is used to measure the similarity of water 
quality data at different monitoring stations.

For the data in each of the groups identified in the clus-
tering analysis, principal component analysis was used to 
reduce the number of variables. Instead of analyzing all 
the twelve water quality parameters, principal component 
analysis extracts a smaller number of components with-
out losing important information. Following Winderlin 
et al. (2001) and Simeonov et al. (2003), the following 
steps were conducted for the principal component analy-
sis: (1) standardize the water quality data to make them 
dimensionless; (2) calculate the covariance matrix of the 

standardized data; (3) find the eigenvalues and the corre-
sponding eigenvectors; and (4) use the Kaiser criterion to 
choose the principal components based on the eigenvalues, 
scree plot, and the explained variances. The principal com-
ponent analysis reduces the dimensionality of the water 
quality data, since the number of water quality parameters 
involved in the selected principal components is smaller 
than twelve, the total number of water quality parameters.

Mann–Kendall and sequential Mann–Kendall trend 
analysis

Trend analysis was conducted for the water quality param-
eters involved in the selected principal components. This 
study uses the Mann–Kendall test (Mann 1945; Kend-
all 1975), a nonparametric method that does not require 
residual models (Libiseller and Grimvall 2002; Kundze-
wicz and Robson 2004; Zhang et al. 2006). In this study, 
the Mann–Kendall test was applied to examine whether a 
trend in the time series of water quality parameters (pri-
oritized by the principal component analysis) was statisti-
cally significant at significance levels α = 0.01 (the 99% 
confidence interval) and α = 0.05 (the 95% confidence 
interval). To satisfy the requirement in the Mann–Kendall 
test that the data are serially independent, the procedure 
of data pre-whitening (von Storch and Navarra 1995) was 
implemented to remove serial correlation before applying 
the Mann–Kendall test.

After finding the statistically significant trends, abrupt 
trends were identified by the sequential Mann–Kendall 
method, which has been widely used to analyze hydrome-
teorological time series (Douglas et al. 2000; Modarres 
and Sarhadi 2009; Tabari et al. 2010; Sayemuzzaman and 
Jha 2014; Sayemuzzaman et al. 2014a, b, 2015). It is a 
sequential procedure of progressive and backward analyses 
of the Mann–Kendall test. If the two series (progressive 
and backward) are crossing each other, the year of cross-
ing represents the year of trend change. If the two series 
cross and diverge from each other for a longer period of 
time, the year of diverge beginning indicates abrupt trend 
change (Modarres and Sarhadi 2009). The details of imple-
menting the sequential Mann–Kendall test are referred to 
Sayemuzzaman and Jha (2014).

Results and discussion

This section describes the results of the clustering analy-
sis, principal component analysis, and trend analysis con-
ducted for the water quality data.
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Clusters of monitoring stations

The clustering analysis was used to determine the clusters of 
the twelve monitoring stations for analyzing the spatial vari-
ability of the water quality data in the study area. Figure 3 
shows the dendrogram for the twelve monitoring stations. 
Based on the criterion of (Dlink/Dmax) × 100 < 60%, the 
twelve stations can be grouped into four clusters. Cluster 1, 
denoted as C1, includes stations IRL102, IRL107, IRL110, 
IRL113, IRL115, and IRL118, which are the six stations in 
the north of the study area (Fig. 1). The second cluster (C2) 
has only one station (IRLHUS), and the third cluster (C3) is 
also associated with a single station (Crane Creek). The last 
cluster (C4) has four stations, IRLVNC, IRLVMC, IRLVSC, 
and C-25 Upstream, located in the southern end of the study 
area (Fig. 1).

The cluster identification is reasonable in terms of the sta-
tion locations. All the C1 stations are located in the Brevard 
County, and they are at the lagoon water surrounded by the 
landmasses from both east and west sides of the lagoon. 
All the C4 stations are located in Indian River County and 
are at the inland area near the lagoon and surrounded by 
the densely populated area. The different population den-
sities and agricultural land uses of the two counties may 
contribute to the different water quality of the two clusters. 
This is consistent with the finding of Graves et al. (2004), 
who compared the effects of dominant land use types on 
water quality in the IRL watershed and concluded that runoff 
from agricultural and urban land use yielded greater nutrient 
concentrations than wetland runoff. The IRLHUS station of 
cluster C2 is located at the downstream of the Horse Creek, 
and its water quality may be affected by the creek runoff. 

The Crane Creek station of cluster C3 is located at Crane 
Creek (1.8 miles inland from the lagoon), and its water qual-
ity may be influenced by golf course runoff (Fig. 1).

Important water quality parameters and their 
spatial variability

Since water quality data are similar within each cluster, 
principal component analysis was conducted for the data 
of the individual clusters to select important water quality 
parameters. Subsequently, spatial variability of the impor-
tant water quality parameters was investigated. Table 1 

Fig. 3   Dendrogram of clustering analysis for the water quality data at twelve monitoring stations in the study area. The stations are numbered 
1–12 from north to south. The actual station names shown in Fig. 1 are included in the parentheses

Table 1   Component loadings obtained from principal component 
analysis for water quality data of cluster C1

The identified important parameters of each principal component are 
highlighted

PC1 PC2 PC3 PC4 PC5

NOx − 0.05 − 0.16 0.12 − 0.42 0.11
TKN 0.50 0.08 0.05 − 0.31 − 0.34
TN 0.49 0.07 0.07 − 0.36 − 0.33
TP 0.35 0.26 0.01 0.34 − 0.03
DO − 0.03 − 0.17 0.66 0.15 − 0.13
pH 0.02 0.00 0.19 0.57 − 0.43
Turbidity 0.37 0.20 0.18 0.25 0.39
TSS 0.32 0.12 0.07 0.02 0.61
Color 0.23 − 0.34 0.04 0.10 0.07
Sp. cond − 0.19 0.59 0.13 − 0.11 − 0.06
Salinity − 0.19 0.59 0.13 − 0.10 − 0.05
Water temp 0.13 0.10 0.21 − 0.66 − 0.15
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lists, as an example, the principal components obtained 
by applying principal component analysis to the data of 
cluster C1. The five components explain about 75% of 
the total variance of the cluster data. The important vari-
ables of water quality in each principal component was 
identified based on the component loadings obtained after 
the coordinate transform during the principal component 
analysis, and the identified water quality parameters are 
highlighted in Table 1. The identification is based on the 
work of Liu et al. (2003), Ouyang (2005), and Singh et al. 
(2004). They classified the principal component loadings 
as “strong” (absolute loading value > 0.75), “moderate” 
(absolute loading value from 0.50 to 0.75), and “weak” 
(absolute loading value from 0.30 to 0.50). Only the strong 
and moderate loadings are selected.

Table 2 summarizes the identified important water qual-
ity for all the four clusters. The table shows that nutrient 
(nitrogen and phosphorus) is the most important water qual-
ity parameter, because TKN, TN, and TP are found in the 
first principal component for all the clusters. To evaluate the 
spatial variability of the important water quality parameters, 
the concentrations of TKN, TN, and TP at the twelve stations 
are plotted in Fig. 4 as box-and-whisker plots. For the con-
venience of evaluation, Fig. 4 also plots the concentrations 
of NOx, which was identified as an important variable for 
cluster C4. The figure shows that the NOx and TP data have 
substantial spatial variability. Figure 4a shows that the six 
stations (IRL102, IRL107, IRL110, IRL113, IRL115, and 
IRL118) of cluster C1 in the north of the study area have 
substantially lower NOx concentrations than the other six 
stations. This may be attributed to the lower urban density in 
the Brevard County than in the Indian River County (Fig. 2), 
assuming that the areas with lower density of urban develop-
ment contain fewer nutrient sources. Figure 4d shows that 
the spatial pattern of TP concentration is similar to the spa-
tial pattern of NOx, which may be attributed to the larger 
area of agricultural land in the Indian River County than in 
the Brevard County (Fig. 2). The TKN and TN data plot-
ted in Fig. 4b, c do not exhibit substantial spatial variabil-
ity. Given that the median TKN and TN concentrations are 
higher than the median NOx concentrations, organic nitrogen 
and ammonium may contribute more than NOx to nitrogen 

in the study area. Spatial variability of organic nitrogen and 
ammonium is smaller than that of NOx in the study area. 

Table 2 indicates that principal components PC3–PC5 
select dissolved oxygen (DO), turbidity, total suspended sol-
ids (TSS), pH, and water temperature as important parame-
ters. The importance of turbidity and TSS in clusters C3 and 
C4 may be attributed to runoff of sediment due to larger area 
of developed land in the corresponding portion of the study 
area, considering that developed areas have less vegetation 
and more exposed soil than undeveloped areas. However, 
Fig. 5a does not show large spatial variability for turbid-
ity, because the median values of all the stations are simi-
lar. On the contrast, Fig. 5b shows that TSS is substantially 
smaller in the last 5 stations (of clusters C3 and C4) located 
in the Indian River County than in the first seven stations 
(of clusters C1 and C2) located in the Brevard County. The 
selection of DO and temperature from the principal com-
ponents PC3 and PC4 may be explained by the correlation 
between DO and temperature, because warm and cold water 
may tend to correlate with low and high DO, respectively. 
Although the principal component analysis shows that DO, 
turbidity, TSS, pH, and water temperature are less impor-
tant than nutrients, specific conductivity, and salinity, all the 
variables are important to the lagoon ecology. Therefore, the 
Mann–Kendall trend analysis was applied to all the water 
quality parameters identified by the principal component 
analysis. 

Trend analyses for important water quality 
parameters

The Mann–Kendall and sequential Mann–Kendall trend 
analyses were applied to the water quality parameters listed 
in Table 2. When applying the trend analysis to the data of 
16 years, a 12-month moving average was used to avoid 
the impacts of extreme values within the dataset. The pre-
whitening process discussed above was applied to obtain 
serially independent data for the trend analysis. Table 3 lists 
the results of the trend analysis for the individual stations. 
The thick upward arrows in red (downward arrows in blue) 
indicate statistically significant increasing (decreasing) 
trends at the 10% significance level; the thin arrows denote 

Table 2   Important water quality 
parameters for the four cluster 
groups

They are total Kjeldhal nitrogen (TKN), total nitrogen (TN), total phosphorous (TP), specific conductance 
(SC), salinity (S), turbidity (NTU), nitrite and nitrate (NOx), total suspended solids (TSS), pH, and water 
temperature (T)

Cluster PC1 PC2 PC3 PC4 PC5 Cumulative 
variance (%)

C1 TKN, TN SC, S DO pH, T TSS 76
C2 TKN, TN SC, S DO T pH 81
C3 TKN, TN, TP SC, S DO, NTU T NOx 78
C4 TKN, TN, TP NOx pH, NTU, TSS DO T 77
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Fig. 4   Box-and-whisker plot for the concentrations of a NOx, b TKN, c TN, and d TP at the twelve monitoring stations
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statistically insignificant trends. The numbers listed in 
Table 3 are the years of abrupt trend detected by the sequen-
tial Mann–Kendall test. For the purpose of demonstration, 
Fig. 6 shows the results of the sequential Mann–Kendall 
test for NOx at the Crane Creek station and for TP at the 
IRLHUS station. 

Table 3 shows that the nutrient water quality param-
eters (NOx, TN, TKN, and TP) have significant decreas-
ing trends at most of the stations, except that NOx and TP 
have substantial increasing trends at several stations. The 
decreasing trend may be attributed to three factors. The 
first one is the decreased fertilizer usage, which is shown 
in Fig. 7 based on the fertilizer usage data collected from 
the website of the Florida Department of Agriculture and 

Consumer Services (http://www.fresh​fromf​lorid​a.com/
Divis​ions-Offic​es/Agric​ultur​al-Envir​onmen​tal-servi​ces/
Busin​ess-Servi​ces/Ferti​lizer​/Ferti​lizer​-Manuf​actur​ers/
Ferti​lizer​-Consu​mptio​n-Tonna​ge-Data/Archi​ve-Ferti​lizer​
-Tonna​ge-Data, valid as of 10/30/2016). The second factor 
that may explain the decreasing trends is the county-wide 
activities of nutrient management, such as muck removal, 
storm water improvement, and wetland restoration (WQ 
Report 2008). The third factor that may contribute to the 
decreasing trends is the drought condition in the study 
area that resulted in lower-than-average freshwater flow 
into the lagoon, which decreased frequency and magni-
tude of watershed flushing and hence decreased nutrients 
load to surface water (Schindler et al. 1996). The drought 

Fig. 5   Box-and-whisker plots for the concentrations of a turbidity and b TSS at the twelve monitoring stations

http://www.freshfromflorida.com/Divisions-Offices/Agricultural-Environmental-services/Business-Services/Fertilizer/Fertilizer-Manufacturers/Fertilizer-Consumption-Tonnage-Data/Archive-Fertilizer-Tonnage-Data
http://www.freshfromflorida.com/Divisions-Offices/Agricultural-Environmental-services/Business-Services/Fertilizer/Fertilizer-Manufacturers/Fertilizer-Consumption-Tonnage-Data/Archive-Fertilizer-Tonnage-Data
http://www.freshfromflorida.com/Divisions-Offices/Agricultural-Environmental-services/Business-Services/Fertilizer/Fertilizer-Manufacturers/Fertilizer-Consumption-Tonnage-Data/Archive-Fertilizer-Tonnage-Data
http://www.freshfromflorida.com/Divisions-Offices/Agricultural-Environmental-services/Business-Services/Fertilizer/Fertilizer-Manufacturers/Fertilizer-Consumption-Tonnage-Data/Archive-Fertilizer-Tonnage-Data
http://www.freshfromflorida.com/Divisions-Offices/Agricultural-Environmental-services/Business-Services/Fertilizer/Fertilizer-Manufacturers/Fertilizer-Consumption-Tonnage-Data/Archive-Fertilizer-Tonnage-Data
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effect is also reflected in the trends of salinity and spe-
cific conductivity, as discussed below. The increasing 
trend of NOx at stations Crane Creek and IRLVNC may 
be explained by their close proximity (less than one mile) 
to the golf courses shown in Fig. 1, considering that golf 
courses may be sources of nitrogen fertilizer. The increas-
ing trend of NOx at stations IRLVNC and IRLVMC may 
be attributed to nearby urban sources of nitrogen such as 

lawn fertilizer and/or septic systems. Figure 2c shows that 
the built-up land increases from 2000 to 2009 in the Indian 
River County.

Table 3 shows that salinity and specific conductivity 
increase significantly in 2006 in the first seven stations. 
This is attributed to a severe drought in 2006 during which 
there were reduced freshwater flows into the lagoon and 
enhanced the evaporation in the lagoon (Murdoch et al. 

Table 3   Summary of trend analysis results
NOx TN TKN TP Salinity Sp. Con DO pH TSS Turbidity Water Temp

IRL102 (1) (-) 2006 2006 2004, 
2009

2001 (-) 2002-2005, 
2009

IRL107 (2) 2003 (-) (-) 2006 2006 2004, 
2009

2010 2001 2002-2005, 
2009

IRL110 (3) (-) (-) (-) 2006 2006 2009 (-) 2001 2005
IRL113 (4) (-) (-) 2006 2006 2010-2011 (-) (-) 2006
IRL115 (5) 2004 2008 2006 2006 2010-2011 (-) 2001 (-)
IRL118 (6) 2004 2004 2006 2006 2007-2008 (-) 2001
IRLHUS (7) 2004 (-) (-) 2004 2006 2006 2010-2011 (-) 2008 2009

CraneCreek (8) 2002 2003-
2005, 

2003-
2005, 

2005 2006-
2011

2001-2003 2002-2003, 
2010

IRLVNC (9) 2007 (-) (-) 2004 2008-2009 2000 2000-2006 (-) 2005

IRLVMC (10) 2007 (-) (-) 2006 2006 (-) (-)
IRLVSC (11) (-) (-) 2005 2009 2004 2002-

2007, 
2010

(-)
2003

C-25 Upstream (12) 2006 (-) 2006 2008 (-) 2000-2003 2006 (-)

Significant increasing (decreasing) trends are indicated by thick upward red arrow (thick downward blue arrow). The numbers are the years 
when abrupt trend change occurred

Fig. 6   Forward and backward 
series of sequential Mann–Ken-
dall trend analysis applied to a 
NOx concentrations at the Crane 
Creek station and b TP concen-
trations at the IRLHUS station
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2000). Figure 8 plots the relation between salinity and spe-
cific conductivity at the first seven stations listed in Table 3 
and the historical drought data (the Palmer Drought Severity 
Index) downloaded from the NOAA website http://www7.
ncdc.noaa.gov/CDO/CDODi​visio​nalSe​lect.jsp (valid as of 
10/30/2016). To plot the data of the three variables in one 
figure, the data were normalized, and the drought data are 
moving-window average with the window size of 4 months. 
The correlation coefficient (r1) between drought and salin-
ity ranges from − 0.30 to − 0.49, the correlation coefficient 
(r2) between drought and specific conductivity ranges from 
− 0.30 to − 0.51, and the correlation coefficient (r3) between 
salinity and specific conductivity ranges from 0.97 to 0.99. 
The negative correlation suggests that salinity and specific 
conductivity increased as the drought became more severe. 
The correlation is sufficiently significant to conclude that 
the increasing trends of salinity and specific conductivity are 
caused by the drought condition at the study area.

Table 3 shows significant increasing trends of DO at dif-
ferent stations from north to south of the study area. This 

is related to the decreasing trends of nutrients, which can 
improve the DO in the lagoon. The pH trends increase sig-
nificantly at all the stations, although the trend changes 
occurred in different years. The TSS trends are found to 
decrease significantly at all the stations except IRLHUS. 
This may be attributed to the activities of best management 
practices (BMP), such as urban BMP and agricultural BMP 
that decreased the load of suspended solids into the lagoon 
(Gao and Rhew 2012). Although the trends of the important 
water quality parameters have not been fully understood, 
the trend analysis provides a quantitative tool for analyzing 
temporal changes of the water quality parameters.

Summary and conclusions

Multivariate statistical analysis and trend analysis were 
conducted in this study to analyze and interpret spatial 
variability and temporal change of surface water qual-
ity in the central IRL area. Since the data used in this 

Fig. 7   Fertilizer consump-
tion (tons) from 1999 to 2012 
in Brevard County (BC) and 
Indian River County (IRC)

Fig. 8   Time series of normal-
ized drought index, salinity, and 
specific conductivity based on 
the moving-window average 
of 4 months. The correlation 
coefficients r1, r2, and r3 are 
between drought index and 
salinity, between drought and 
specific conductivity, and 
between salinity and specific 
conductivity, respectively

http://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp
http://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp


	 Environmental Earth Sciences (2018) 77:127

1 3

127  Page 12 of 13

study are more recent than those used in previous studies, 
the results of this analysis can help better manage water 
quality in the study area. Using the cluster analysis, the 
data collected from the twelve monitoring stations were 
clustered into four groups: C1 (IRL102, IRL107, IRL110, 
IRL113, IRL115, and IRL118) located in the northern 
IRL, C2 (IRLHUS), C3 (Crane Creek), and C4 (IRLVNC, 
IRLVMC, IRLVSC, and C-25 Upstream) located in the 
southern part of the IRL. For the four groups, the water 
quality parameters involved in the first five principal 
components were identified as important parameters to 
the water quality in the study area. These parameters are 
nutrient species (nitrogen and phosphorus), physicochemi-
cal parameters (salinity, specific conductivity, pH, DO), 
and erosion factors (total suspended solid), which are 
well-known water quality indicators. The concentrations 
of TKN, TN, and TP were found to be important at all the 
monitoring stations in the study area. These parameters 
may be associated with nutrient sources in urban areas 
close to the lagoon. NOx concentration is the important 
water quality parameter at the monitoring stations located 
in the south part of the study area, and this may be attrib-
uted to urban sources of nutrients in the Indian River 
County.

Statistically significant trends and abrupt trend shifts 
were detected using the Mann–Kendall and sequential 
Mann–Kendall trend analysis, respectively. Significant 
trends and trend shifts were identified for the impor-
tant water quality parameters. The nutrient water qual-
ity parameters (NOx, TN, TKN, and TP) have significant 
decreasing trends at most of the stations, except that NOx 
and TP have substantial increasing trends at several sta-
tions. Significant increasing trends were detected for spe-
cific conductivity and salinity at seven monitoring stations 
located in the Brevard County after 2006, and it is attrib-
uted to the drought conditions in 2006. Drought (espe-
cially the warmer-drier conditions) reduces the amount of 
water to the lagoon, enhances the evaporative loss of fresh 
water, and subsequently increases the salinity in surface 
waters and watershed soils. Improvement in water quality 
in terms of decreasing nutrient concentrations was noticed, 
which may be resulted from the implementation of lagoon 
restoration projects. The understanding of water quality for 
the central IRL area obtained in this study can be utilized 
for water quality improvement.
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