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Abstract
Like almost all fields of science, hydrology has benefited to a large extent from the tremendous improvements in scientific 
instruments that are able to collect long-time data series and an increase in available computational power and storage 
capabilities over the last decades. Many model applications and statistical analyses (e.g., extreme value analysis) are based 
on these time series. Consequently, the quality and the completeness of these time series are essential. Preprocessing of 
raw data sets by filling data gaps is thus a necessary procedure. Several interpolation techniques with different complexity 
are available ranging from rather simple to extremely challenging approaches. In this paper, various imputation methods 
available to the hydrological researchers are reviewed with regard to their suitability for filling gaps in the context of solving 
hydrological questions. The methodological approaches include arithmetic mean imputation, principal component analysis, 
regression-based methods and multiple imputation methods. In particular, autoregressive conditional heteroscedasticity 
(ARCH) models which originate from finance and econometrics will be discussed regarding their applicability to data series 
characterized by non-constant volatility and heteroscedasticity in hydrological contexts. The review shows that methodologi-
cal advances driven by other fields of research bear relevance for a more intensive use of these methods in hydrology. Up 
to now, the hydrological community has paid little attention to the imputation ability of time series models in general and 
ARCH models in particular.
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Introduction

The phenomenon of missing data has been discussed exten-
sively within and beyond statistics (Schafer and Graham 
2002). It is a common problem in empirical studies in the 
social, medical or geographical sciences and occurs for a 
number of different reasons, including erroneous manual 
data entry, equipment errors during the collection of data 
or a loss of data due to defective storage technologies (Tan-
nenbaum 2009).

It is a well-known fact, however, that numerous hydrolog-
ical research databases contain missing values (Elshorbagy 
et al. 2002). There are many, often idiosyncratic, reasons 
for data to be missing. They include the failure of obser-
vation stations, incomparable measurements, manual data 
entry procedures that are prone to error and equipment error 
(Johnston 1999). Missing data generally reduces the power 
and the precision of statistical research methods (Roth et al. 
1999). In addition to reducing the power of these methods, 
missing data can also lead to biased estimates of the rela-
tions between two or more variables (Pigott 2001). Both 
problems—reduction in power and bias of estimates—can 
lead to inaccurate conclusions in analyses of datasets that 
contain missing data (Graham 2009). Missing data is a rel-
evant problem in deterministic hydrological modeling which 
relies on observed data including hydrometeorological input 
parameters like temperature and precipitation to model com-
plex relations between variables relating to weather condi-
tions and geographic surroundings (Gill et al. 2007; Kim 
and Ryu 2016; Henn et al. 2013). Therefore, gap-free time 
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series are a necessary prerequisite for many statistical and 
deterministic model approaches in hydrology.

Common statistical approaches for hydrological analy-
sis including the determination of the flow duration curve, 
the autocorrelation function, spectrum analysis and extreme 
value analysis, etc., based on complete time series with-
out data gaps. Missing data create problems for all of the 
approaches listed above. When the available time series are 
long enough, researchers can use a subset of the data that 
contains a complete set of observations for a certain period. 
More often, due to personal and financial limitations, the 
available data have been collected over shorter observational 
periods. In these cases, the application of statistical methods 
that strictly require complete time series can be severely 
aggravated. To minimize the efforts required to tackle the 
missing data problem, imputation methods are favored using 
statistical models with different degrees of sophistication. 
The goal is to find a method that relays as much as possible 
on the measured data and as little as possible on theoretic 
assumptions (Aubin and Bertrand-Krajewski 2014).

These approaches are based on the assumption that the 
sample to be analyzed is a random sample from the entire 
database and hence contains a complete set of information 
(Farhangfar et al. 2008). Over recent decades, imputation 
methods which attempt to ‘fix’ datasets characterized by 
missing data by replacing them with inserting numerical 
values have improved dramatically (Peugh and Enders 
2004). The rise of more sophisticated imputation methods 
has led many researchers to favor replacing missing values 
with imputed values over excluding them from the analysis 
entirely (Saunders et al. 2006). It is obvious that experts of 
local and regional water authorities try to minimize the gaps 
in time series of their monitoring programs when preparing 
data sets required for water resources management. In the 
last 20 years, statisticians have introduced imputation meth-
ods such as regression-based imputation, data imputation 
based on principal component analysis (PCA) or maximum 
likelihood techniques using the ‘expectation–maximiza-
tion’ (EM) algorithm as well as ‘multiple imputation’ (MI). 
These methods offer promising solutions but their perfor-
mance depend on the exact application and a knowledge of 
the theoretical background (Soley-Bori 2013).

In general, the choice of a specific imputation method 
is determined by the nature of the process generating the 
original data. Statistical models can be used to fix the data 
gap in the measured time series of different parameters in 
hydrology like rainfall, ground- and surface water level or 
temperature. Due to the different characteristics of rainfall 
and temperature behavior regarding autocorrelation and var-
iance, different imputation methods have to be applied. For 
instance, data is often cross-sectional in nature and a familiar 
statistical tool such as PCA or linear regression approaches 
can be used for imputation purposes. In hydrological 

settings, however, the choice of an appropriate imputation 
method needs to take into account the most important fea-
tures of hydrological data. Hydrological data are often time 
series data that are characterized by stable trends over time 
and a high autocorrelation of the observations. Moreover, 
hydrological time series often display random deviations 
from these trends and these deviations are not constant over 
time (Guzman et al. 2013). Given these features of the data-
generating process underlying the hydrological data, the 
imputation of missing values should be based on statistical 
time series methods that take into account the time series 
nature of hydrological data. For instance, singular spectrum 
analysis (SSA) models or autoregressive moving average/
autoregressive integrated moving average (ARMA/ARIMA) 
models have been applied in hydrological settings to pre-
dict medium and long-term hydrological runoff (Zhang et al. 
2011). One feature of time series data that has received little 
attention in the hydrological literature so far is non-constant 
deviations around a trend, which is called heteroscedasticity. 
For this reason, autoregressive conditional heteroscedasticity 
(ARCH) time series models, which originate from finance 
and econometrics, will be discussed below. ARCH models 
may be used not only to explain and characterize observed 
hydrological time series but also to impute missing obser-
vations in existing datasets which are characterized by non-
constant high variability.

The goal of this paper is to present an overview of dif-
ferent imputation methods that are available to time series 
analysis in hydrology. Imputation in hydrology has very 
often been done in an ad hoc manner, lacking a clear theo-
retical basis and a sound selection of methods depending on 
the statistical properties of the respective observable and 
the respective research question. This review paper aims at 
increasing awareness among the use of different imputation 
techniques in hydrologic context. In this attempt, particular 
emphasis is laid on the fact that hydrological data can be 
characterized as time series data in which statistical patterns 
such as autocorrelation or seasonality emerge over time and 
can be exploited for imputation purposes. A special focus 
will be laid on ARCH models and the discussion of the 
extent to which they might be applied to hydrological set-
tings of missing data.

Patterns of missing data

To date, a variety of different statistical techniques are avail-
able to address the problems arising from missing data (Puma 
et al. 2009). An understanding of these methods is increas-
ingly important as having complete and accurate databases 
is often the prerequisite for applying increasingly sophisti-
cated statistical methods. Often, it is tempting to follow the 
simplest way of dealing with missing data, which consists of 
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simply discarding (i.e., deleting) observations where infor-
mation on one or more variables is missing. This approach 
is also one of the default options for statistical analysis in 
most software packages and is called ‘listwise’ or ‘pairwise’ 
deletion (Harrington 2008). Nevertheless, it must be pointed 
out that deleting of even a small share of all observations in 
a dataset will reduce the statistical power and the accuracy of 
the analyses undertaken (Rubin and Little 2002).

Before any missing data can be imputed, the most impor-
tant question that researchers have to address relates to the 
underlying patterns of the ‘missingness’ or rather incom-
pleteness of the data. In particular, they have to diagnose 
whether data in some observations is missing randomly or 
whether the observed incompleteness follows a particular 
pattern (Little and Rubin 1987). In this context, the clas-
sification system of missing data outlined by Rubin (1976) 
and colleagues remains in widespread use today. Following 
Rubin (1976), missing data can be seen as a probabilistic 
process and allows three so-called missing data mechanisms 
to be identified which describe the relationship between the 
measured variables and the probability of a missing data: 
missing completely at random (MCAR), missing at random 
(MAR) and missing not at random (MNAR).

Assume that our data contains one variable of primary 
interest Y and a number of additional variables, referred to 
as a vector X. Following this notation, and with m being an 
indicator variable for missing observations in Y, i.e., m = 1 
if a data point is missing and m = 0 if a data point has been 
observed, the probability that a value in Y is missing can be 
expressed as a function of Y and X with

First, suppose that the probability of a missing obser-
vation in Y is completely independent of any observed or 
unobserved measurements of this variable or other vari-
ables X and also independent of the other observations in 
the dataset. If this is the case, the absence of a value in a 
given observation is called missing completely at random 
(MCAR) (Allison 2012). This mechanism is what research-
ers consider to be purely random missingness. The case of 
MCAR missing data causes the fewest problems for statisti-
cal analyses. In a dataset including missing values that are 
MCAR, the subset of all observations containing the miss-
ing data can be deleted. The remaining subset then contains 
all observations with complete information. This approach 
often is called listwise/pairwise deletion (McKnight et al. 
2007). As the resulting dataset containing only the observa-
tions with complete data is a random sample from the initial 
data, it can easily be shown that results based on its statisti-
cal analysis will be unbiased (Rubin 1976). Mathematically, 
MCAR implies that

(1)Pr (m = 1|X, Y).

(2)Pr (m = 1|X, Y) = Pr (m = 1).

Another pattern of missing values is called missing at ran-
dom (MAR). MAR is a less restrictive assumption regarding 
the pattern of missing values compared to MCAR. When 
data are missing at random, the probability of missing data 
in a variable for a given observation is only related to any 
other observed variable rather than to Y itself. This implies 
that

Data that contain information MAR require more atten-
tion than data is MCAR: all simple imputation methods for 
missing data, i.e., listwise and pairwise deletion or arithme-
tic mean imputation, will give biased results in analyses of 
the relations between variables in the dataset (Pigott 2001). 
Nevertheless, unbiased results can be obtained in the case 
of data MAR. This requires the application of more sophis-
ticated imputation methods, however, including single and 
multiple imputations (Donders et al. 2006).

In cases where neither the MCAR nor the MAR assump-
tion holds, data are said to be ‘Missing Not At Random’ 
(MNAR) (McKnight et al. 2007). If cases are MNAR, there 
is a relationship between the variables that include missing 
data and those for which the values are present and hence 
the following equation is valid

When missing data are MNAR, results from statistical 
analyses will be biased and there is little what imputation 
techniques can do to ease the problem (Donders et al. 2006). 
It is thus important to investigate whether the missing pat-
tern is random or not before any statistical test is conducted. 
For a full discussion, see Rubin and Little (2002).

An overview of traditional techniques 
for handling missing data

Dozens of techniques to deal with the missing data prob-
lem have been used over the decades (Baraldi and Enders 
2010). The more common traditional approaches to deal 
with missing data include removing the values with incom-
plete data/deletion, or so-called single-imputation methods 
where missing values are replaced (Peugh and Enders 2004). 
Whereas deletion methods reduce the sample size, the pur-
pose of single-imputation methods is to retain the sample 
size and statistical power in subsequent analyses (Cool 
2000). However, single-imputation methods have drawbacks 
which are addressed by more complicated multiple imputa-
tion methods which are often based on Monte-Carlo-type 
simulations and require more computational sophistication 

(3)Pr (m = 1|X, Y) = Pr (m = 1|X).

(4)Pr (m = 1|X, Y).
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than simple imputation methods.1 This section reviews the 
most important imputation methods (Table 1). Despite their 
widespread use, these methods still have shortcomings in 
their procedures which will be also illustrated in this section.

Listwise and pairwise deletion

The elimination of all observations which have missing data 
in one or more variables is called listwise deletion (Mcdon-
ald et al. 2000). The primary benefit of listwise deletion is 
convenience (King et al. 1998). This approach has several 
drawbacks, as addressing incomplete data by deleting obser-
vations will inevitably reduce the sample size (Rubin et al. 
2007). It is a well-established fact in statistics that smaller 
sample sizes reduce the statistical power and precision of 
standard statistical procedures (Rubin and Little 2002). A 
reduction in the precision of tests and estimates renders 
inference (such as hypothesis testing) conservative. A more 
severe effect could be that it can introduce a systematic bias. 
If the data is MCAR, a sample excluding observations with 
missing values will be a random draw from the complete 
sample and estimates remain unbiased. If, however, the rela-
tively strong assumption of MCAR is violated, the deletion 
of observations with missing data will bias the value of the 
estimates of interest. A simulation by Raaijmakers (1999) 
demonstrated that the statistical power is reduced between 
35% (with 10% missing data) and 98% (with 30% missing 
data) using listwise deletion.

The elimination of observations on a case-by-case basis 
depending on which variables are used in a specific analysis 
is called pairwise deletion. It is different to listwise dele-
tion as an observation is deleted only if a variable used in 
the analysis contains a missing value (Wothke 2000). For 

example, if a respondent does not provide information on 
variable A, the respondent’s data could be used to calcu-
late other correlations, such as the one between B and C. 
Pairwise deletion is often an improvement in listwise dele-
tion because it preserves much more information by mini-
mizing the number of cases discarded compared to listwise 
deletion (Roth 1994). Among the most important problems 
of pairwise deletion is the limited comparability of differ-
ent analyses as the number of observations varies between 
different pairwise comparisons (Croninger and Douglas 
2005). Moreover, estimates of covariances and correlations 
might be biased when using pairwise deletion since differ-
ent parts of the sample are used for each analysis (Kim and 
Curry 1977). Despite its convenience, this method is practi-
cal only when the data contains a relatively small portion 
of observations with missing data. If a negligible share of 
the observations contains missing data, the analysis of the 
remaining observations will not lead to serious inference 
problems (Tsikriktsis 2005). Deletion techniques are the 
default options for missing data techniques in most statisti-
cal software packages, and these techniques are probably the 
most basic methods of handling missing data (Marsh 1998).

Single‑imputation methods

Single-imputation approaches generate a single replace-
ment for each missing value with suitable values prior to the 
actual analysis of the data (Enders 2010). A variety of differ-
ent missing data imputation methods have been developed 
over the years and are readily available in most standard 
statistical packages. As has been discussed above, all impu-
tation methods produce biased results if the relatively strong 
MCAR assumption is violated. In particular, imputation is 
advantageous compared to listwise or pairwise deletion as it 
generates a complete dataset. Hence, it also makes use of the 
data that deletion techniques would discard. Nevertheless, 
as will be discussed below, these methods have potentially 
drawbacks and even in an ideal MCAR situation most of 
these approaches generate biased parameter estimation.

Table 1  Summary of common imputation methods used to handle missing data in hydrological data sets

Imputation method Problems/limitations Literature

Listwise deletion Reduces sample size, produces bias when MCAR is violated Mcdonald et al. (2000)
Pairwise deletion Reduces sample size, only practical for small portions of miss-

ing data
Wothke (2000)

Single imputation Generates biased parameter estimation Enders (2010)
Arithmetic mean and median imputation Decreases variance Roth (1994), McKnight et al. (2007)
Regression-based imputation Danger of overestimation of correlation, decreases variance Greenland and Finkle (1995)
Principal component based imputation Complex identification of dimensions needed for processing Pandey et al. (2011)
Multiple imputation Requires statistical sophistication and expertise Graham and Hofer (2000)

1 As in “Multiple imputation” section below, multiple imputation 
generates multiple datasets containing imputed values which are 
enhanced by a random error term. The desired statistical analyses are 
then carried out multiple times on these different datasets and their 
results aggregated. This approach allows getting more appropriated 
standard errors on the estimates of the desired parameters.
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Many different single-imputation methods have been 
introduced and applied: arithmetic mean imputation, prin-
cipal component analysis (PCA) and regression-based impu-
tation are the most commonly known and will be briefly 
introduced below.

Arithmetic mean and median imputation

Arithmetic mean imputation replaces missing values in a 
variable with the arithmetic mean of the observed values of 
the same variable (Roth 1994). Median imputation replaces 
missing values with the median value of the observed 
values of the same variable (McKnight et al. 2007). Both 
approaches are very convenient since they generate a com-
plete dataset easily (Hawkins and Merriam 1991). Median 
imputation is preferable when the distribution of the under-
lying variable is not symmetric but instead skewed (McK-
night et al. 2007).

However, even in situations where the strong MCAR 
assumption holds, these approaches distort the result-
ing parameter estimates (Enders 2010). For instance, they 
attenuate the standard deviation and the variance of esti-
mates obtained from analyses of mean-imputed variables 
(Baraldi and Enders 2010). The reason for the reduction in 
the standard deviation of estimates is that the imputed val-
ues are identical and at the center of the distribution, which 
reduces the variability of the data (Little 1988). This fact 
also attenuates the magnitude of estimated covariances and 
correlations between mean-imputed variables and other vari-
ables in a dataset (Malhotra 1987).

Regression‑based imputation

Regression-based imputation replaces missing data with pre-
dicted values from a regression estimation (Greenland and 
Finkle 1995). The basic idea behind this method is to use 
information from all observations with complete values in 
the variables of interest to fill in the incomplete values which 
is intuitively appealingly (Frane 1976). Different variables 
tend to be correlated in many applications (Allison 2001). 
Exploiting information from all observations with complete 
information is a strategy which regression-based imputation 
methods share with multiple imputation and maximum like-
lihood imputation methods, although the former approach 
does so in a less sophisticated way (Raghunathan 2004). 
Note that maximum likelihood imputations refer not to the 
estimation method used by the regression-based imputation 
methods but rather to the technique of selecting among dif-
ferent values that might be chosen to assess a missing value.

The first step in the imputation process is to estimate 
regression equations that relates the variable that contains 
missing data (the dependent variable of the regression) to 
a set of variables featuring complete information across all 

observations in the dataset (independent variables of the 
regression). This regression is estimated only for the subset 
of the data that contains all observations that have complete 
information both for the dependent variable and the inde-
pendent variables. The results of the regression are estimates 
due to the relation of independent to dependent variables.

The second step exploits this information. Using the 
regression results from the first step, missing values for 
the observations that could not have been included in the 
regression are replaced by predictions obtained by combin-
ing the observed values of the independent variables with 
the estimates, from the first step, of how they are related to 
the dependent variables. These predicted values fill in the 
missing values and produce a complete dataset (Frane 1976). 
In the case of k variables with n − r missing values in the k-
th variable (n being the total number of observations and r 
being the number of complete observations), a linear regres-
sion can be estimated based on all r complete observations. 
The regression yields the estimated regression coefficient. 
Based on these estimates, missing values in the k-th variable 
can be predicted, i.e., imputed with

While regression-based imputations most frequently rely 
on simple linear regressions, it is worth noting that more 
flexible regression approaches can equally be used and might 
even be more advantageous depending on the application. 
In “Introduction to time series analysis and its application 
to imputation of missing values” section, we will discuss to 
what extent time series regression approaches can be used in 
regression-based imputations of hydrological data.

From a methodological viewpoint, regression imputa-
tion is superior to mean imputation, but it can lead to pre-
dictable biases (van der Heijden et al. 2006). In particular, 
regression-based imputation methods lead to the opposite 
problem as mean imputation as missing data is replaced 
with values that are highly correlated to other variables in 
the data. Consequently, the application of regression-based 
imputation methods will lead to overestimated correlations 
and R2 statistics in subsequent data analysis.

Imputation based on principal component analysis (PCA)

Principal component analysis (PCA) was originally con-
ceived as a multivariate exploratory data analysis technique. 
It is used to extract patterns from datasets by transforming 
the data into a new coordinate system such that the greatest 
variance, by some projection of the data, comes to lie on 
the first coordinate (called the first principal component). 
The second greatest variance lies on the second coordinate, 

(5)ŷt,k = �̂0 +

k−1∑
j=1

�̂jyi,j ∀i ∈ [r, n].
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and so on. Moreover, PCA can be used to compress high-
dimensional vectors into lower-dimensional ones (Pandey 
et al. 2011). The principal idea behind PCA is to find a 
smaller dimensional linear representation of data vectors so 
that the original data can be approximated from the lower-
dimensional representation with minimal mean square error. 
Graphically, PCA can then be used to interpret a projection 
of the original data points on a lower-dimensional space, 
which minimizes the reconstruction error (Jolliffe 1993).

Formally, PCA can be expressed as follows. Assume 
that observed data points x1, x2,… , xn ∈ Rp are p-dimen-
sional vectors. PCA defines a projection of these data on a 
q-dimensional space (with q ≤ p) as

In this q-dimensional model, µ is a vector of the mean 
values of length p, �q is a p × q matrix with q orthogonal 
unit vectors and λ is the q-dimensional projection of each 
original data vector x. A projection of the original data can 
be found by maximizing the variance of the projection of 
the original data along the new (reduced) dimensions of the 
projection space

Here, µ can be interpreted as the intercept of the projec-
tion space in the original space, λ1,…,λn are the projection 
coordinates of the original observations x1,…,xn. Note that 
PCA can be also be derived from a maximization of the vari-
ance of the projected data points along the new dimensions. 
The results are computationally equivalent.

While originally not devised as an imputation method, 
PCA can be used to replace missing values in a dataset and 
hence also as an imputation tool. For this purpose, an itera-
tive PCA algorithm was proposed by Kiers (1997). The algo-
rithm can be summarized as follows:

1. Missing values are initially replaced by the sample 
mean.

2. PCA is conducted on the now complete dataset by mini-
mizing the reconstruction error as described above to 
derive µ, λn and �q.

3. Initially missing values are replaced by imputed values 
based on the results from step (2) with xn = µ + �q × �n
.

4. Steps (2) and (3) are repeated until the imputed values 
of initially missing values converge.

It can be shown that the iterative PCA corresponds to an 
expectation–maximization (EM) algorithm and is thus often 
named an EM-PCA algorithm (de Leeuw 1986; Dempster 
et al. 1977). This approach is computationally more efficient 

(6)f (�) = � + �q�.

(7)min
�,�1…N ,�q

N∑
n=1

xn − � − �q�n.

as it does not require the computation of the full covariance 
matrix. It needs to be stressed that one the biggest disadvan-
tages of PCA is the number of dimensions q in PCA needs 
to be chosen by the analyst and is not a result of the analysis. 
This has been identified as a core issue and is a very difficult 
task that has been extensively discussed in the literature. For 
a treatment of this issue see, for instance, Jolliffe (2002).

Multiple imputation

In order to ease the negative impact of regression imputation 
mentioned above, more sophisticated approaches have been 
developed. The principal idea here is to replace each missing 
item with two or more plausible values, representing a distri-
bution of possibilities. Therefore, these are known as multi-
ple imputation approaches (MI) (Graham and Hofer 2000). 
Recent advances in computational power have made multi-
ple imputation available as relevant procedures are included 
in standard statistical software packages more frequently. 
The biggest advantage of multiple imputation is that infer-
ence regarding statistics such as correlations error obtained 
from multiple imputation are not overestimated because they 
incorporate uncertainty due to missing data (Lee and Carlin 
2010). However, there are some disadvantages in MI. The 
biggest disadvantage of MI is that it requires more com-
putational effort, since both the imputation and the subse-
quent analyses have to be carried out multiple times (Rubin 
2004). It should be noted, however, that given the advances 
in computing hardware and software this is not a burden in 
practice and most statistical software packages nowadays 
contain routines for MI.

While there are different approaches to MI imputation, 
the underlying sequence of computations steps is similar 
(Allison 2000): First, the missing data are imputed by an 
appropriate model M times to produce M complete datasets 
(Fig. 1). Most often, regression-based imputation techniques 
are used in this step. In each of the M steps, the predicted 
values from the regression analysis are varied by a random 
term of zero mean and a specified standard deviation. After 
this step, the desired statistical analysis can be carried out on 
each of the M datasets using standard complete data analy-
sis methods. This yields a set of M results, of which aver-
age values and standard errors can thereafter be computed 
(Allison 2000). This approach avoids the underestimation 
of standard errors and hence is often preferable to single-
imputation methods.

Despite its desirable properties, multiple imputation 
requires statistical and computational sophistication. For 
this reason, the remainder of the paper focuses on single-
imputation methods, which still seem to be more frequently 
used in hydrological settings.
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Introduction to time series analysis and its 
application to imputation of missing values

Overview

A time series, in our context, is a discrete time series defined 
as a series of observations of Y where are observations over 
several consecutive time periods t = 1,…,T. yt might be the 
amount of discharge from a given measurement station that 
is measured on a daily basis. The hydrologist might be inter-
ested in analyzing runoff over time and how it depends on 
different types of boundary conditions. The assumption that 
observations in the dataset are independent thus seems far 
fetched. In hydrology, it is reasonable to assume that there 
are periods characterized by high runoff, in which today’s 
runoff will be related to the amount of runoff the day before 
and hence past values are correlated with today’s runoff 
value.

Data imputation approaches can make efficient use of 
dependencies between different observations in a time series, 
defined as data resulting from the observation of subjects 
which are repeatedly measured over a series of time points 
(Hedeker and Gibbons 1997). In contrast to conventional 
approaches, time series techniques allow for the assumption 
that yt is not independent of preceding observations of y. 
This is called autocorrelation, or serial correlation, where yt 
is a function of a previous value of y. Adapted approaches 
exploit autocorrelation to a model if a given phenomenon 
is not only based on conditions in t but also on its own his-
tory (for instance Yt−1). In the following, the adaptation of 
PCA to time series data which is often called singular spec-
trum analysis (SSA) is discussed before we move on to a 
more comprehensive discussion of time series regression 
techniques.

Singular spectrum analysis (SSA)

The aim of singular spectrum analysis (SSA) is to decom-
pose a time series into regular oscillatory components and 
random noise, applying the principles of PCA to time series 
data (Hassani 2007). For this reason, SSA can be considered 
a time series version of PCA. SSA, on the other hand, can 
be applied to a univariate time series yt with t = 1,…,T in 
order to separate a signal in a time series (trends or oscil-
latory movements) from a noise component that is random. 
To that end, a so-called trajectory matrix is formed from 
the original data. Taking the time series Y = (y1, y2,…, 
yn) of length n and choosing a window length L (with 
1 < L < n), K = n − L + 1 lagged vectors xj of the original 
time series can be generated with xj = (yi, yi+1,…,yj+L−1) for 
j = 1,2,…,K. These vectors form the trajectory matrix X with

In a second step, and similarly to PCA, the trajectory 
matrix is then subjected to a single value decomposition 
yielding a set of so-called eigentriples which contain the 
principal components of Y (Wall et al. 2003).

By projecting the principal components back onto the 
eigenvectors, a time series (referred to as the ‘reconstructed 
components’) can be recovered in the original time units, 
each one corresponding to one of the PCs.

This third step of SSA splits the elementary matrices Xi 
into several groups and sums the matrices within each group. 
Finally, diagonal averaging transfers each of these matrices 

(8)X =
�
X1,… ,XK

��
=

⎡
⎢⎢⎢⎣

y1 y2
y2 y3

⋯
yL
yL+1

⋮ ⋱ ⋮

yK yK+1 ⋯ yn

⎤
⎥⎥⎥⎦
.

Fig. 1  Scheme of multiple 
imputation
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into a time series, which is an additive component of the 
initial series yt.

It should be noted here that the window length L must be 
chosen by the researcher. The choice of L is important, as 
it defines the maximum length of the oscillations that can 
be detected employing SSA. While the literature provides 
some guidance by providing rules of thumb for the choice 
of L, ultimately any ex-ante choice of L remains arbitrary 
,and there are no tests available that would allow statistical 
inference to be conducted regarding the choice of L. In the 
context of imputation, Kondrashov and Ghil (2006) propose 
an iterative approach to determine a suitable choice of L. In 
particular, they iteratively produce estimates of missing data 
points, which are then used to compute a self-consistent lag-
covariance matrix and its empirical orthogonal functions. 
This approach allows the window length L to be optimized 
by cross-validation.

Time series regression

Autoregressive and moving average models (ARMA, 
ARIMA)

Similarly, to linear regression frameworks, for instance, 
time series regressions can easily be used for regression-
based imputations methods. Imputed values are then derived 
from a prediction based on time series regression instead of 
regression to an external variable. In particular, one can treat 
time series prediction as a problem of missing data where 
the missing data located in the future are predicted based on 
regression to preceding data (Sorjamaa et al. 2007).

Different time series regression methods can be distin-
guished depending on the assumptions they make regarding 
the autocorrelation between different observations of Y. The 
most crucial assumptions related to the number of previ-
ous observations of Y that are considered in computing the 
contemporary value of Y (the order of the autocorrelation) 
and whether the correlation between the actual value of Y 
and preceding values is constant or changes over time. It is 
beyond the scope of this paper to provide a detailed over-
view of these methods. Stock and Watson give a thorough 
treatment of time series methods (Stock et al. 2007).

Formally, there are different ways of specifying a sto-
chastic process that generates time series where yt and yt−j 
are correlated over time, i.e., autocorrelation exists between 
different measures of y. One possible specification is an 
autoregressive process AR(p) of pth order with

In (9) epsilon is a random error term that follows a stand-
ard normal distribution and is independent over time with 
E(εt, εt−i) = 0 for all i ≠ t. p denotes the number of lagged 
values of yt that are considered. εt is an independent and 

(9)yt = �0 + �1yt−1 + �2yt−2 +⋯ + �pyt−p + �t.

identically distributed error term with zero mean and con-
stant variance. Commonly used autoregressive (AR) models 
make the assumption that autocorrelation is constant over 
time and depends only on the intervals j between the yt and 
yt−j.

An alternative specification of a stochastic process that 
generates autocorrelation in a time series is moving average 
(MA) processes, in which the contemporary value of yt is 
a function of its mean µ and a sequence of random innova-
tions with

While yt is not directly a function of previous values yt−q 
in MA processes, autocorrelation between yt and yt−q is a 
consequence of the same random innovations εt−q entering 
the computation of different yt.

In time series modeling, there is often an explicit recog-
nition that time series models are merely intended to act as 
an approximation characterizing the dynamic behavior of 
the underlying series, the intention being to approximate 
autocorrelation structures over time (Adhikari and Agrawal 
2013). Only in rare circumstances is it intended to provide 
a ‘true’ model of a time series. Instead, the focus is often to 
determine whether a time series model provides an approxi-
mation to observed behavior. While a ‘true’ model may take 
a large number of lagged terms to provide a proper fit with 
the specification in (9), it is often possible to fit an observed 
autoregressive (AR) time series more economically by com-
bining it with a moving average (MA) component consist-
ing of a sum of weighted lags of the error term εt (Box and 
Jenkins 1976). The resulting ARMA model is written as

Equation (11) is often referred to as an ARMA(p, q) 
model as it contains a pth-order autoregressive component 
in the observable time series, yt, and a qth-order moving 
average component of the unobservable random shocks 
εt. It is generally assumed that εt follows a so-called white 
noise process with zero mean E(εt) and constant variance 
E(εt2) = σ2. Moreover, it must to be noted that for Eq. (11) 
to be a tractable model that can be fitted to data, weak sta-
tionarity of the underlying time series’ yt is required. Weak 
stationarity is given if at least a time series’ mean, vari-
ance and autocovariances are independent of t—whereas 
higher moments of the distribution of yt over time might 
well depend on t. If E(yt) = µ, E(yt − µ) = σ2 and E[(yt − µ)
(yt−j − µ)] = γj, then a time series of yt is said to be weakly 
stationary. Strict stationarity, on the other hand, would imply 
that a time series’ distribution does not depend on t at all and 
hence E(yt) = µ and E(yt − µ) = σ2 and all higher moments 
are independent of t.

(10)yt = � + �t + �1�t−1 + �2�t−2 +⋯ + �p�t−q.

(11)
yt = �0 + �1yt−1 + �2yt−2 +⋯ + �pyt−p + �t − �1�t−1 −⋯ − �q�t−q.
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If a time series yt is not stationary, stationarity can 
often be achieved by differencing the time series once or 
more (Box and Jenkins 1976). If differencing is required 
the ARMA (p, q) model (Autoregressive Moving Aver-
age) becomes an ARIMA (p, d, q) model (Autoregressive 
Integrated Moving Average), where d denotes the order of 
differencing, i.e., the number of times yt is differenced to 
achieve stationarity.

When fitting ARIMA models, the choice of p, d and q 
can be guided by examining the autocorrelation and partial 
autocorrelation of yt and εt over time (the latter measuring 
the correlation between yt and yt−j after accounting for the 
correlation between yt and yt−1, yt−2,….,yt−j+1). Stationarity 
is achieved and hence d is determined if autocorrelations 
between yt and yt−j become insignificant for increasing j. 
Moreover, an examination of the partial autocorrelation 
between yt and yt−j provides information about whether the 
order of the AR process p: p should be chosen as the number 
of lags for which the partial autocorrelation between yt and 
yt−j is still significant. In a similar way, the parameter q can 
be obtained by examining the full or partial autocorrelation 
of the error terms. A comprehensive procedure to choose the 
right parameters can be found in Box and Jenkins (1976).

ARMA and ARIMA models can easily be generalized to 
incorporate the influence of past, current or future values of 
exogenous factors (x variables) on the observed time series 
yt. These approaches can be extended to ARMAX/ARIMAX 
by including exogenous variables (Feinberg and Genethliou 
2005). Formally, they can be expressed as

where βk denotes the effect of the exogenous variable xk on 
the outcome variable yt. Both ARMA/ARIMA and ARMAX/
ARIMAX models can be readily estimated using common 
statistical software packages. The estimates obtained from 
fitted models can then be used as the basis for predictions 
employed to impute missing values, as described for the lin-
ear OLS (ordinary least squares) regression above.

Autoregressive conditional heteroscedasticity (ARCH) 
models

While ARMA/ARIMA models prove to be valid in many 
applications, the assumption of constant variance of the 
error terms E(εt2) = σ2 over time might, however, be too 
restrictive. In finance, for instance, periods of relatively sta-
ble stock markets might be followed by periods of crisis and 
turmoil (Baur and Lucey 2009), inducing a time-dependent 
autocorrelation of the error terms with E(εt2) = σt2. In sta-
ble markets, autocorrelation might be relatively high (i.e., 

(12)

yt = �0 + �1yt−1 + �2yt−2 +⋯ + �pyt−p + �1xt,1 + �2xt,2

+⋯ + �kxt,k + �t − �1�t−1 − ⋯ − �q�t−q,

prices today will be similar to prices yesterday) and stock 
price movements are predictable (Fama and French 1988). In 
phases of turmoil, however, price movements might be big-
ger and autocorrelation is lower (Eom et al. 2004). In hydrol-
ogy, the local climate might be characterized by a period of 
stable conditions followed by change in weather that drasti-
cally alters relevant outcomes (Hughes et al. 2011). In both 
examples, the assumption of constant autocorrelation might 
be too narrow. More realistic would be an assumption of 
changing variance and hence changing autocorrelation of the 
observed outcomes over time (heteroscedasticity).

The ARCH model is an extension of more restrictive 
AR models with constant autocorrelation of the outcome 
of interest (Zhu and Wang 2008). It is a non-linear regres-
sion model that captures not only past values of yt but also 
time-varying volatility within the structure of standard time 
series models described above. While it is beyond this article 
to detail the mathematical underpinnings of Engle’s work, 
it should be stressed that ARCH models are based on the 
assumption—while holding the unconditional variance of εt 
constant with E(εt2) = σ2—that its conditional variance could 
follow an AR process of its own with

where �t is a white noise process. Based on this specifica-
tion the ARCH model extends the standard ARMA/ARIMA 
model to incorporate time-varying volatility. While they 
require more additional assumptions (see Engle 1982 for 
technical details), ARCH models and their generalizations 
have proved useful for modeling flexible time series charac-
terized by non-constant volatility.

Discussion

Regression-based imputation methods used in practical work 
are mainly based on linear regression approaches as they are 
well understood and easy to implement. In a hydrological 
setting, however, the assumption of the linear regression is 
well established but seemed to be too restrictive (Astel et al. 
2004; Machiwal and Jha 2008). Imputation in hydrology 
often lacks a clear theoretical basis and a sound selection 
of methods depending on the statistical properties of the 
respective observable and the respective research question. 
The time series nature of hydrological data requires more 
flexible non-linear models such as the ARIMA and ARCH 
models, as shown above. It should be noted that there are 
multitude of alternative imputation methods based on non-
linear regression approaches as well as non-probabilistic 
algorithms and machine learning approaches such as artifi-
cial neural networks (ANN), support vector machines (SVM) 
and classification and regression trees (CART) in hydrology. 
A good introduction to machine learning approaches can 

(13)�2 = � + �1�
2

t−1
+⋯ + �m�

2

t−m
+ �t.
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be found in Flach (2012). These approaches require very 
large training data sets as well as a sound expertise, e.g., 
in order to minimize the risk of overfitting. Thus, machine 
learning approaches cannot be recommended for unexperi-
enced users. In addition, they are very likely to outperform 
the methods given in our review only for fairly long data 
gaps. Here we highlighted the potential role of time series 
methods as they explicitly model the particular statistical 
properties of hydrological time series (autocorrelation and 
heteroscedasticity) which are mostly neglected in algorith-
mic machine learning approaches.

Similarly, to ARMA/ARIMA models, ARCH models 
can easily be generalized and also allow the influence of 
past, current and future values of exogenous variables xt to 
be modeled on the time series of interest. The estimation 
of ARCH is again possible relying on standard statistical 
software packages and predictions can be used to impute 
missing values in a time series. For the reasons stated above, 
when modeling the outcome variable of interest (yt), time 
series models should focus on its variance and changes in 
variance over time. The increased importance of risk and 
uncertainty considerations in water resources management 
and hydrological modeling calls for new time series tech-
niques that allow time-varying variances to be modeled, 
beyond the purpose of data imputation. For hydrologic non-
stationary time series modeling e.g., rainfall in arid regions 
and hydrological time series through climate change condi-
tions the testing of ARCH models with larger data bases is 
strongly recommended in the future (Modarres and Ouarda 
2013).

Conclusion

Missing data is a common problem in hydrological data and 
poses a serious problem for many statistical and modeling 
approaches in hydrology. Therefore, researchers need to 
resort to imputation methods in order to replace missing 
values with approximations as these approaches require gap-
free dataset. For reasons of convenience, researchers often 
resort to simple solutions to deal with missing data such 
as simply discarding observations characterized by miss-
ing data or by replacing missing data with a ‘naïve’ guess 
(such as the mean of all other observations). Despite their 
convenience, we have argued that these solutions have severe 
statistical shortcomings. Hydrological time series data are 
typically characterized by pronounced autocorrelation and 
seasonality. Making efficient use of these features could 
improve the performance of imputation methods consid-
erably compared to widespread methods like mean-value 
imputation, etc. Even a relatively simple imputation algo-
rithm that exploits the time series nature of the data—the 
preceding value approach—performs significantly better. 

More sophisticated approaches, like imputation methods 
based on principal component analysis (PCA) or regres-
sion, can improve the accuracy of missing value imputation 
and reduce statistical problems induced by naïve imputation 
approaches.

Autoregressive conditional heteroscedasticity (ARCH) 
models, which originate from finance and econometrics, pro-
pose an even better solution to the problem outlined above. 
Moreover, they can generate more accurate forecasts of 
future volatility and perform better than models that ignore 
heteroscedasticity. So ARCH models may not only be used 
for the imputation of missing observation in existing datasets 
but also to explain and characterize observed hydrological 
time series like precipitation, discharge and groundwater 
head fluctuations which are characterized by non-constant 
high variability. For this reason, they could be valuable for 
hydrological time series modeling in water resources man-
agement and flood control applications.

It must be stressed that there have been few studies con-
cerning the imputation of missing data in the time series 
context in hydrology in general (e.g., Wang et al. 2005; Chen 
et al. 2008). Despite its particular focus on selected methods, 
our review shows that there are methodological advances 
that bear relevance for a more intensive use of these methods 
in hydrology.
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