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Abstract
Landslides every year impose extensive damages to human beings in various parts of the world; therefore, identifying prone 
areas to landslides for preventive measures is essential. The main purpose of this research is applying different scenarios 
for landslide susceptibility mapping by means of combination of bivariate statistical (frequency ratio) and computational 
intelligence methods (random forest and support vector machine) in landslide polygon and point formats. For this purpose, 
in the first step, a total of 294 landslide locations were determined from various sources such as aerial photographs, satel-
lite images, and field surveys. Landslide inventory was randomly split into a testing dataset 70% (206 landslide locations) 
for training the different scenarios, and the remaining 30% (88 landslides locations) was used for validation purposes. To 
providing landslide susceptibility maps, 13 conditioning factors including altitude, slope angle, plan curvature, slope aspect, 
topographic wetness index, lithology, land use/land cover, distance from rivers, drainage density, distance from fault, distance 
from roads, convergence index, and annual rainfall are used. Tolerance and the variance inflation factor indices were used 
for considering multi-collinearity of conditioning factors. Results indicated that the smallest tolerance and highest vari-
ance inflation factor were 0.31 and 3.20, respectively. Subsequently, spatial relationship between classes of each landslide 
conditioning factor and landslides was obtained by frequency ratio (FR) model. Also, importance of the mentioned factors 
was obtained by random forest (RF) as a machine learning technique. The results showed that according to mean decrease 
accuracy, factors of altitude, aspect, drainage density, and distance from rivers had the greatest effect on the occurrence of 
landslide in the study area. Finally, the landslide susceptibility maps were produced by ten scenarios according to different 
ensembles. The receiver operating characteristics, including the area under the curve (AUC), were used to assess the accuracy 
of the models. Results of validation of scenarios showed that AUC was varying from 0.668 to 0.749. Also, FR and seed cell 
area index indicators show a high correlation between the susceptibility classes with the landslide pixels and field observa-
tions in all scenarios except scenarios  10RF and  10SVM. The results of this study can be used for landslides management and 
mitigation and development activities such as construction of settlements and infrastructure in the future.

Keywords Landslide spatial modeling · Scenario-based modeling · Statistical models · Computational intelligence methods

Introduction

Landslides are the movement of materials that form the slope 
including natural rocks, soil, artificial accumulations, or a 
mixture of them that move to lower parts by gravity force 
(Guzzetti 2015). The landsides are one of the most common 
catastrophic natural dangers that occur in any regions of world 
and cause to hundreds million dollar economic loss, soil ero-
sion and hundreds thousand mortality and injuries yearly 
(Aleotti and Chowdhury 1999; De Sy et al. 2013; Lee et al. 
2017). During recent years many governments and research 
institutions have invested for preparing the maps that indicate 
the landslides spatial distribution (Xie et al. 2005; Guo-liang 

 * Hamid Reza Pourghasemi 
 hr.pourghasemi@shirazu.ac.ir

1 Department of Geomorphology, Tarbiat Modares University, 
Tehran, Iran

2 Department of Natural Resources and Environmental 
Engineering, College of Agriculture, Shiraz University, 
Shiraz, Iran

3 Physical Geography (Geomorphology), Faculty 
of Geography, University of Tehran, Tehran, Iran

http://orcid.org/0000-0003-2328-2998
http://crossmark.crossref.org/dialog/?doi=10.1007/s12665-017-7177-5&domain=pdf


 Environmental Earth Sciences (2017) 76:832

1 3

832 Page 2 of 20

et al. 2017). Regardless the obtained progresses for identify-
ing, measuring, forecast, and warning systems of landslide, 
but the losses result from landslide are increasingly in the 
worldwide, yet (Kincal et al. 2010). The landslides are the 
result of interconnected local temporal processes including 
hydrological processes (precipitation, evaporation, and under-
ground waters), vegetation weight, root resistance, soil condi-
tion, mother stone, height from sea level, slope degree and 
direction, topography, and human activities (Youssef 2015; 
Myronidis et al. 2016). Over the last decades, different meth-
ods have been developed to evaluate landslide susceptibility 
in different parts of the world. These methods can be divided 
into two categories including qualitative and quantitative 
methods. Qualitative methods are based on field observations 
and knowledge of the experts. In these methods, weight of 
conditioning factors was determined by experts (Wen et al. 
2017; Achour et al. 2017). Quantitative methods that in the 
last few decades have often been used for landslide suscep-
tibility mapping are consisted from three main categories: 
deterministic approaches, statistical methods, and computa-
tional intelligence methods. Statistical methods can be divided 
into two categories including bivariate and multivariate meth-
ods. The bivariate methods are including information value 
method (Chen et al. 2016a, b; Ba et al. 2017; Achour et al. 
2017), frequency ratio (Wu et al. 2016; Li et al. 2017), cer-
tainty factor (Wen et al. 2017; Hong et al. 2017a, b; Kornejady 
et al. 2017), and evidential belief function (Ding et al. 2016; 
Pourghasemi and Kerle 2016). In contrast, multivariate sta-
tistical analyses are known as logistic regression (Wang et al. 
2015; Colkesen et al. 2016; Horafas and Gkeki 2017; Guo-
liang et al. 2017). Computational intelligence models are 
artificial neural network (Dou et al. 2015; Moosavi and Niazi 
2015; Wang et al. 2016; Chen et al. 2016a, b; Pourghasemi 
et al. 2017; Zeng et al. 2017), support vector machines (Ren 
et al. 2015; Hong et al. 2016a, b; Colkesen et al. 2016; Chen 
et al. 2017a, b), and random forest (Hong et al. 2016a, b; 
Zhang et al. 2017; Chen et al. 2017a, b; Kim et al. 2017;  
Lai et al. 2017; Pourghasemi and Rahmati 2017; Zhang et al. 
2017). Several studies have also been done on various scenar-
ios (Avolioa et al. 2000; Du et al. 2013; Mantovani et al. 2000; 
Prompera et al. 2014). Quantitative and qualitative methods 
have disadvantages and advantages in the literature reviews. 
The accuracy of qualitative methods is significantly depend-
ent on the expertise of researcher (Feizizadeh et al. 2014), 
whereas deterministic models because they depend on the 
computation of the relevance between resisting and provoca-
tive forces, which requires precise data on the slope geometry, 
soils and rock’s, and hydrological conditions are usually used 
in small region (Armas et al. 2014). In the statistical methods, 
bivariate models can obtain the impact of each conditioning 
factor class on landslide occurrence, but it does not consider 
variables importance, while multivariate statistical method is 
opposite to it (Guo-liang et al. 2017). Statistical models that 

are proven to be suitable for studying large areas in terms of 
landslide susceptibility, but these models do not easily predict 
unforeseen relationships between large numbers of landslide 
conditioning factors and complex landslide systems (Pourgha-
semi et al. 2013). Computational intelligence models focus on 
appropriate learning approaches for recognition of the nonlin-
ear relationship between conditioning factors and landslides 
(Gordan et al. 2015). These models have been successfully 
implemented for landslide susceptibility mapping.

So, the main objective of this study is to provide differ-
ent scenarios for landslide susceptibility assessment in the 
Ghaemshahr Watershed, Mazandaran Province, Iran, using 
a combination of statistical and computational intelligence 
methods. In this regard, among the statistical methods, fre-
quency ratio and among computational intelligence methods 
random forest and support vector machines were selected 
for applying ten scenarios on landslide modeling. By the 
way, the mentioned research aims to consider scenario-based 
landslide modeling in point and polygon formats.

Materials and methods

Study area

The Ghaemshahr Watershed with a total area of 1637 square 
kilometers is located approximately in 43 kilometers south-
west of the city of Sari in Mazandaran Province. The study 
area lies between the latitudes of 35°44′–36°09′N, and lon-
gitudes of 52°36′–53°23′E (Fig. 1). The maximum height 
of the study area is located in the southwest with a height 
of 3877 m above sea level, and the minimum height is in 
the northeast of the area with a height of 476 m a.s.l. The 
monthly average rainfall of this basin is more than 500 mm, 
and maximum rainfall occurs during January to April 
according to nine rainfall stations (Alasht, Tale-Savadkoh, 
Alvand-Doab, Ori-Melk, Zardgol-Sorkhabad, Doabe-Savad-
koh, Veresk, Docal, and Nesa) for the years 1985–2015 
(Meteorological Organization, http://www.irimo.ir/far/). The 
study area is covered by various types of lithological forma-
tions including Triassic, Pliocene, Cretaceous, Eocene, Mio-
cene, Cambrian, Devonian, Quaternary, and Paleozoic. Most 
of the study area is covered by forest (B), about 636 km2. 
Other land use types are orchard (A), range (C), forest and 
dryfarming (D), irrigation agriculture and range (E), forest 
and range (F), and residential area (G).

Methodology

The flowchart of the methodology used in this study is 
shown in Fig. 2 and consists of five phases:

(1) Preparation of data,

http://www.irimo.ir/far/
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(2) Multi-collinearity analysis among conditioning factors 
using tolerance and VIF indices,

(3) Determination of the relationship between landslide 
occurrence and conditioning factors using FR model,

(4) Running SVM and RF intelligent models by applying 
different scenarios on landslide point and polygon for-
mats, and

(5) Validation of the landslide susceptibility maps using 
the ROC curve.

Conditioning factors database

The tools used in this research are ArcGIS10.5, ENVI 4.8 
(for extraction of LU/LC), SAGA-GIS 2.1.1, and Global 
Positioning System (GPS). The basic maps used were 
geological maps by scale of 1: 100,000, aerial photos 
(08/02/1964) on scale 1:40,000, topographic maps with 
scale of 1:50,000, satellite images of Landsat8, ASTER 
DEM, LISS-III, and rainfall data for a 30-year period 

(from 1985 to 2015) and nine rainfall stations (Alasht, 
Tale-Savadkoh, Alvand-Doab, Ori-Melk, Zardgol-
Sorkhabad, Doabe-Savadkoh, Veresk, Docal, and Nesa).

The first step for mapping landslide susceptibility and 
risk analysis is collecting data about landslides that have 
occurred in the past, so preparing landslide inventory map 
is prerequisite for such studies (Guzzetti et al. 2012). In 
the study area, a total of 294 landslides were mapped using 
aerial photograph with 1:40,000-scale, satellite imagers 
(IRS: LISS-III), and several field surveys. Most of the 
landslides are shallow rotational with a few translational. 
In this research, the landslide inventory was randomly split 
into a testing dataset 70% (206 landslide locations) for 
training the models and the remaining 30% (88 landslides 
locations) was used for validation purpose (Chen et al. 
2017a, b). Field photographs of some identified landslides 
in the study area are shown in Fig. 3.

Identification and selection of conditioning factors on 
landslide occurrence is one of the most important steps for 

Fig. 1  Study area location
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landslide susceptibility mapping (Ercanoglu and Gokceo-
glu 2002). In this research, based on the study of previous 
researches (Zhang et al. 2017; Zeng et al. 2017) and features 
of the study area, 13 conditioning factors affecting landslide 
such as slope aspect, slope degree, altitude, plan curvature, 
distance from river, drainage density, distance from fault, 
distance from road, LU/LC, TWI, annual rainfall, geol-
ogy, and convergence index were selected (Fig. 4). Maps 
related to the effective factors were prepared in the ArcGIS 
10.5 and prepared for processing. In order to prepare DEM 
(digital elevation model), slope aspect, slope degree, and 

geomorphometric parameters such as TWI, plan curvature, 
and convergence index, ASTER DEM with 30 m spatial res-
olution are used. The elevation does not contribute directly 
to landslide occurrence, but in relation to the other param-
eters, like tectonics, erosion–weathering processes, and pre-
cipitation, the elevation contributes to landslide occurrence 
and influences the whole system (Rozos et al. 2011). The 
elevation map for study area with cell size 30 m × 30 m 
was produced from the ASTER DEM and classified into six 
classes of 477–1200, 1200–1600, 1600–2000, 2000–2400, 
2400–2800, and > 2800 m (Fig. 4a). The slope map of the 

Data used for landslide susceptibility assessment

Landslide conditioning factors
Landslide inventory map

Geomorphometric factors

Slope angle

Slope aspect

Altitude

Plan curvature

Hydrological factors

Distance from rivers

TWI

Geology

Geological factors

Distance from faults

Environmental factors

Distance from roads

LCU/LC

Random partition

Validation Testing

Determine of relationship between landslide 
occurrence and conditioning factors using 
frequency ratio (FR) model

Collinearity
factors using 

Tolerance and VIF

If Tolerance value 
>0.1, VIF value <5

Select 
conditioning 

factors

Classification of 
conditioning factors

Running SVM and 
RF models

Applying different 
scenarios in the 

point and polygon 
formats 

Provide landslide susceptibility maps using various 
scenarios

Validation of maps using the ROC curve

Rainfall

Convergence index

Drainage density

Fig. 2  Flowchart of research of in the study area
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study area is derived from the ASTER DEM using the slope 
function in ArcGIS 10.5. These slope values (in degree) 
are based on natural break scheme and divided into sex dif-
ferent classes (Wu et al. 2016) including flat-gentle slope 
< 10, fair slope (10–15), low slope (15–20), moderate slope 
(20–30), steep slope (30–40), and very steep slope > 40 
(Fig. 4b). Slope aspect strongly affects hydrological pro-
cesses by means of evaporation-transpiration, direction of 
frontal precipitation, and thus affects weathering processes 
and vegetation and root development (Sidle and Ochiai 
2006). Aspect layer has been categorized into nine classes 
including flat, north, northeast, east, southeast, south, south-
west, west, and northwest (Fig. 4c). The convergence index 
(CI) gives a measure of how flow in a cell diverges (con-
vergence index < 0) or converges (convergence index > 0) 
(Claps et al. 1994). CI map provided in SAGA-GIS 2.1.1 

and divided into 5 classes: − 100 to − 22, − 22 to − 6, − 6 
to 6, 6–21, and > 21 (Fig. 4d). The curvature of the surface 
(plan curvature) reflects the directional variations along a 
curve. The effect of plan curvature on the slope erosion 
process is the convergence and divergence of water along 
the flow direction (Ercanoglu and Gokceoglu 2002). The 
plan curvature map was produced using ArcGIS 10.5 and 
was classified into three categories (Pourghasemi and Kerle 
2016): concave, flat, and convex (Fig. 4e). TWI is a combi-
nation of ups and downs that shows the ratio between slopes 
in the basin (Eq. 1). TWI index is an indicator of the spatial 
distribution of soil moisture along the landscape. Therefore, 
it is used for landslide susceptibility mapping (Pourghasemi 
et al. 2014; Naghibi et al. 2015).

where S is the cumulative upslope area draining and a is 
the slope gradient in degrees (Moore et al. 1991). The TWI 
map divided into four classes (Hong et al. 2016a, b): − 5.4 
to − 0.28, − 0.28 − 1.26, 1.26–4, and > 4 (Fig. 4f).

By applying the gradient formula of the rainfall region 
on the digital elevation model (Eq. 2), map of annual rain-
fall was prepared and classified into five classes (Chen et al. 
2016a, b): 475–520, 520–580, 580–620, 620–670, and 
> 670 mm/yr (Fig. 4g).

where Y is annual rainfall and X is altitude. R2 is 0.923.
The distance from linear factors such as river, road, and 

fault was calculated using the distance function available in 
the ArcGIS.10.5. Distance from roads (Fig. 4h) and distance 
from rivers (Fig. 4i) divided into sex classes: 0–100, 100–200, 
200–300, 300–400, 400–500, and > 500 m. Distance from 
fault also divided into five classes: 0–500, 500–1000, 
1000–1500, 1500–2000, and > 2000 m (Fig. 4j). Drainage 
density is prepared by applying the density line function 
available in the ArcGIS.10.5 and divided into five classes 
(Chauhan et al. 2010): 0–0.5, 0.5–0.8, 0.9–1.1, 1.1–1.4, and 
> 1.4 mm2 (Fig. 4k). Land use/land cover (LU/LC) map of 
the study area was prepared using Landsat 8 images. To create 
the land use map, a supervised classification using the maxi-
mum likelihood algorithm (Pourghasemi and Kerle 2016) was 
applied. Seven land use types were extracted such as orchard 
(A), forest (B), range (C), forest and dryfarming (D), irrigation 
agriculture and range (E), forest and range (F), and residential 
area (G) (Fig. 4l). The generated LC/LU was validated using 
285 field verification points in the field. Kappa coefficient for 
the final map was estimated by Eq. 3. (Lo and Yeung 2002).
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Fig. 3  Field photographs of some identified landslides in the study 
area
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where r is number of rows in error matrix; Xii is number of 
observations in row i and column i; X i + is total of observa-
tions in row i; X+I is total of observations in column i; and 

N is total number of observations included in the matrix. 
Kappa coefficient of generated LC/LU 97.65 was obtained.

Geological map of the region was prepared based on 
the digitization of the polygons of the lithological units in 

Fig. 4  Landslide conditioning factors
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the geological map with a 1:100,000-scale in ArcGIS10.5. 
The lithological units were classified into ten categories 
according to formation and theirs susceptibility to land-
slide occurrence (Fig. 4m and Table 1).

For the classification of the conditioning factors, dif-
ferent methods such as manual, equal interval, and natural 
break were used.

Multi‑collinearity analysis

An important issue in the use of conditioning factors in the 
preparation of a landslide susceptibility map is the effect 
of correlation among conditioning factors. When there is 
a high correlation between the two independent variables, 

there is a problem called multi-collinearity. This high cor-
relation reduces the accuracy of the results. Tolerance and 
the variance inflation factor (VIF) are two important indices 
for multi-collinearity recognition. A tolerance of less than 
0.20 or 0.10 and/or a VIF of 5 or 10 and above indicates a 
multi-collinearity problem (Pourghasemi et al. 2013).

Determination of the relationship 
between landslide occurrence and conditioning 
factors using FR model

The FR model is considered as the most popular and the sim-
plest approach for preparing landslide susceptibility maps (Wu 
et al. 2016). The FR is based on the observed relationship 

Fig. 4  (continued)
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between the distribution of landslides and each landslide-
related factor (Tay et al. 2014). In determining the ratio of 
frequency ratios, the occurrence ratio of landslide in each 
class of conditioning factors toward the total of landslides is 
obtained and ratio of the surface of each class toward the total 
area of the region is also calculated. Finally, by dividing the 
occurrence ratio of landslides in each class by the rate of area 
of each class, relative to the entire study area, the frequency 
ratio of the classes of each factor is calculated. The calculation 
of the frequency ratio for each class of conditioning factors is 
expressed in Eq. 4 (Pradhan and Lee 2010):

where A is the number of landslide pixels in each class, B is 
the total number of landslide pixels of the whole area, C is 
the number of pixels in each class of conditioning factors, 
D is the total number of pixels in the area, E is the percent-
age of landslide occurrences in each class of conditioning 
factors, and F is the relative percentage of the area of each 
class.

Support vector machine (SVM)

Support vector machine is a supervised learning method 
based on statistical learning theory (Vapnik 1995) and the 
principle of structural risk minimization (Chen et al. 2016a, 
b). It is based on the statistical approach in order to find 
an optimal hyperplane for separating two classes (Tien Bui 
et al. 2016). A more detailed of SVM algorithm for landslide 
assessment has recently been depicted by Marjanovic et al. 
(2011); Colkesen et al. (2016).

To perform the landslide susceptibility map using SVM, 
the “rminer” package (Cortez 2015) was used. Meanwhile, 
there are four types of kernels: linear, polynomial, radial 

(4)FR =

(

A∕B

)

(

C∕D

) =
E

F

basis function (RBF), and sigmoid for SVM modeling, in 
this research used from RBF kernel.

Random forest (RF)

The random forest algorithm that developed by Breiman 
(2001) is based on a bunch of decision trees, and now it is 
one of the best learning patterns (Zhang et al. 2017). This 
model is based on the averaging of the results of all decision 
trees. The random forest method is widely used for data pre-
diction and interpretation purposes and is suitable for non-
linear high-dimensional landslide susceptibility modeling 
problems (Messenzehl et al. 2016). The RF algorithm tends 
to produce quite accurate models, because it decreases the 
variance of the model, without increasing the bias (Hastie 
et al. 2009). This algorithm needs two original parameters 
to be implemented by the user: the number of trees (T) and 
the number of variables (m).

The main advantage of this approach is that it can catego-
rize a large number of input variables without variable dele-
tion (Immitzer et al. 2012). Compared with other algorithms, 
this model has more efficiency in the classification of a large 
dataset; moreover, it can process high-dimensional datasets 
without feature selection and can rank the parameters in 
terms of importance after calculating (Zhang et al. 2017). 
This method uses unbiased estimation in model building, 
which means that the training is fast and simple to running. 
This method is suitable for regional-scale applications and is 
useful for the landslide susceptibility mapping (Zhang et al. 
2017). For running random forest is used from R statistical 
and randomForest package (Briman and Cutler 2015).

Applying different scenarios for ensemble 
of intelligent techniques

After calculation of weight of classes of each factor using 
bivariate statistical method (FR), and running RF and SVM 

Table 1  Lithology of the study area (GSI, 1997)

Code Geological age Lithology Area  (km2)

TRJs Triassic-Jurassic Dark gray shale and sandstone (Shemshak formations) 1049.41
Plc Pliocene Polymictic conglomerate and sandstone 37.77
K1bvt Early Cretaceous Basaltic volcanic tuff 129.69
Ek Eocene Well-bedded green tuff and tuffaceous shale (Karaj Formation) 293.88
Mc Miocene Red conglomerate and sandstone 7.56
Cb Cambrian Alternation of dolomite, limestone, and variegated shale (Barut formation) 63.73
Pr Permian Dark gray medium-bedded to massive limestone (Ruteh limestone) 14.20
Db-sh Devonian Undifferentiated limestone, shale, and marl 12.17
Qft1 Quaternary High-level piedmont fan and valley terrace deposits 23.52
Pz Early Paleozoic Undifferentiated lower Paleozoic rocks 4.89
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computational intelligence methods, different scenarios were 
developed to provide a reasonable landslide susceptibility 
map in both landslide point and polygon formats According 
to Eqs. 5–16:

where scenarios of  10SVM and  10RF are for landslide point 
format and in the rest of scenarios, landslides are in polygon 
format. AUC is area under the curve models.

Results and discussion

In the Ghaemshahr Watershed, landslides are the most seri-
ous natural problems that impress the economic develop-
ment and cause loss of fertile soils and great damage to land 
and property. According to earlier studies by the Iranian 
Landslide Working Party (ILWP 2007), the highest fre-
quency of landslide occurrence in Iran is in Mazandaran 
Province.

The soil is one of the most important components of the 
earth system as it controls erosional, hydrological, biologi-
cal, and geochemical Earth cycles and provides a wide-
spread range of services, goods, and resources to human 
kind (Keesstra et al. 2016, 2018; Comino et al. 2016; Vaezi 
et al. 2017). Soil erosion in agricultural areas because of 
loss of productivity and land degradation is a large problem 
worldwide (Kirchhoff et al. 2017) that must be solved by 

(5)Scenario1 =
(FR + SVM)

2

(6)Scenario2 = (2 × RF) + SVM

(7)Scenario3 = (2 × SVM) + RF

(8)Scenario4 = SVM + RF

(9)Scenario5 = SVM × RF

(10)Scenario6 =
(SVM + RF)

3

(11)

Scenario7 =

(
(

FR × AUCRF

)

+
(

SVM × AUCSVM

)

(

AUCRF + AUCSVM

)

)

(12)Scenario8 = RF weighted by FR

(13)Scenario9RF = Individual RF model

(14)Scenario9SVM = Individual SVM model

(15)Scenario10RF = Individual RF model

(16)Scenario10SVM = Individual SVM model

means of nature-based strategies to be able to achieve sus-
tainability (Cerdà et al. 2017). Also, soil erosion is a key fac-
tor of desertification and affects the goals for sustainability 
of the United Nations (Keesstra et al. 2016). Many of the 15 
Sustainable Development Goals defined by UN have a strong 
relation to land and water management and demanding a 
sustainable use of resources, ecosystem restoration, biodi-
versity, and sustainable basin management (Keesstra et al. 
2016). The development of human societies requires the pru-
dently use of natural resources such as soil (Keesstra et al. 
2016). Soil conservation not only depends on wise decisions 
by foresters, farmers, and land planners, but also on political 
decisions on rules and regulations (Keesstra et al. 2016).

Multi‑collinearity among conditioning factors

In this study, the multi-collinearity test considered according 
to two indices such as VIF and tolerance (Table 2). Accord-
ing to Table 2, the smallest tolerance and highest VIF were 
0.31 and 3.20, respectively. So, there is not any multi-collin-
earity between independent factors in the current research.

Spatial relationship between landslides 
and conditioning factor using FR model

Spatial relationship between landslides and conditioning fac-
tor by frequency ratio model is shown in Table 3. In the case 
of the relationship between landslide occurrence and altitude 
factors, most of landslide events are located in 477–2400 m 
including 477–1200 (2.53), 1200–1600 (3.39), 1600–2000 
(1.21), and 2000–2400 (1.11), respectively. According to 
the results, at altitudes below 1200 m, due to the human 
activities such as agriculture and road construction, the 
most susceptibility to landslide has been shown. In con-
trast, at altitudes above 2800, due to rocky outcrops, the 

Table 2  Multi-collinearity test

Factors Collinearity statistics

Tolerance VIF

Aspect 0.98 1.02
Convergence 0.68 1.46
Altitude 0.31 3.21
Drainage density 0.64 1.55
Distance from faults 0.48 2.07
Geology 0.70 1.43
LU/LC 0.73 1.36
Plan curvature 0.71 1.40
Rainfall 0.78 1.28
Distance from rivers 0.72 1.40
Distance from roads 0.42 2.38
TWI 0.99 1.00
Slope degree 0.97 1.03
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probability of landslide is negligible. In the case of slope 
degree, most of landslide occurrences are in slope ranges of 
20°–40°, including 20°–30° (1.085), and 30°–40° (1.289), 
respectively. The results showed that with the increasing in 
slope degree, the probability of landslide occurrence has 
also increased. While the slope degree increases, the shear 
stress on the slope material increases and the probability of 
landslide occurrence increases. Although steep slopes due to 
outcropping bedrock may not be susceptible to shallow land-
slides (Mohammady et al. 2012; Wu et al. 2016). In the case 
of slope aspect, aspect parameter on southwestern-facing 
slopes represents the highest probability (2.171) to landslide 
occurrence. In the case of convergence index, class of − 22 
to − 6 has the highest FR value (1.043) and class of > 21 
has the lowest FR value (0.000). Based on plan curvature 
parameters, concave class with FR (1.110) has shown the 
most susceptible to the occurrence of landslides, whereas 
convex and flat classes with (0.987, 0.894) are located in 
the next ranks, respectively. According to results of TWI 
factor, class of − 5.4 to − 0.28 with score of (1.02) is located 
in the first rank in terms of susceptibility to landslide and 
classes of (< 4, − 0.28 to 1.26 and 1.26–4) with FR values 
of (1.01, 0.99, and 0.98) are located in the next ranks. In the 
case of rainfall, class of > 670 mm with the highest rainfall 
compared to other classes, with FR (1.589) has been shown 
the most susceptibility to landslide. The results obtained 
from the distance from rivers and the distance from roads 
showed that with the increasing distance from these param-
eters, landslide susceptibility also decreased, and the class 
of 0–100 m has the highest FR (1.98 and 1.41) for distance 
from road and river, respectively. This is in line by results 
of Mohammady et al. (2012). In the case of distance from 
fault, class of 1500–2,000 m with FR (1.71) has shown a 
high susceptibility to landslides and classes of (1000–1500, 
0–500, 500–1000, and > 2000 m) with FR (1.61, 1.21, 1.19, 
and 0.73) are in the next ranks, respectively.

Based on the results of the drainage density factor, there 
is a direct relationship between drainage density and land-
slide susceptibility; so, with increasing drainage density, 
landslide susceptibility has also increased. LU/LC analysis 
by FR indicated that forest (B) and irrigation agriculture 
and range (E) classes with the highest FR (1.85 and 1.12) in 
compared to other classes have more susceptibility to land-
slide. Result of geology factor explained that TRJs class 
with dark gray shale and sandstone (Shemshak formation) 
and FR of 1.20 has highly susceptible to landslide in the 
current study area.

Random forest model

The results of variables importance using random forest 
intelligence technique are shown in Fig. 5. The results show 

according to mean decrease accuracy analysis, altitude, slope 
aspect, drainage density, and distance from rivers are the 
most important factors on landslide occurrence in the study 
area. Also, the other factors such as annual rainfall, slope 
degree, distance from roads, distance from faults, geology, 
convergence index, LU/LC, plan curvature, and TWI are in 
the next ranks, respectively. Out-of-bag (OOB) error rate 
in this study was 3.84% with 1000 trees and three variables 
tried at each split. Finally, the landslide susceptibility map 
(LSM) using the RF algorithm was provided and classified 
based on the natural break classification scheme in ArcGIS 
10.5 (Pourghasemi and Kerle 2016) into five susceptibility 
classes: very low, low, moderate, high, and very high.

Support vector machine (SVM) model

In this research, the SVM model with radial basis function 
(RBF) was trained in R statistical software. The RBF ker-
nel is one of the most powerful kernels and in many stud-
ies especially in nonlinear problems, RBF provides better 
prediction results for landslide susceptibility mapping than 
other kernels. The probability of landslide occurrence falls 
in the range between 0 and 1.

In this research, Hyper-parameter sigma and number of 
support vectors were 0.055 and 6557, respectively.

The results were then exported into the ArcGIS 10.5 soft-
ware for visualization. Finally, landslide susceptibility map 
based on the natural break classification divided into five 
susceptibility classes: very low, low, moderate, high, and 
very high.

Applying difference scenarios for LSM provide

In general, the scenarios are in both landslide point and poly-
gon formats. The landslide susceptibility maps produced by 
ten scenarios are represented in Fig. 6a–l. Implementing of 
different scenarios is done in the ArcGIS10.5 software envi-
ronment using the Raster Calculator tool. The obtained pixel 
values from these scenarios were then classified based on 
the natural break classification scheme (Pourghasemi et al. 
2013) into five susceptibility classes: very low, low, moder-
ate, high, and very high. The results showed that most of the 
landslide area is located in very high susceptibility class. 
Furthermore, very high susceptibility class covers only low 
area of watershed (Youssef 2015). As in the scenarios 1, 2, 
3, 4, 5, 6, 7, 8, 9 (FR), 9 (SVM), 10 (FR), and 10 (SVM) 
(8.98, 6.358, 11.28, 8.98, 1.76, 8.98, 8.66, 4.44, 3.11, 13.05, 
12.05, and 13.92) percentage of the total area and (36.94, 
31.68, 39.20, 36.94, 15.44, 36.94, 36.41, 22.99, 22.18, 
36.81, 27.89, and 27.77) of landslide pixels are located in 
very high susceptibility classes, respectively. 
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Table 3  Relationship between 
landslide occurrence and 
conditioning factors using 
frequency ratio model

Factors Classes Total pixels % Landslide pixels % FR

Altitude (m) 477–1200 186519 10.26 2151 26.05 2.53
1200–1600 311299 17.12 1532 18.55 1.08
1600–2000 354520 19.50 1505 18.22 0.93
2000–2400 417812 22.98 2175 26.34 1.14
2400–2800 384275 21.14 894 10.82 0.51
> 2800 163149 8.97 0 0.00 0

Slope (°) 0–10 79011 4.34 34 0.41 0.09
10–15 210802 11.59 427 5.17 0.44
15–20 267364 14.71 976 11.82 0.80
20–30 365952 20.13 1803 21.83 1.08
30–40 381482 20.98 2234 27.05 1.28
> 40 512963 28.22 2783 33.70 1.19

Aspect Flat 110 0.00 0 0.00 0.00
N 318654 17.53 508 6.15 0.35
NE 221334 12.17 794 9.61 0.79
E 185126 10.18 1082 13.10 1.28
SE 258023 14.19 1227 14.86 1.04
S 246172 13.54 1392 16.85 1.24
SW 149947 8.25 1479 17.91 2.17
W 172065 9.46 1165 14.10 1.49
NW 266143 14.64 610 7.38 0.50

Convergence index (1/100 m) − 100 to − 22 5927 0.32 5 0.06 0.18
− 22 to − 6 413886 22.77 1962 23.76 1.04
− 6 to 6 1322371 72.75 6159 74.59 1.02
6–21 69968 3.85 131 1.58 0.41
> 21 5422 0.29 0 0.00 0.00

Plan curvature (1/100 m) concave 780049 42.91 3933 47.63 1.11
Flat 781140 42.97 3174 38.44 0.89
Convex 256385 14.10 1150 13.92 0.98

TWI − 5.4 to − 0.28 394167 21.66 1811 21.93 1.02
− 0.28–1.26 342555 18.83 1542 18.67 0.99
1.26–4 446786 24.56 2005 24.28 0.98
< 4 61338 3.37 283 3.42 1.01

Rainfall (mm) 475–520 192159 10.56 1007 12.19 1.15
520–580 180528 9.92 330 3.99 0.40
580–620 562739 30.94 2371 28.71 0.92
620–670 472727 25.99 1587 19.22 0.73
> 670 410567 22.57 2962 35.87 1.58

Distance from roads (m) 0–100 152505 8.38 1371 16.60 1.98
100–200 125014 6.87 1020 12.35 1.79
200–300 105479 5.80 538 6.51 1.12
300–400 115274 6.33 574 6.95 1.09
400–500 99086 5.44 575 6.96 1.27
> 500 1221362 67.15 4179 50.61 0.75

Distance from rivers (m) 0–100 275231 15.13 1756 21.26 1.40
100–200 337909 18.57 1339 16.21 0.87
200–300 278683 15.32 1398 16.93 1.10
300–400 215971 11.87 1185 14.35 1.20
400–500 214354 11.78 1122 13.58 1.15
> 500 496572 27.30 1457 17.64 0.64
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Validation of landslide susceptibility maps

Validation of landslide susceptibility models (LSMs) is 
considered as one of the most important steps in assess-
ment of landslide susceptibility. Furthermore, it is essen-
tial in order to assess the predictive capabilities of the 
landslide susceptibility maps. Thus, without validation, 
LSM will not have scientific significance (Wu et  al. 
2016). In this study, for considering the accuracy of the 
LSM maps provided using the different scenarios, the 
receiver operating characteristic (ROC) curve was used. 
In the ROC analysis, the area under the curve (AUC) 
value used to evaluate the model accuracy. The AUC 
value of 1.0 represents that the model performed per-
fectly; and the closer the AUC value to 1.0, the better the 
model is (Tien Bui et al. 2016). Also, using the frequency 
ratio (FR) and SCAI (seed cell area index), the accuracy 
of the separation between the susceptibility classes was 
verified and confirmed. In this context, the percent-
ages of susceptibility are divided by the percentages of 

a Orchard (A), forest (B), range (C), forest and dryfarming (D), irrigation agriculture and range (E), forest 
and range (F), and residential area (G)

Table 3  (continued) Factors Classes Total pixels % Landslide pixels % FR

Distance from fault (m) 0–500 296374 16.29 1622 19.64 1.20
500–1000 247777 13.62 1343 16.26 1.19
1000–1500 138402 7.61 1011 12.24 1.60
1500–2000 112338 6.17 870 10.53 1.70
> 2000 1023829 56.29 3411 41.31 0.73

Drainage density (km/km2) 0–0.5 109686 6.03 66 0.79 0.13
0.5–0.8 188861 10.38 199 2.41 0.23
0.8–1.1 261005 14.35 1039 12.58 0.87
1.1–1.4 353055 19.41 2241 27.14 1.39
> 1.4 906113 49.82 4712 57.06 1.14

LU/LC aA 23154 1.27 5 0.06 0.04
B 344741 18.95 2899 35.11 1.85
C 650318 35.75 2018 24.44 0.68
D 79680 4.38 313 3.79 0.86
E 437190 24.03 2221 26.89 1.11
F 282135 15.51 801 9.70 0.62
G 1502 0.08 0 0.00 0.00

Geology TRJs 1166028 64.11 6329 76.65 1.19
Plc 41981 2.30 255 3.08 1.03
K1bvt 144143 7.92 676 8.18 1.03
Ek 326519 17.95 632 7.65 0.42
Mc 8395 0.46 0 0.00 0.00
Cb 70814 3.89 166 2.01 0.51
Pr 15795 0.86 55 0.66 0.76
Db-sh 13498 0.74 43 0.52 0.70
Qft1 26126 1.43 101 1.22 0.85
Pz 5421 0.29 0 0.00 0.00

Fig. 5  Two measures of variable importance calculated by the ran-
dom forest algorithm
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landslide cells in order to develop the SCAI density of 
landslides for the classes. Considering that the same land-
slides that are used in running of model cannot be used to 

evaluate the built models (Komac 2006), As a result, the 
total landslides detected in the study area were randomly 
divided into two groups: 70% (206 landslide locations) for 

Fig. 6  Landslide susceptibility maps prepared using various scenarios
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training the models and the remaining 30% (88 landslides 
locations) was used for validation purpose. According to 
the results of classification accuracy assessment using the 
SCAI and FR indicators (Table 4 and Figs. 7 and 8), in all 
models, with increasing the susceptibility of the risk from 
very low to very high, the FR is almost up trend, but the 
SCAI index shows a significant downward trend and indi-
cates a high correlation between the susceptibility classes 
with the landslide pixels and field observations of the 
study area. Therefore, the separation order between the 
classes was evaluated in different scenarios, accurately. 
The results of the AUC evaluation showed in Table 5.   

Results of scenarios showed that AUC was varying 
from 0.668 to 0.749. In general, maps produced by land-
slide polygon format (scenarios 1–9) represented the bet-
ter prediction accuracy than another scenario (landslide 
point format) and can be used for the spatial prediction of 
landslide hazard analysis in the study area. Because when 
use from polygon format, certainly it consisted of several 
points in compared to a point as polygon centroid, toe of 
landslides, or landslide crown. So, the polygon format 
is better from sample points. Also, results of scenarios 
1–9 indicated that accuracy of ensemble models is more 
from individual SVM model; meanwhile, random forest 
accuracy is similar with ensemble models. By the way, 

comparison of scenarios 9 and 10 showed that SVM and 
RF models built by landslide polygon had the better accu-
racy than these models (SVM and RF) by landslide point 
format.

Pourghasemi and Kerle (2016) used random forests 
and evidential belief function-based models for land-
slide susceptibility assessment in Western Mazandaran, 
Iran, and stated that combination of these models with 
AUC = 81.77 has high ability to identify susceptible areas 
to landslides. This is in line with archived results from 
ensemble modeling in compared to individual SVM tech-
nique. Chen et al. (2016a, b) use support vector machine 
models for landslide susceptibility mapping in Qian-
yang County, China. Result of this research indicated 
that among four kernels, RBF with AUC = 83.15 has a 
high performance in providing a landslide susceptibility 
map. In our study, in both landslide formats (polygon and 
point), the SVM–RBF machine learning technique shows 
the lowest accuracy. Zhang et al. (2017) applied random 
forest and decision tree methods for landslide susceptibil-
ity mapping in the Three Gorges Reservoir area, China, 
and stated that RF with AUC = 97.0 is suitable for land-
slide susceptibility. Our results are in line with Zhang 
et al. (2017) as individual RF model in scenario 9 had a 
high accuracy.

Fig. 6  (continued)
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Table 4  Values of FR and SCAI

Scenarios Susceptibility classes Total area of classes Landslide in classes No landslide 
area (km)

FR % Seed SCAI

Area (km) % Area (km) %

Scenario 1 Very low 624.39 38.17 0.81 10.94 623.57 0.00 0.02 17.93
Low 357.23 21.84 0.96 12.86 356.27 0.01 0.04 4.99
Moderate 262.28 16.03 1.23 16.52 261.05 0.01 0.08 2.09
High 245.05 14.98 1.69 22.74 243.36 0.02 0.11 1.33
Very high 146.87 8.98 2.75 36.94 144.13 0.04 0.31 0.29

Scenario 2 Very low 610.89 37.34 0.79 10.63 610.10 0.00 0.02 17.65
Low 392.78 24.01 1.03 13.79 391.75 0.01 0.04 5.62
Moderate 293.84 17.96 1.28 17.22 292.56 0.01 0.07 2.52
High 234.40 14.33 1.98 26.67 232.41 0.02 0.14 1.04
Very high 103.91 6.35 2.35 31.68 101.55 0.05 0.37 0.17

Scenario 3 Very low 643.07 39.31 0.85 11.49 642.22 0.00 0.02 18.09
Low 331.61 20.27 0.96 12.98 330.65 0.01 0.05 4.26
Moderate 245.36 15.00 1.16 15.67 244.20 0.01 0.08 1.93
High 231.31 14.14 1.53 20.65 229.78 0.01 0.11 1.30
Very high 184.46 11.28 2.91 39.20 181.54 0.03 0.26 0.44

Scenario 4 Very low 624.39 38.17 0.81 10.94 623.57 0.00 0.02 17.93
Low 357.23 21.84 0.96 12.86 356.27 0.01 0.04 4.99
Moderate 262.28 16.03 1.23 16.52 261.05 0.01 0.08 2.09
High 245.05 14.98 1.69 22.74 243.36 0.02 0.11 1.33
Very high 146.87 8.98 2.75 36.94 144.13 0.04 0.31 0.29

Scenario 5 Very low 1022.31 62.50 1.91 25.74 1020.39 0.00 0.03 20.42
Low 305.58 18.68 1.37 18.49 304.21 0.01 0.07 2.54
Moderate 180.62 11.04 1.54 20.70 179.09 0.02 0.14 0.79
High 98.51 6.02 1.46 19.63 97.05 0.03 0.24 0.25
Very high 28.79 1.76 1.15 15.44 27.65 0.09 0.65 0.03

Scenario 6 Very low 624.39 38.17 0.81 10.94 623.57 0.00 0.02 17.93
Low 357.23 21.84 0.96 12.86 356.27 0.01 0.04 4.99
Moderate 261.42 15.98 1.22 16.48 260.20 0.01 0.08 2.09
High 245.91 15.03 1.69 22.78 244.21 0.02 0.11 1.33
Very high 146.87 8.98 2.75 36.94 144.13 0.04 0.31 0.29

Scenario 7 Very low 610.69 37.33 0.80 10.71 609.89 0.00 0.02 17.52
Low 374.20 22.88 0.98 13.21 373.22 0.01 0.04 5.33
Moderate 263.16 16.09 1.23 16.52 261.93 0.01 0.08 2.11
High 246.08 15.04 1.72 23.16 244.36 0.02 0.11 1.32
Very high 141.69 8.66 2.71 36.41 138.98 0.04 0.31 0.28

Scenario 8 Very low 654.23 39.99 1.03 13.88 653.20 0.00 0.03 15.51
Low 409.34 25.02 1.40 18.84 407.93 0.01 0.06 4.47
Moderate 313.61 19.17 1.75 23.57 311.86 0.01 0.09 2.10
High 186.00 11.37 1.54 20.72 184.46 0.02 0.14 0.84
Very high 72.65 4.44 1.71 22.99 70.94 0.05 0.38 0.12

Scenario 9 FR Very low 648.10 39.62 1.02 13.75 647.08 0.00 0.03 15.37
Low 462.58 28.28 1.27 17.03 461.31 0.01 0.04 6.32
Moderate 300.43 18.37 1.62 21.85 298.81 0.01 0.09 2.08
High 173.83 10.63 1.87 25.20 171.96 0.02 0.18 0.60
Very high 50.87 3.11 1.65 22.18 49.23 0.07 0.53 0.06



 Environmental Earth Sciences (2017) 76:832

1 3

832 Page 16 of 20

Chen et al. (2017a, b) introduced new ensembles of 
ANN, MaxEnt, and SVM machine learning techniques 
for landslide spatial modeling. They stated that ensemble 
models have a high performance for landslide susceptibil-
ity mapping. Our results showed that this scenario (ensem-
ble modeling) can propose for other researchers, as ensem-
ble modeling was accurately than some scenarios (scenario 
9SVM, and scenario 10).

Conclusion

Landslides are one of the most important natural hazards in 
the world; so, providing of landslide susceptibility maps is 
very important that can help planners and decision makers in 
disaster management. The accuracy of landslide susceptibil-
ity maps mainly depends on the amount and the quality of 
data, the scale, and the methodology. In the present study, 

Table 4  (continued)

Scenarios Susceptibility classes Total area of classes Landslide in classes No landslide 
area (km)

FR % Seed SCAI

Area (km) % Area (km) %

Scenario 9 SVM Very low 668.88 40.89 0.90 12.14 667.98 0.00 0.02 18.54
Low 307.68 18.81 1.03 13.83 306.65 0.01 0.05 3.44
Moderate 229.14 14.01 1.12 15.09 228.02 0.01 0.08 1.75
High 216.65 13.24 1.65 22.14 215.00 0.02 0.12 1.07
Very high 213.47 13.05 2.74 36.81 210.73 0.03 0.21 0.62

Scenario 10 FR Very low 292.83 17.90 0.56 7.52 292.27 0.00 0.03 5.73
Low 434.21 26.54 1.14 15.38 433.06 0.01 0.04 6.16
Moderate 401.51 24.55 1.42 19.11 400.09 0.01 0.06 4.24
High 310.17 18.96 2.24 30.10 307.93 0.02 0.12 1.61
Very high 197.09 12.05 2.07 27.89 195.01 0.02 0.17 0.70

Scenario 10 SVM Very low 431.06 26.35 0.85 11.47 430.21 0.00 0.03 8.15
Low 378.05 23.11 0.97 13.12 377.07 0.01 0.04 5.48
Moderate 323.83 19.80 1.42 19.17 322.40 0.01 0.07 2.75
High 275.17 16.82 2.12 28.47 273.05 0.02 0.13 1.34
Very high 227.69 13.92 2.06 27.77 225.63 0.02 0.15 0.94

Fig. 7  FR values in different 
scenarios

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Very Low Low Moderate High Very High

FR

Susceptibility classes

Scenario1 Scenario2
Scenario3 Scenario4
Scenario5 Scenario6
Scenario7 Scenario
Scenario9 FR Scenario9 SVM
Scenario10 FR Scenario10 SVM



Environmental Earth Sciences (2017) 76:832 

1 3

Page 17 of 20 832

landslide susceptibility maps were prepared using combi-
nation of statistical method (FR) and computational intel-
ligence methods (RF and SVM), by applying different sce-
narios using in landslide polygon and point formats. These 
maps will help planners and policy makers to mitigation 
dangers of landslides in construction of roads and settle-
ment. In order to providing landslide susceptibility map, 13 
conditioning factors including elevation, slope angle, plan 
curvature, slope aspect, topographic wetness index (TWI), 
lithology, LU/LC, distance from rivers, drainage density, 
distance from fault, distance from roads, convergence index 
and annual rainfall were used. The FR model was applied 
as a bivariate statistical method to evaluate the correlation 

between the landslides and classes of each conditioning fac-
tors. Finally, the ROC curve is used for validation of LSMs. 
Results of validation indicated that AUC of individual and 
ensemble models was varying from 0.668 to 0.749. The 
result of landslide susceptibility maps showed that the high 
susceptibility areas are mainly distributed along the north 
to northeastern in the study area. Due to high residential 
density in this area, it is suggested that any construction 
operations in this area be made more cautiously. Also, due 
to the fact that landslides cause loss of fertile soil and land 
degradation, in order to soil conservation, it is recommended 
that farmers and foresters avoid unplanned actions on slopes 
that are sensitive to landslides.

Fig. 8  SCAI values in different 
scenarios
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Table 5  Area under the curve

Models Area Standard error Asymptotic significant Asymptotic 95% CI

Lower bound Upper bound

Scenario 1 0.743 0.007 0.000 0.729 0.756
Scenario 2 0.749 0.007 0.000 0.735 0.762
Scenario 3 0.735 0.007 0.000 0.721 0.749
Scenario 4 0.743 0.007 0.000 0.729 0.756
Scenario 5 0.749 0.007 0.000 0.736 0.762
Scenario 6 0.743 0.007 0.000 0.729 0.756
Scenario 7 0.743 0.007 0.000 0.730 0.757
Scenario 8 0.718 0.007 0.000 0.704 0.732
Scenario 9
 RF 0.743 0.007 0.000 0.729 0.756
 SVM 0.715 0.007 0.000 0.701 0.729

Scenario 10
 RF 0.693 0.040 0.000 0.615 0.772
 SVM 0.668 0.041 0.000 0.578 0.748
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