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Abstract
A design matrix in response surface method (RSM) that satisfies the orthogonality is very useful because the mean square 
error can be minimized, so that the response surface is more precise. But the orthogonality of a second-order design matrix 
in conventional RSM cannot be satisfied. In this paper, a second-order orthogonal experimental design (SOED)-based RSM 
is proposed by considering the orthogonality of high-order design matrix. The SOED is constructed by changing the length 
of star points, and the main characteristic of SOED is that the design matrix is diagonal. When the high-order terms are 
considered in the SOED-based RSM, a globe optimal solution can be found. As the regression equation is determined, the 
reliability index can be analyzed by the normalized distance between the mean value of the performance function and the 
critical limit state of the safety factor. A practical large-scale landslide with two slip surfaces is taken to verify the appli-
cability and precision of the proposed method in detail. It is found that the SOED-based response surface is more rigorous 
than the conventional RSM.

Keywords Landslides · Response surface method (RSM) · Second-order orthogonal experimental design (SOED) · Monte 
Carlo simulations · Reliability analysis

Introduction

Landslide or slope failure may happen even it is designed 
with high safety factors because geomaterials are mostly 
dominated by uncertainties (He et al. 2010; Johari and Lari 
2016). Hence, the performance of landslides determined by 
a factor of safety cannot characterize uncertainties explicitly 
and sufficiently (Pourghasemi et al. 2014; Wang et al. 2016) 
and may sometimes be inclined to yield misleading results 
(Duncan and Buchignani 1973). Fortunately, reliability anal-
yses, such as the first-order second-moment method (FOSM) 
(Low 2013), Monte Carlo simulations (MC) (Wang et al. 
2010; Wang 2012) and response surface methodology(RSM) 

(Li et al. 2015), were applied to quantify these uncertainties 
in recent years (Phoon and Kulhawy 1999; Phoon 2008; Li 
et al. 2009, 2011; Ching and Phoon 2012; Zhang et al.2012), 
which emerge as a more reasonable and rigorous way to 
handle uncertainties (Ji et al. 2012; Tang et al. 2013; Hicks 
et al. 2014).

RSM is used to determine how a response is affected 
by a set of quantitative factors over some specified region. 
This information can be used to optimize the settings of a 
process to give a maximum or minimum response. For a 
given number of variables, response surface analysis tech-
niques require more trials than the two-level fractional fac-
torial design techniques. In order to calculate simply, most 
cases do not include cross-terms and second-order terms 
in response function. Although this greatly simplifies the 
number of sampling points, it may not be appropriate in all 
cases (Box and Draper 2006). The results obtained from 
a first-order response surface may be local optimal solu-
tions (Myers and Raymond 2012). Hence, it is necessary to 
find a globe optimal solution by using a high-order response 
surface.

In the conventional RSM, the first-order response sur-
face cannot fit well the curvature of a true underlying sur-
face, solutions may be wrong and the selection of the grid 

 * Xiao-Ping Zhou 
 xiao_ping_zhou@126.com

1 School of Civil Engineering, Chongqing University, 
Chongqing 400045, People’s Republic of China

2 State Key Laboratory of Coal Mine Disaster Dynamics 
and Control, Chongqing University, Chongqing 400044, 
People’s Republic of China

3 Key Laboratory of New Technology for Construction 
of Cities in Mountain Area, Chongqing 400045, 
People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s12665-017-7136-1&domain=pdf


 Environmental Earth Sciences (2017) 76:794

1 3

794 Page 2 of 12

of experimental design points has no precise guidelines or 
theory in RSM (Guan and Melchers 2001). In SOED, the 
cross-correlations of uncertain variables are assumed to be 
0, and the orthogonality of design matrix containing high-
order terms is satisfied by changing the length of star points 
so that the variance of the predicated values and target val-
ues is minimized. In order to overcome the shortcomings 
of the conventional RSM, RSM is combined with SOED, 
which is called the SOED-based RSM. In the SOED-based 
RSM, not only the response surface is more precise, but 
also the significance of regression coefficients is easy to test 
because the sum of error between the fitting equation and the 
regression equation is equal to 0. Moreover, the orthogonal-
ity of the first-order terms, cross-terms and quadratic terms 
in design matrix is satisfied. The design matrix obtained by 
the proposed method can contribute to the selection of sam-
pling points. Example of reliability analysis of a large-scale 
landslide is taken to prove the validity and capability of the 
proposed method. Firstly, the values of uncertain variables, 
such as the friction angle and cohesion, are transformed 
from encoded variables in SOED design matrix. Then, the 
response value, the factor of safety (FS), is calculated by 3D 
rigorous limit equilibrium method. Finally, the reliability 
index can be obtained by MATLAB optimization toolbox.

Construction of second‑order orthogonal 
experimental design (SOED)

SOED is based on orthogonal Latin squares and group theory 
(Hall 1959; Johnson and Johnson 1991). The main character-
istic of SOED is that the design matrix is diagonal; meanwhile, 
the sum of error between the theoretical response values by 
fitting equation and the actual response values is equal to 0.

Sampling points

The sampling points in an orthogonal experimental design 
are consisted of corner points, star points and mean points. 
The corner points are located at the corner of distribution of 
experimental points, the star points are located in the axis 
and the mean points are located at origin, as shown in Figs. 1 
and 2. The length from the star points to the mean points is γ, 
which is introduced in the next section. It can be obviously 
found from Figs. 1 and 2 that the run by mean points is 1, the 
run by star points is  2m (m is the total number of variables) 
and the run by corner points is  2m. Hence, the total number 
of SOED experimental times is:

It should be pointed out that the corner points can be 
taken by factorial design  (2k design), which requires a large 

(1)N = 2m + 2m + 1

number of design points, as listed in Table 1 (four variables). 
In general, a  2−pth fraction of a  2k design consists of  2k−p 
points from a full  2k design (p < k). It is assumed that the 
number of runs is mc, for a whole fraction design, mc is  2m, a 
one-half fraction design mc is  2m−1 and a one-fourth fraction 
design mc is  2m−2.

It can be found from Table  1 that 
∑N

j=1
zj = 0 and ∑

i≠j zizj = 0, i.e., the matrix is an orthogonal one. However, 
the orthogonality of the matrix cannot be satisfied when the 
second-order terms are considered. For instance, ∑

i≠j z
2
i
zj ≠ 0, or 

∑
i≠j ziz

2
j
≠ 0.

The length of star points

In order to construct a second-order orthogonal matrix, the 
length of star points γ should be carefully taken. Firstly, the 
quadratic terms should be centralized, and it can be written 
in the following form:

Fig. 1  Distribution of design points in SOED with two variables

Fig. 2  Distribution of design points of the SOED with three variables
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where z′
ij
 is the centralized quadratic terms, zij is the first-

order terms and N is the total run of experimental design. 
Since any two second-order terms should satisfy the orthog-
onality, the following expression can be obtained:

(2)z�
ij
= z2

ij
−

1

N

N∑
i=1

z2
ij
= z2

ij
−
(
mc + 2�2

)/
N

Substituting (2) into (3), we have

where m0 is the run by the mean points, and it is equal to 1 
in most case. Simplifying Eq. (4), the length of star points γ 
in SOED can be obtained as:

Consider m = 4 and the one-half fraction of a  2k design 
is chosen, then mc is  24−1 = 8. From Eq. (1), N is 17. From 
(5), γ is 1.353. The design matrix with four variables is listed 
in Table 2.

SOED‑based RSM

A second-order RSM can be written as:

(3)
N∑
i=1

z�
i
z�
j
= 0

(4)
m

c
− (m

c
+ 2�2)2

/
N = −

4

N

[
�4 + m

c
�2 −

1

2
m

c

(
m +

1

2
m

0

)]
= 0

(5)� =

�√
(mc + 2m + m0)mc − mc

2

(6)

ŷ = 𝛼 +

m∑
i=1

𝛽
i
z
i
+
∑
j<i

𝛽
ij
z
i
z
j
+

m∑
i=1

𝛽
ii
z
2

i
+ 𝜀, j = 1, 2,… n − 1(j ≠ i)

Table 1  Encoded design 
variables (or matrix) by factorial 
design with four variables

z1 z2 z3 z4

1 1 1 1
1 1 1 − 1
1 1 − 1 1
1 1 − 1 − 1
1 − 1 1 1
1 − 1 1 − 1
1 − 1 − 1 1
1 − 1 − 1 − 1

− 1 1 1 1
− 1 1 1 − 1
− 1 1 − 1 1
− 1 1 − 1 − 1
− 1 − 1 1 1
− 1 − 1 1 − 1
− 1 − 1 − 1 1
− 1 − 1 − 1 − 1

Table 2  Design matrix in SOED with four variables (m = 4)

Experi-
mental 
order

z1 z2 z3 z4 z1z2 z1z3 z1z4 z2z3 z2z4 z3z4 z1′ z2′ z3′ z4′

1 1 1 1 1 1 1 1 1 1 1 0.314 0.314 0.314 0.314
2 1 1 − 1 − 1 1 − 1 − 1 − 1 − 1 1 0.314 0.314 0.314 0.314
3 1 − 1 1 − 1 − 1 1 − 1 − 1 1 − 1 0.314 0.314 0.314 0.314
4 1 − 1 − 1 1 − 1 − 1 1 1 − 1 − 1 0.314 0.314 0.314 0.314
5 − 1 1 1 − 1 − 1 − 1 1 1 − 1 − 1 0.314 0.314 0.314 0.314
6 − 1 1 − 1 1 − 1 1 − 1 − 1 1 − 1 0.314 0.314 0.314 0.314
7 − 1 − 1 1 1 1 − 1 − 1 − 1 − 1 1 0.314 0.314 0.314 0.314
8 − 1 − 1 − 1 − 1 1 1 1 1 1 1 0.314 0.314 0.314 0.314
9 1.353 0 0 0 0 0 0 0 0 0 1.145 − 0.686 − 0.686 − 0.686
10 − 1.353 0 0 0 0 0 0 0 0 0 1.145 − 0.686 − 0.686 − 0.686
11 0 1.353 0 0 0 0 0 0 0 0 − 0.686 1.145 − 0.686 − 0.686
12 0 − 1.353 0 0 0 0 0 0 0 0 − 0.686 1.145 − 0.686 − 0.686
13 0 0 1.353 0 0 0 0 0 0 0 − 0.686 − 0.686 1.145 − 0.686
14 0 0 − 1.353 0 0 0 0 0 0 0 − 0.686 − 0.686 1.145 − 0.686
15 0 0 0 1.353 0 0 0 0 0 0 − 0.686 − 0.686 − 0.686 1.145
16 0 0 0 − 1.353 0 0 0 0 0 0 − 0.686 − 0.686 − 0.686 1.145
17 0 0 0 0 0 0 0 0 0 0 − 0.686 − 0.686 − 0.686 − 0.686
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where α is the constant terms,{βi},{βij} and {βii} are, respec-
tively, the regression coefficient of first-order terms, cross-
terms and second-order terms, ɛ is the error, zi and zj are the 
uncertain variables.

It can be found from Eq. (6) that there is (m + 1)(m + 2)/2 
unknowns. Therefore, the total number of experiments 
should be larger than (m + 1)(m + 2)/2.

In the conventional RSM, the response surface is approxi-
mated using a conventional regression technique. Therefore, 
the selection of appropriate sampling points is important. 
Unfortunately, the selection of the grid of experimental 
design points has no precise guidelines or theory (Guan and 
Melchers 2001). In order to calculate simply, Eq. (6), which 
does not include cross-terms and quadratic terms, is always 
used as the approximation. This greatly simplifies the num-
ber of sampling points, but it may not be appropriate in all 
cases. However, the high order is the true one, which was 
also mentioned by Myers and Raymond (2012). Fortunately, 
the proposed SOED-based RSM takes the second-order 
terms into consideration, and it can also provide a guideline 
for sampling strategy in RSM.

The procedure of SOED is the same as the conventional 
RSM; the sampling points (input variables) should firstly 
be selected, e.g., the stability of landslide is influenced by 
the parameters, such as friction angle and cohesion. Then, 
the values of input variables should be determined. Next, 
the experiment table is selected, from which the response 
variables are obtained. Finally, a polynomial function can 
be determined.

Reliability index βRI for SOED

The reliability index is the shortest distance from the limit 
state function to the origin of the transformed space of ran-
dom variables. It can be defined by (US Army Corps of 
Engineers 1995)

where xj is the random variable, μ and σ are, respectively, 
the vector of mean values and standard deviation of random 
variables, Y is a vector of normalized (transformed) vari-
ables and G’(x) is limit state function.

Solving the minimum βRI ellipse, which is tangent to the 
limit state surface, can be iteratively performed using opti-
mization tools, such as Excel Solver or MATLAB optimiza-
tion toolbox. Once the reliability index βRI is determined, 

(7)
min�RI = ‖�‖ =

√
��� =

���� n�
j=1

��
xj − �j

�
∕�j

�2
,

s.t.

�
G�(x) = 0

xmin ≤ xj ≤ xmax

j = 1, 2,… n

⎫⎪⎪⎬⎪⎪⎭

the probability of failure can be found. The reliability index 
βRI, the corresponding probability of failure Pf and an aux-
iliary terminology regarding expected performance points 
are listed in Table 3.

Case study: a large‑scale landslide

In order to demonstrate the efficiency and accuracy of the 
proposed method, a practical landslide, Xiangjiashan land-
slide, is taken as an example, and the arbitrary slip surface 
for this landslide is shown in Fig. 3.

Xiangjiashan landside is located at Chongqing in China. 
It is observed from Fig. 3 that bird’s-eye view of the land-
slide is an irregular horseshoe shape with the width of 
200 ~ 360 m and longitudinal length of 230 m. The slope 
angle of the landslide is about 70° ~ 80°. The area of the slid-
ing region is approximately 70,000 m2, and the volume of 
the sliding body is estimated to be 1,400,000 m3. Therefore, 
Xiangjiashan landslide is a large-scale one (Zhou and Cheng 
2015). The landslide was reinforced with the high safety 
factor during excavation since 1998, but great displacements 
occurred on June 1, 2004. Therefore, it is indicated that a 

Table 3  Target reliability indices (US Army Corps of Engineers 
1995)

Probability of failure Pf (%) Reliability index β Expected 
performance 
level

0.16 1 Hazardous
0.07 1.5 Unsatisfactory
0.023 2 Poor
0.006 2.5 Below
0.001 3 Above
0.00003 4 Good
0.0000003 5 High

Cross-section 3-3' 

Upper sliding mass
Lower 
sliding 
mass

Fig. 3  Photograph of the reinforced Xiangjiashan landslide
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landslide reinforced with high FS cannot be considered as 
‘safe’ one. To study this landslide, the probabilistic way is 
more reasonable.

According to the geological exploration of Xiangjiashan 
landslide, there exist two sliding bodies (upper sliding body 
and lower sliding body), which are observed in Figs. 3 and 
4. The upper sliding body contains sandstone, weathered 
mudstone, and so on. The lower sliding body mainly con-
tains sandstone and weathered mudstone (Zhou and Cheng 
2015). It is assumed that unit weight, cohesion and friction 
angle of geomaterials are in normal distributions, and they 
are assumed to be uncorrelated. The mechanical parameters 
are listed in Table 4.

The upper sliding mass

There are three uncertain variables in this study, i.e., from 
Eq. (1), N is 15 when m is 3. From Eq. (5), the length of 

star points γ is 1.215. In Table 5, the uncertain variables are 
changed from encoded variables in SOED. For instance, ‘0’ 
listed in the column z1 is corresponding to mean value μ 
(‘24.92’) of uncertain variable η, ‘± 1’ represents ‘μ ± σ’, 
‘± 1.215’ represents ‘μ ± 1.215σ’, etc.

Sets of response value, FS, are obtained by uncertain vari-
ables in Table 5 using 3D rigorous limit equilibrium method. 
3D rigorous limit equilibrium method is a more reasonable 
and rigorous way to calculate FS because six equilibrium 
equations are satisfied, while parts of equilibrium equations 
are satisfied in simplified Bishop method and Janbu method. 
For simplicity, 3D rigorous limit equilibrium method is illus-
trated in “Appendix.”

From Eq.  (2),  we have z�
1
=
(

�−24.92

2

)2

− 0.73, 

z�
2
=
(

c−55

5

)2

− 0.73, z�
3
=
(

�−26

2

)2

− 0.73.

Fig. 4  The 3-3′ geological cross section of Xiangjiashan landslides (Zhou and Cheng 2015)

Table 4  Mechanical parameters 
of the Xiangjiashan landslide

Masses Unit weight x1(η/kN m−3) Cohesion of geomaterials 
x2 (c/KPa)

Internal friction angle of 
geomaterials x3(φ/°)

Mean values Standard 
deviation

Mean values Standard 
deviation

Mean values Standard 
deviation

The upper sliding mass 24.92 2 55.0 5 26.0 2
The lower sliding mass 24.92 2 60.0 5 25.0 2
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From Eq. (6), the second-order regression equation can 
be obtained as follows:

where z1=
x1−��

��
=

�−24.92

2
, z2=

c−55

5
,z3=

�−26

2
.

The encoded variables in Eq. (8) should be translated 
into ‘natural’ uncertain variables; a translated equation can 
be written as:

The performance function with respect to a limiting 
FS(FSmin = 1) is:

In order to make a comparison, the regression equation 
is also determined by the conventional RSM, in which the 
design matrix is based on central composite designs. FS 
is listed in Table 6. It can be noticed that the products by 
 z11′ and  z22′ are not equal to 0, i.e., the design matrix by a 
second-order forms does not satisfy the orthogonality in the 
conventional RSM.

(8)

ŷup - soed =1.1143 − 0.0216z1 − 0.0114z2 + 0.0476z3

+ 0.002z1z2 − 0.0375z1z3 − 0.0375z2z3

+ 0.0024z�
1
+ 0.001z�

2
+ 0.002z�

3

(9)

ŷup−soed = − 10.215 + 0.0006𝜂2 + 0.00004c2

+ 𝜂(0.192 + 0.0002c − 0.0094𝜑)

+ c(0.0858 − 0.00375𝜑)

+ (0.4377 + 0.0005𝜑)𝜑

(10)G�(x)up - soed = ŷup - soed − FS
min

= ŷup - soed − 1

Table 5  Design matrix in SOED with three variables (m = 3)

Experi-
mental 
order

z1 z2 z3 z1z2 z1z3 z2z3 z1′ z2′ z3′ η c φ Response FS

1 1 1 1 1 1 1 0.27 0.27 0.27 26.92 50 28 0.996
2 1 1 − 1 1 − 1 − 1 0.27 0.27 0.27 26.92 50 24 1.146
3 1 − 1 1 − 1 1 − 1 0.27 0.27 0.27 26.92 60 28 1.191
4 1 − 1 − 1 − 1 − 1 1 0.27 0.27 0.27 26.92 60 24 1.041
5 − 1 1 1 − 1 − 1 1 0.27 0.27 0.27 22.92 50 28 1.185
6 − 1 1 − 1 − 1 1 − 1 0.27 0.27 0.27 22.92 50 24 1.035
7 − 1 − 1 1 1 − 1 − 1 0.27 0.27 0.27 22.92 60 28 1.238
8 − 1 − 1 − 1 1 1 1 0.27 0.27 0.27 22.92 60 24 1.088
9 1.215 0 0 0 0 0 0.747 − 0.73 − 0.73 27.35 55 26 1.088
10 − 1.215 0 0 0 0 0 0.747 − 0.73 − 0.73 22.49 55 26 1.141
11 0 1.215 0 0 0 0 − 0.73 0.747 − 0.73 24.92 61.07 26 1.142
12 0 − 1.215 0 0 0 0 − 0.73 0.747 − 0.73 24.92 48.93 26 1.083
13 0 0 1.215 0 0 0 − 0.73 − 0.73 0.747 24.92 55 28.43 1.205
14 0 0 − 1.215 0 0 0 − 0.73 − 0.73 0.747 24.92 55 23.57 1.023
15 0 0 0 0 0 0 − 0.73 − 0.73 − 0.73 24.92 55 26 1.113

The regression equation by the conventional RSM is:

A translated equation can be written as:

Similarly, the performance function with respect to a lim-
iting FS(FSmin = 1) is:

For comparison, the errors between FS obtained by 3D 
rigorous limit equilibrium method and the proposed method 
are plotted in Fig. 5, and the errors between FS obtained by 
3D rigorous limit equilibrium method and the conventional 
RSM are plotted in Fig. 6. It can be found that the standard 
deviation of errors in Fig. 5 is less than that in Fig. 6. Mean-
while, the mean value of errors for the proposed method is 
equal to 0. Such a phenomenon appears because the variance 
of the error is minimized in the proposed method.

For SOED-based RSM, the reliability index βRI and 
the probability of failure of the upper sliding mass can be 
obtained by Eqs. (7) and (10) with the help of MATLAB 

(11)

ŷup - RSM =1.115 − 0.0217z1 − 0.0425z2 + 0.0530z3

+ 0.002z1z2 − 0.0375z1z3 − 0.0375z2z3

+ 0.0018z�
11
+ 0.0006z�

22
+ 0.0013z�

33

(12)

ŷup - RSM = − 9.448 + 0.00045𝜂2 + 0.000026c2

+ 𝜂(0.1995 + 0.0002c − 0.0094𝜑)

+ c(0.08112 − 0.00375𝜑)

+ (0.4494 + 0.0003𝜑)𝜑

(13)G�(x)up - RSM = ŷup - RSM − 1
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optimization toolbox. Similarly, for the conventional 
RSM, the reliability index βRI and the probability of 
failure of the upper sliding mass can be determined by 
Eqs. (10) and (13). The results are listed in Table 7. It 
can be found from Table 7 that the probability of failure 
of the upper sliding mass by the proposed method is in 
good agreement with that by Monte Carlo simulations 
(MC), which is larger than that by the conventional RSM. 
The main reason of such a phenomenon is that the high-
order terms in the conventional RSM do not satisfy the 
orthogonality. That is to say, the second-order response 
surface for SOED-based RSM is more rigorous than that 
for the conventional RSM because the orthogonality of 
variables in high-order design matrix is ignored in the 
conventional RSM.

The lower sliding mass

Similarly, the response values of FS of the lower sliding 
mass are calculated using 3D rigorous limit equilibrium 
method, and uncertain variables are also transformed from 
Table 5. The regression equation by the proposed method 
can be obtained as follows:

The translated equation for the lower sliding mass can 
be written as:

(14)

ŷlow SOED = 1.6550 − 0.0681z1 − 0.0327z2 + 0.0737z3

+ 0.0056z1z2 + 0.0055z2
1
+ 0.0012z2

3

(15)

ŷup - RSM = 30848 + 𝜂(−0.1055 + 0.0014𝜂 + 0.00056c)

− 0.205c + (0.0219 + 0.0003𝜑)𝜑

Table 6  Design matrix in the 
conventional RSM with three 
variables (m = 3)

Experimental 
order

z1 z2 z3 z1z2 z1z3 z2z3 z11′ z22′ z33′ Response 
FS

1 1 1 1 1 1 1 0.09 0.09 0.09 0.996
2 1 1 − 1 1 − 1 − 1 0.09 0.09 0.09 1.146
3 1 − 1 1 − 1 1 − 1 0.09 0.09 0.09 1.191
4 1 − 1 − 1 − 1 − 1 1 0.09 0.09 0.09 1.041
5 − 1 1 1 − 1 − 1 1 0.09 0.09 0.09 1.185
6 − 1 1 − 1 − 1 1 − 1 0.09 0.09 0.09 1.035
7 − 1 − 1 1 1 − 1 − 1 0.09 0.09 0.09 1.238
8 − 1 − 1 − 1 1 1 1 0.09 0.09 0.09 1.088
9 1.682 0 0 0 0 0 1.918 − 0.91 − 0.91 1.08
10 − 1.682 0 0 0 0 0 1.918 − 0.91 − 0.91 1.154
11 0 1.682 0 0 0 0 − 0.91 1.918 − 0.91 1.153
12 0 − 1.682 0 0 0 0 − 0.91 1.918 − 0.91 1.071
13 0 0 1.682 0 0 0 − 0.91 − 0.91 1.918 1.242
14 0 0 − 1.682 0 0 0 − 0.91 − 0.91 1.918 0.99
15 0 0 0 0 0 0 − 0.91 − 0.91 − 0.91 1.113

Mean value             0 

Standard deviation  0.06204 

Fig. 5  Errors between FS obtained by 3D rigorous limit equilibrium 
method and SOED-based RSM

Mean value       0.000014 

Standard deviation  0.06591 

Fig. 6  Errors between FS obtained by 3D rigorous limit equilibrium 
method and the conventional RSM
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FS obtained by 3D rigorous limit equilibrium method 
is compared with those obtained by SOED-based RSM, as 
shown in Figs. 7 and 8. It can be found from Figs. 7 and 8 
that FS obtained by the proposed approach is in good agree-
ment with that obtained by 3D rigorous limit equilibrium 
method. In order to prove the accuracy of SOED-based 
RSM, a well-accepted simulation method, Monte Carlo 
simulations, is employed herein.

The reliability index βRI obtained by SOED-based RSM 
with the help of MATLAB optimization toolbox is 2.62, and 
the probability of failure of the lower sliding mass is 4.4%. 
The probability of failure obtained by Monte Carlo simula-
tions with  1012 sampling points is 4.2%. The probability of 
failure obtained by SOED-based RSM is in good agreement 
with that obtained by Monte Carlo simulations. It can be 
found from Table 3 that the lower sliding mass is between 

Table 7  Comparison of βRI 
and the probability of failure Pf 
using the different methods

Methods Reliability index 
βRI

The probability of 
failure (%)

Failure points (η, c, φ)

The proposed method 1.42 7.71 (24.842, 45.000, 24.413)
The conventional RSM 1.52 6.73 (27.209, 45.002, 22.795)
Monte Carlo simulations 1.42 7.74 /

Fig. 7  FS obtained by 3D rigor-
ous limit equilibrium method 
and SOED-based RSM

Fig. 8  Errors between FS 
obtained by 3D rigorous limit 
equilibrium method and the 
proposed method

Mean value             0 

Standard deviation  0.03469 
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‘unsatisfactory’ and ‘poor,’ which means the landslide may 
fail. That is to say, it should be reinforced as soon as pos-
sible. In fact, Xiangjiashan landslide was reinforced.

Summary and conclusions

Rocks or soils in landslides are highly variable natural mate-
rials. In order to deal with uncertainties, reliability analysis 
approach, which is a reasonable and rigorous way, is applied 
in landslides or the other engineering. A SOED-based RSM 
is proposed to study the stability of landslides. Firstly, a 
second-order design matrix is built by changing the length 
of star points. Secondly, the unit weight, cohesion and fric-
tion angle of geomaterials are considered as random vari-
ables, and their values are transformed from the encoded 
variables in the proposed method. Thirdly, the response 
value, the safety factor, is calculated by 3D rigorous limit 
equilibrium method. Finally, an example is taken to verify 
the validity of the proposed approach. Compared with the 
conventional RSM, it can be found that the results obtained 
by the proposed method are more accurate. Therefore, the 
proposed method provides a new idea to analyze the stabil-
ity of landslides.

Acknowledgements The work was supported by the National Natu-
ral Science Foundation of China (Nos. 51325903, 51679017) and the 
Natural Science Foundation Project of CQ CSTC (Nos. cstc2015j-
cyjys0002, cstc2015jcyjys0009 and cstc2016jcyjys0005).

Open Access This article is distributed under the terms of the Creative 
Commons Attribution 4.0 International License (http://creativecom-
mons.org/licenses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.  

Appendix (Zhou and Cheng 2014)
Determination of FS of three‑dimensional landslides 
using 3D rigorous limit equilibrium method

As shown in Fig. 9, the sliding body is divided into m col-
umns in the x-direction and n columns in the y-direction. 
Each column is labeled using indices i and j, which, respec-
tively, represent the number of rows and columns. Wi, j 
denotes the weight of the column. Ni, j and Si, j are, respec-
tively, the normal force and shear force at the slip surface. 
The inter-column force between the column (i, j) and the 
column (i, j−1) is denoted as Qi, j. Meanwhile, the inter-
column force between column (i, j) and column (i−1, j) is 
Gi, j. The inclinations of inter-column forces of Qi, j are ± α, 
and the inclinations of inter-column forces of Gi, j are ± β.

The coordinate system o-xyz is established in Fig. 9, and 
the entire sliding body is located into the first quadrant. The 

ground surface and the slip surface are described by equa-
tions  z1 = g(x, y) and  z2 = f(x, y), respectively. The direction 
cosines of normal forces over the slip surface are denoted as 
(n

i,j
x , n

i,j
y , n

i,j
z ), and the direction cosines of shear forces over 

the slip surface are denoted as (li,jx , l
i,j
y , l

i,j
z ).

The direction cosines of normal forces over the slip sur-
face can be described as

where

Since x-axis is parallel to the moving direction of the 
sliding block, we have

where

The weight of the column can be denoted by

(16)(ni,j
x
, ni,j

y
, ni,j

z
) =

(
−
1

Δ

�f

�x
,−

1

Δ

�f

�y
,
1

Δ

)

(17)Δ =

√
1 +

(
�f

�x

)2

+

(
�f

�y

)2

(18)
(
li,j
x
, li,j
y
, li,j
z

)
=

1

Δ�

(
1, 0,

�f

�x

)

(19)Δ� =

√
1 +

(
�f

�x

)2

Fig. 9  Geometric elements of the slopes
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where η is the unit weight of geomaterials, and Ai,j is the 
cross-sectional area of the column.

The equation of force equilibrium along the x-axis, y-axis 
and z-axis is, respectively

Assuming that there are no supporting structures in the 
sliding body. Hence, the boundary conditions of inter-col-
umn force can be described as G0,j

1≤j≤n+1
= 0,    Gm+1,j

1≤j≤n+1
= 0,  

Q
i,0

1≤i≤m+1
= 0, Qi,n+1

1≤i≤m+1
= 0. Because of the relationship of 

action and reaction among other inter-column forces, the 
moments of inter-column forces around the axes are equal 
to 0. Moment around the x-axis, y-axis and z-axis is, 
respectively

 
 
 

 
 
 

(20)Wi,j = �Ai,j[g(x, y) − f (x, y)]

(21)
(Ni,j + Ui,j

w
+ Ui,j

a
)nx + Si,jlx + Gi+1,j cos � − Gi,j cos � = 0

(22)
(Ni,j + Ui,j

w
+ Ui,j

a
)ny + Si,jly + Qi,j+1 cos � − Qi,j cos � = 0

(23)
(Ni,j + Ui,j

w
+ Ui,j

a
)nz + Si,jlz + Gi+1,j sin �

− Gi,j sin � + Qi,j+1 sin � − Qi,j sin � −Wi,j = 0

(24)
m∑
i=1

n∑
j=1

{
−
[(
Ni,j + Ui,j

w
+ Ui,j

a

)
n
y

i,j
+ Si,jl

y

i,j

]
zΔG

i,j∕ΔQi,j

+
[(
Ni,j + Ui,j

w
+ Ui,j

a

)
nz
i,j
+ Si,jlz

i,j

]
yΔG

i,j∕ΔQi,j

−Wi,jyH
i,j

}
= 0

(25)
m∑
i=1

n∑
j=1

{[(
Ni,j + Ui,j

w
+ Ui,j

a

)
nx
i,j
+ Si,jlx

i,j

]
zΔG

i,j∕ΔQi,j

−
[(
Ni,j + Ui,j

w
+ Ui,j

a

)
nz
i,j
+ Si,jlz

i,j

]
xΔG

i,j∕ΔQi,j

+Wi,jxH
i,j

}
= 0

(26)
m∑
i=1

n∑
j=1

{
−
[(
Ni,j + Ui,j

w
+ Ui,j

a

)
nx
i,j
+ Si,jlx

i,j

]
yΔG

i,j∕ΔQi,j

+
[(
Ni,j + Ui,j

w
+ Ui,j

a

)
n
y

i,j
+ Si,jl

y

i,j

]
xΔG

i,j∕ΔQi,j
}
= 0

where xΔGi,j∕ΔQi,j is x coordinate of the forces point of ΔGi, j 
or ΔQi, j (ΔGi, j is the different values of inter-column force 
acting on the plane ABB′A′ and the plane CDD′C′, 
ΔGi,j = Gi+1,j − Gi,j; ΔQi, j is the different values of inter-
column force acting on the plane BCC′B′ and the plane 
ADD′A′, ΔQi,j = Qi,j+1 − Qi,j), which is equal to the x coor-
dinate of point H; yΔGi,j∕ΔQi,j is the y coordinate of the force 
point of ΔGi, j or ΔQi, j, which is equal to the y coordinate of 
point H; zΔGi,j∕ΔQi,j is the z coordinate of the force point of 
ΔGi, j or ΔQi, j, which is equal to the z coordinate of point H; 
xH
i,j

 is the x coordinate of point H; and yH
i,j

 is the y coordinate 
of point H.

Following Coulombs failure criterion, the safety factor 
of a slope against sliding is given by the following formula

where c is cohesion of the failure discontinuity, φ is the 
effective internal friction angle and the factor of safety is FS.

Substituting Eq. (27) into Eqs. (21)–(23) and eliminating 
Gi, j and Qi, j, the following expressions can be obtained,

(27)Si,j =
cAi,j + (Ni,j − Ui,j) tan�

FS
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Substituting Ni, j, Si, j of Eqs.  (28) and (29) into 
Eqs. (24)–(26), the following expressions can be written as

The set of nonlinear Eq. (30) can be solved using trust-
region-reflective iterative algorithm. The initial value is set 
as α = 0, β = 0 and FS = 1. The local optimal solutions can 
then be obtained using 10–20 iterations. The value of FS of 
three-dimensional slopes can be determined finally.
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