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Abstract
Due to the influential role in global climate, the hydrologic modeling of the watersheds in Himalayan mountain range is criti-
cally important for the socioeconomy and livelihood of surrounding regions. As these watersheds usually have snow-driven 
hydrology and abrupt changes in orography, the challenges in hydrologic model are acknowledged in scientific community. 
In this study, we addressed this challenge by implementing an improved multivariable and multi-site approach to calibration 
and validation of the Soil Water Assessment Tool (SWAT) model for determining its ability to mimic flow regime of the 
watershed. In the improved multi-site approach, the model was successfully calibrated using 1980–1985 streamflow data 
and validated using 1990–1995 data for the daily time steps. Combination of different performance metrics indicates that the 
improved method increased the efficiency of daily prediction of Karnali River discharge. We utilized 30 years of streamflow 
data from four discharge stations to explore the changes in flow pattern at the decadal scales. Groundwater flow decreased 
in monsoon season compared to other season where the changes in flow regimes were insignificant within the decadal scale. 
The proposed calibration method can be used to any other large mountainous watershed to improve the estimation of the 
hydrologic processes.
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Introduction

Mountains, one of the primary sources of stream flows, 
are the storehouse of biodiversity and vital to coupled 
ocean–atmosphere and terrestrial system (Viviroli et al. 
2007). The assessment of hydrologic processes in moun-
tain terrain received special attentions in recent years due 
to its importance in water resource management and local 
and regional economics (De Jong et al. 2005; Nolin 2012). 
Accurate quantification of this process in mountainous ter-
rain through numerical modeling is considered to be a chal-
lenging task due to its steep elevation gradient, coarse in situ 

information, and complex snow water dynamics (Sorooshian 
2008). In case of Himalayan mountain range, such challenge 
is paramount hydro-climatic impacts on water resources and 
extreme environments are poorly understood.

The hydro-climatic assessment of Himalaya and its down-
stream plains is essential for socioeconomic development 
and future policy-making, where about one-tenth global 
population live (Immerzeel et al. 2010; Tiwari and Joshi 
2012). The mountain range is the largest cryospheric system 
outside the polar region and nourishes more than 12,000 
glaciers (Thayyen and Gergan 2010). Nepal, a country that 
resides in the central Himalayan region, requires robust 
valuation of mountain hydrology for its future socioeco-
nomic growth (Dewan 2015). Therefore, hydrologic studies 
of Himalayan watersheds and their ecological flow are not 
only a prime interest for the scientific community, but also 
essential for local stockholders. Even with the advancement 
of numerical and hydrologic models in recent years, precise 
estimation of hydrologic process such as river runoff still 
faces challenges and uncertainty.
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The Soil and Water Assessment Tool (SWAT) model, 
one of the widely used distributed parameter models, can 
simulate surface and subsurface flows and be applicable 
for mountainous watershed modeling (Arnold et al. 2012). 
However, high altitude watershed modeling associates some 
uncertainties in prediction of flow, which could be dealt by 
using various modeling approach and calibration strategies. 
Most of the models require optimization of a set of param-
eters to simulate particular processes, which are selected 
depending on the objective of a study. In the application of 
watershed models like SWAT, it is crucial for the model to 
pass a careful calibration for accurate estimation of river 
runoff.

The model calibration is usually based on a comparison 
between the simulated and observed streamflows. Never-
theless, the potential for equifinality or non-uniqueness in 
complex, spatially distributed models with numerous cali-
bration parameters has shown that a large number of alter-
native parameterizations can produce acceptable results 
(Beven and Binley 1992; Beven and Freer 2001). In case 
of large watershed of mountainous region, SWAT can be 
calibrated using single-site or multi-site method. In the 
single-site calibration, parameterization is often done con-
sidering one single set of optimizing variables (Devkota and 
Gyawali 2015; Narsimlu et al. 2013; Neupane et al. 2015). 
On the other hand, in simultaneous multi-site calibration, 
although the analysis is conducted over multiple sites, the 
parameterization still utilizes single set of common calibrat-
ing variables (Cao et al. 2006; Santhi et al. 2008; Easton 
et al. 2010; Zhang et al. 2010; Bai et al. 2017). However, 
the underlying sub-basins of a large watershed have different 
hydrologic characteristics from each other; thus, a separate 
conceptualization of parameters for each sub-basin could 
be appropriate for accurate calibration of the larger basin. 
Some multi-site calibration studies related to SWAT model 
considered sub-basinwise parameterization, but the calibra-
tion process was conducted separately for each sub-basin 
(Chaibou Begou et al. 2016; Teshager et al. 2016; Shrestha 
et al. 2016). There is no reported study in our knowledge 
that considered the multi-site parameterization as well as 
multi-site calibration of SWAT model simultaneously to 
calibrate the primary outlet of a large watershed. This study 
conducted a multi-site multi-segment hydrologic analysis 
using semi-distributed SWAT model in a vulnerable water-
shed of Himalayas and therefore adds additional knowledge 
base to the existing literature in hydrologic modeling.

It is evident that the natural flow variation—ranging from 
base flow to high flow pulses and floods—plays important 
ecological roles in a river ecosystem (Mathews and Richter 
2007; Aldous et al. 2011). Under ongoing climate change, 
evaluating the existing condition as well as future changes 
of environmental flow is crucial for the Himalayan Rivers. 
A well-calibrated hydrologic model such as SWAT can be 

utilized to estimate both present and future environmental 
flows over the areas. Therefore, the first step to understand-
ing hydrology of the watershed using SWAT model is to 
calibrate streamflow to calculate environmental flows of a 
climate-vulnerable mountainous watershed.

The quantification of environmental flow requires daily 
discharge information. Most of the modeling studies over 
the Himalayan region have been conducted at a monthly 
time scale with no further analysis on streamflow parameters 
pertaining to environmental flows. Estimation of daily flow 
through modeling is not only useful for providing meaning-
ful information to decision makers on ecological services, 
but also plays substantial role in quantifying the extreme 
events such as droughts and floods. In this context, we 
improvised our model development at a daily scale to con-
duct a comprehensive hydrologic modeling over this region.

Therefore, in this study, we implemented an improved 
technique of calibration for a large mountainous watershed 
of Himalaya to accurately quantify environmental flow 
regime. As a case study, we selected one of the watersheds 
of Western Nepal, Karnali River watershed, where down-
stream of the watershed has experienced devastating floods 
in recent years (Smith et al. 2017). The importance of the 
study area is explained in the following section.

Study area

The Karnali River originates in the Tibetan plateau and runs 
through the Himalayan Mountains in western Nepal before 
connecting with Ganges River in India covering an area of 
127,950 km2. The river runs through the snowmelt-driven 
High Himalaya, High Mountain, and Middle Mountain and 
the monsoon-driven Siwalik and Terai plains physiographic 
zones (Gautam and Acharya 2012) with an annual average 
discharge of 43.9 billion m3 (Siderius et al. 2013).

The study area includes the headwaters in the Tibetan 
plateau through the Chisapani outlet in Nepal for a total area 
of 38,569 km2. The river runs from an elevation of 7664 m 
in the Tibetan plateau to 185 m near the Chisapani outlet 
and covers the High Himalaya, High Mountain, and Mid-
dle Mountain physiographic regions (Hannah et al. 2005). 
This watershed is unregulated, which means that it has not 
been affected by important hydraulic structures that would 
otherwise significantly modify its flow regime.

We used observed discharge data from four stations 
shown in Fig. 1: Lalighat (215), Bangga (260), Jamu (270), 
and Chisapani (280). These watershed stations are referred 
as C215, C260, C270, and C280, respectively, in rest of the 
study. Lalighat measures runoff from 15,200 km2; Bangga 
measures runoff from 7460 km2; Jamu measures runoff 
from 12,290 km2; and Chisapani measures runoff from 
42,890 km2 from respective sub-watershed. Chisapani is 
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the downstream gauging station; measures combined flow 
of all sub-watersheds.

Methodology

Soil and Water Assessment Tool (SWAT) is a semi-dis-
tributed hydrologic model that can function on a daily to 
sub-daily time step and utilizes physically based algorithms 
to describe many important components of the hydrologic 
cycle. SWAT is computationally efficient, applies readily 
available inputs, allows users to study long-term impacts 
(Neitsch et al. 2011), and is originally developed by United 
States Department of Agriculture (USDA) to model the 
impact of land management practices on water, sediment, 
and crops. SWAT has been widely used to simulate long-
term hydrology, sediment mass transport, agricultural 

chemical yields, and land management at the sub-basin level 
(Muleta and Nicklow 2005; Gassman et al. 2007; Arnold 
et al. 2012).

In SWAT, a watershed is divided into sub-basins, which 
are then further subdivided into hydrologic response units 
(HRUs) that consist of unique combinations of land cover 
and soils (Neitsch et al. 2011). SWAT accounts for a num-
ber of different hydrologic routines for solving physical pro-
cesses. The hydrologic component of SWAT is based on the 
water balance equation of soil:

where  SWt is the final soil water content (mm),  SW0 is the 
initial soil water content (mm), t is time in days, Rday is the 
amount of precipitation (mm), Qsurf indicates the amount of 

(1)SWt = SW0 +

t
∑

i=1

(Rday − Qsurf − ETa −Wseep − Qgw)
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Fig. 1  Watershed area of Karnali watershed with shaded sub-watershed
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surface runoff (mm),  ETa is the amount of evapotranspira-
tion (mm), Wseep is the amount of water entering the vadose 
zone from the soil profile (mm), and Qgw is the amount of 
return flow (mm). We used the curve number method of the 
Soil Conservation Service (SCS) to estimate surface run-
off volume for the selected basins. The SCS curve number 
equation is:

where Qsurf is the accumulated runoff or rainfall excess 
(mm), Rday is the rainfall depth for the day (mm), and S is 
the retention parameter (mm) (Loague and Freeze 1985). 
Potential evapotranspiration (PET) was estimated using 
Penman–Monteith procedure (Monteith 1965) which is 
based on the energy balance components. Snowmelt in the 
model is estimated through temperature-index or degree-day 
approach. In the routing phase of SWAT, water is routed 
using kinematic wave model (Chow et al. 1988).

SWAT can be simulated with ArcGIS with an extension 
called ‘ArcSWAT’ which provides an easy-to-use graphical 
interface (Winchell et al. 2013). We used the ArcSWAT, to 
model the streamflow of the Karnali watershed in this study.

Input data

SWAT uses spatial data on topography, land use and soil, 
weather and climate, and stream discharge to model stream-
flow. The resolution of input data—both spatial and tem-
poral—and data quality ensures the accuracy of the model 
output.

We used a 30-m digital elevation model (DEM) pro-
duced by the Shuttle Radar Topographic Mission (SRTM), 
obtained from the United States Geological Survey’s 
(USGS’s) earth explorer (http://earthexplorer.usgs.gov/), 
and processed at 1 arc sec/30 m in the WGS84 datum and 
Lambert conformal conic projection system for the entire 
Karnali watershed. Missing values in the 30-m DEM in the 
higher elevations were filled by disaggregating the older 
90-m SRTM version of elevation data.

The land use map of the Karnali watershed area with a 
resolution of 400 m was generated based on Global Land 
Cover Characterization database (https://lta.cr.usgs.gov/
GLCC). The 400-m spatial resolution soil data compiled 
in 2004 by the Food and Agriculture Organization (FAO) 
and the Survey Department of Nepal were obtained from 
the Nepal’s Soil and Terrain database (SOTER) (Dijkshoorn 
and Huting 2009). The soil categories were reclassified 
according to the FAO’s soil classification (IWG WRBFAO 
2007); eight different types of soils were identified from the 
1:5 million scale raster data of which two soil types cover 
more than 65% of the watershed.

(2)Qsurf =
(Rday − 0.2 S)2

(Rday + 0.8 S)

As precipitation is the key input variable that drives flow 
and mass transport of a watershed, precision is critical for 
modeling output accuracy (e.g., Beven 1983; Hamlin 1983; 
Shah et al. 1996). The gauge-based Asian Precipitation-
Highly Resolved Observational Data Integration Towards 
Evaluation of Water Resources (APHRODITE) precipitation 
data are proved to be one of the more accurate precipitation 
products over the South Asian region (Yasutomi et al. 2011; 
Yatagai et al. 2012; Khandu et al. 2015). APHRODITE data 
are not only spatially uniform, but also have a long historical 
record—since 1950—thus, it is well suited as input data for 
this study. Daily precipitation was obtained from APHRO-
DITE for 1979–2007.

Additional meteorological variables like maximum and 
minimum temperatures, net radiation, wind speed, and rela-
tive humidity were obtained from the Climate Forecast Sys-
tem Reanalysis data produced by the National Centers for 
Environmental Prediction (NCEP) for 46 stations that fall 
within or adjacent to the Karnali watershed boundary cover-
ing the study period of 1979–2007.

Daily discharge measurements in the Karnali watershed 
were obtained from the Nepal Department of Hydrology 
and Meteorology (GON-DHM 2008). Flow records for 
1979–2007 were used in calibration and validation. The 
simulation was run in two seven-year period segments: 
1980–1985 was used to calibrate the model, and 1990–1995 
was used for validation. Additional 2 years were used for 
model initialization, 1979 for calibration and 1989 for vali-
dation. Due to some missing discharge data from 1986 to 
1988, there is a gap between calibration and validation.

Model setup

The two-step discretization process allows the spatial het-
erogeneity of a watershed to be well captured (Geza and 
McCray 2008). At the beginning of watershed delineation 
process, a watershed can be divided into sub-basins, and 
then, each sub-basin can be further divided into multiple 
Hydrologic Response Units (HRUs).

We delineated the Karnali watershed into 151 sub-basins 
based on the DEM with a minimum drainage area threshold 
value of 140 km2. The delineated river channel length and 
watershed boundaries were validated using the secondary 
literature and map description from Water and Energy Com-
mission Secreteriat of Nepal (WECS 2011). Sub-basin outlet 
locations were delineated in a way that it represents actual 
discharge station locations.

Land use, soil, and slope categories were combined to 
determine the Hydrologic Response Units (HRUs) for 
each sub-basin. The default land use and soil database in 
SWAT2012, crop database, and the user soil database of 
ArcSWAT were updated using land use and soil data for 
the study area and were reclassified. Slope was reclassified 

http://earthexplorer.usgs.gov/
https://lta.cr.usgs.gov/GLCC
https://lta.cr.usgs.gov/GLCC
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into four categories by considering the multi-slope option. 
The elevation bands in each sub-basin each representing 
approximately 750 m in elevation were used to account for 
orographic precipitation with snow accumulation and melt 
processes in the steep Karnali watershed. We applied a 10% 
minimum area threshold value for each land use, soil, and 
slope categories to define 1146 HRUs for the watershed. 
Lastly, precipitation and weather data files were overlaid 
before writing and finalizing all input files.

Calibration

Hydrologic models such as SWAT have some parameters 
that cannot be measured directly due to measurement limits 
and scale issues. Therefore, calibration process of the model 
is the crucial part in watershed modeling. Identification of 
key parameters based on objective of a study is an essen-
tial step for model calibration (Ma et al. 2000). A set of 19 
parameters for calibration, focusing on discharge quantity, 
were adopted from Muleta and Nicklow (2005), Rajib et al. 
(2016) and Rostamian et al. (2008). The detailed list of the 
parameters is presented in Table 2.

The implication of parameterization in different spatial 
extent of a watershed can influence the performance of the 
watershed model. The downstream discharge of a large 
watershed is combined flow of smaller sub-basins where 
each incorporates a river outlet. Therefore, if the flow of the 
upstream sub-basins is calibrated well, the combined flow 
of main watershed outlet will be accurately represented. For 
spatially varied watershed like Karnali, parameters within 
each sub-basin can significantly vary. Previously, studies 
have focused their work on calibrating similarly large water-
shed, considering a single outlet station with a single set of 
parameters for the calibration (Narsimlu et al. 2013; Devkota 
and Gyawali 2015; Neupane et al. 2015). Others also uti-
lized multiple discharge stations together to calibrate the 
model where a common set of calibration parameters were 
employed (Cao et al. 2006; Zhang et al. 2008; Jiang et al. 
2015). However, there is no study about applied calibration 
parameters for each individual segment of a large water-
shed by considering the heterogeneity of parameterization of 
distinguishable sub-basins. Therefore, our research focused 
on a multi-site multi-segmented approach to calibrate the 
spatially varied Himalayan watershed. We also did a com-
parative performance analysis to assess the effectiveness of 
proposed calibration techniques. Three cases were formu-
lated for the analysis: single set of parameterization with 
single site (CASE1), single set parameter with multi-sites 
(CASE2), and multi-set parameters with multi-sites calibra-
tion (CASE3).

In the calibration and validation process, objective func-
tion requires iteration of the model to converge the parame-
terization to optimum calibration parameter. However, if the 

number of calibration parameter increases, it requires more 
iteration to converge toward the accurate solution. Simul-
taneously, higher number of parameters can cause more 
chances of equifinality (Lu et al. 2009). To address this prob-
lem, we also incorporated a rank correction method for mul-
tiple trial of calibration process to remove such problem of 
equifinality in the context of multi-site calibration. Detailed 
description of the process is presented in later sections.

As a first step to initializing SWAT model, we calibrated 
the Karnali watershed streamflow from 1979 to 2007 using 
a single outlet approach and compared the output models 
to our multi-site calibration technique. All three calibration 
cases in this study were done using the Sequential Uncer-
tainty Fitting version-2 (SUFI-2) procedure. SUFI-2 is an 
inverse optimization approach that uses the Latin hyper-
cube sampling (LHS) procedure along with a global search 
algorithm to examine the behavior of objective functions. 
The LHS method is a multi-dimensional random variable 
sampling technique that ensures equal probability of selec-
tion of the random variable parameter values (Iman et al. 
2008). Uncertainty analysis by Yang et al. (2008) suggests 
that SUFI-2 is a more flexible method for calibration since 
it allows arbitrary objective functions while providing satis-
factory results in model calibration. The method is currently 
linked to SWAT in the calibration package SWAT Calibra-
tion Uncertainty Procedures (SWAT-CUP) (Abbaspour 
2007).

Calibration cases

The Karnali watershed, in this study, is divided into four 
sub-watersheds shown in Fig. 1. The discharge data of each 
sub-watershed outlet were available from 1963 to 2007 
Department Of Hydrology and Meteorology Nepal (DHM 
2017). The discharge stations of C280, C270, C215, and 
C260 are located over Lower Karnali, Bheri, Upper Karnali, 
and Seti rivers, respectively.

To conduct our calibration, we utilized SWAT-CUP, a 
widely calibration tool for SWAT model. We defined the 
three calibration techniques as cases (CASE1–CASE3). In 
CASE1, the model was calibrated only for the downstream 
gauge of the watershed, i.e., C280. Therefore, in SWAT-
CUP, each watershed was calibrated separately with a 
defined objective function. In CASE2, the model was cali-
brated at all four gauge stations simultaneously, using a com-
mon set of selected hydrologic parameters. In this case, we 
implemented the objective function for multiple discharge 
stations within the SWAT-CUP. The input parameter range 
is common for all basins, and we utilized maximum possible 
iteration in SUFI method to calibrate streamflow. However, 
in the output we extracted the simulated discharges for each 
selected station. In both CASE1 and CASE2, we considered 
19 parameters as stated in previous section. In CASE1, the 
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result of main outlet was improved and in CASE2 did a bet-
ter model simulation in finding the optimum solution for all 
four outlets. Therefore, the optimized parameter of CASE1 
differed from optimized parameter of CASE2.

In CASE3, we calibrated all the sub-basins separately. 
The best parameter ranges from all the four separately 
calibrated sub-basins were then used as the initial calibra-
tion range for the subsequent second calibration, which we 
referred to as a multi-site multi-segment calibration and dis-
cussed more below.

Multi‑site multi‑segment calibration

A new model calibration was done considering all four 
watersheds where best-fitted parameter range is applied to 
corresponding area of later watershed. In this calibration 
process, the selected hydrologic parameters were modified 
from five kinds of files, namely .HRU, .MGT, .GW, .Sol, 
and .BSN files. The .HRU files contain information related 
to a diversity of features within the HRU. The .MGT or the 
management files contain information about planting, har-
vest, and irrigation applications of watershed. The .GW or 
groundwater file has the information of the properties of 
groundwater movement. The .Sol files define the physical 
properties for all layers in the soil. The .BSN file defines the 
global watershed attributes such as the temperature of snow 
melting or freezing. The first four (refers as HMGS in later 
sections) file types, namely .HRU, .MGT, .GW and .Sol, 
have unique values in each individual sub-basin. Therefore, 
in later part of the calibration process, we applied optimized 
parameters from HMGS file types of each sub-basin to their 
corresponding sub-basin files of larger watershed. Hence, 13 
out of 19 parameters (or HMGS parameters) were applied 
separately based on their sub-basin location. However, 
parameters from BSN file are global watershed scale file 
for all sub-basin units in any SWAT simulation. Therefore, 
it cannot be applied at a sub-basin level. To alleviate such 
problem, we took the best range of optimization parameters 
of BSN file from CASE2 simulation and applied it as com-
mon BSN parameter of CASE3 calibration. Nonetheless, 
such BSN parameters are different from each sub-basin BSN 
parameter. We fixed the values of HMGS parameters from 
each individual sub-basin with different BSN parameters, 
which resulted in a shift of independent optimization of cor-
responding sub-basins. Thus, instead of using the fixed best 
values of sub-basin simulation, we took the best parameter 
range after 1500 iteration to keep the simulation close to 
optimum solution. In this context, we formulated a ranked 
sensitivity method to incorporate sub-basin parameter range 
to main basin calibration.

SWAT-CUP, a calibration tool, was utilized to explore 
the sensitivity of different parameters (Abbaspour 2007). 
Typically, after a calibration simulation, the tool can provide 

a new range of calibration where one can refine the param-
eter optimization for further improvement. It also provides 
a sensitivity matrix with p-values of each parameter. In our 
ranked method, sensitivity matrix of each individual calibra-
tion was obtained and ranked according to their p-values. 
Based on the descending rank of p-values, we first weighted 
the parameter ranges of individual sub-basins. Higher sensi-
tive parameters should have a larger range for calibration, 
where insignificant parameters (significant level of 95%) 
can be ignored in calibration process. Weighted matrix then 
multiplied by optimized range and all HGSM parameters are 
combined in a single input file for the final calibration. The 
final calibration simulation ended up to a total 58 param-
eters, where 13 × 3 parameters of HRU, GW, Sol, and MGT 
were adopted from each sub-basin simulation, and remain-
ing six parameters of BSN were adopted from multi-site 
multi-segment simulation. Although we have a large num-
ber of calibration parameters, by applying optimized range 
and sensitivity ranked technique, we were able to reduce 
the problem of equifinality for the integrated simulation. 
After calibration, we validated streamflow using 7-year data 
period.

Model evaluation

Performance of CASES was evaluated and compared using 
three statistics of model fit and efficiency—referred to as our 
objective functions: coefficient of determination (R2), the 
Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe 1970), 
and standard deviation of measured data (RSR) (Moriasi and 
Arnold 2007). The R2 is a measure of correlation between 
simulated and measured data, NSE measures how well the 
model fits the observed data compared to the observed aver-
age, and the RSR is the standard deviation of the difference 
between simulated and measured data. In addition to this, 
we also incorporated Kling–Gupta efficiency (KGE) (Gupta 
et al. 2009) and Percentage Bias (PBIAS) as the goodness 
of the fit parameters. The KGE one of the robust model 
evaluation criteria can be decomposed in the contribution 
of mean, variance, and correlation on model performance. 
We reported all the selected statistics for both calibration 
and validation runs.

We modeled and compared streamflow for all CASES in 
the monthly and daily timescales. The model is known to be 
performing well if in the monthly timescale, the objective 
function of R2 and NSE is greater than 0.5 and less than 0.5 
for RSR.

Flow regime

The characteristics of river flow can be classified based on 
magnitude, frequency, and duration. In this analysis, we 
have adopted five hydrologic flow matrixes from Zhang 
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et al. (2012) to quantify the flow regime. These indices also 
represent environment flow of certain watershed (Poff et al. 
1997; Richter et al. 2003). We utilized R statistical soft-
ware to calculate these hydrologic matrixes (Dierauer et al. 
2017). To represent the magnitude of flow, we considered 
Q75 (high flow), Q50 (mean flow), and Q25 (low flow) 
indices, which represents the 75th, 50th, and 25th percen-
tile of annual daily flow, respectively. To characterize the 
duration of flow regime, we adopted the ‘Duration’ index, 
which represents the number of days from low flow (Q25) 
to high flow (Q75). Finally, to characterize the proportion of 
base flow from total flow, we utilized the ‘MeanBFI’ index 
in the analysis. Details about ‘MeanBFI’ and its base flow 
separation algorithm can be found in Eckhardt (2012). By 
utilizing these indices, we quantified the flow regimes of the 
Karnali River.

Result and discussion

Karnali watershed model development and performance of 
all three cases are presented in Table 1. From the model 
evaluation, it was found that the CASE3 performed better 
in all three performance metrics. For station 280 (down-
stream location within Karnali watershed), CASE1 showed 
R2 and NSE of 0.80 and 0.73, and the PBIAS was above 
acceptable range. However, for CASE2, both the indica-
tors were relatively higher, but p-bias did not change much. 
Although the R2 and NSE values are considered satisfactory, 
the model performance is considered satisfactory when R2 
and NSE are combined with less PBIAS. The good R2 and 
NSE do not always prove the model to be performing well. 
For instance, the model might capture the pattern of flow, 
but might be either overestimated or underestimated. There-
fore, using PBIAS helps to understand any deviation in the 
magnitude of the streamflow from the observed flow. As one 
of the objectives of this study was to conduct environmental 
flow analysis in daily time scale, such assumption needed to 
be rationalized. In this context, we selected KGE values as 
an additional objective function, to incorporate all perfor-
mance metrics. In CASE3 with new improved method, the 
result was satisfactory also in terms of PBIAS. All three 
performance indicators increased from previous cases and 
thus conferred that CASE3 method is the best method for 

large-scale watershed modeling. For 260, in CASE2, model 
underperformed compared to CASE1. This could be attrib-
uted to the fact that simulation was conducted in this station 
considering only the sub-basin of C260, whereas in CASE2 
simulation was conducted considering optimized value 
of the entire watershed. Both CASE1 and CASE2 did not 
perform well which could possibly due to the variability in 
elevation of the study watershed and unavailability of snow 
information to initialize model (Gupta et al. 2009). 

Optimized parameters after calibration of CASE3 
are presented in Table 2. Parameters such as GWQMN, 
ALPHA_BF, and REVAPMN showed a significant differ-
ence between the sub-watersheds, thus validating the need 
of unique parameterization for each of the watersheds.

Effect of rainfall over modeled and observed data was 
examined using KGE performance coefficient. We found 
that the model flow of C280 watershed follows almost 
identical flow pattern of observed data (Fig. 2). However, 
the recession of the flow occurs faster in the model com-
pared to actual flow. This could be due to coarse land use 
and soil information as ground water retention coefficient 
of the model needs more fine-scale information (Arnold 
et al. 2012). Both floods of 1983 and 2001 were well cap-
tured by the model where the floods occurred due to excess 
rainfall during those periods. The model performance of 
the C270 watershed and C260 was also found to be in sat-
isfactory range where both models were underestimating 
streamflow in dry periods. On the other hand, the C215 
watershed produced more streamflow than the observed 
one. This is possible due to the inadequate formation of 
snow process in higher elevation areas of the model.

We compared decadal characteristics of different com-
ponents of water balance equation (Fig. 3). Precipitation 
during the month of July was lower on later decades. 
Surface runoff during July, August, and September was 
also reduced over all four watersheds. Prominent reduc-
tion in ground water flow as well as deep percolation was 
observed over the C260 watershed. Reduction amount 
was higher during the monsoon season compared to other 
seasons. Ashraf (2013) showed a reduction in groundwa-
ter over Himalayan watershed from 1990 to 2010, which 
agrees our findings. There was an increase in PET during 
2000s, which could cancel out the decreasing effects of 
other flows.

Table 1  Evaluation parameters 
in daily scale for the selected 
cases over Karnali Basin

Station names CASE1 (individual) CASE2 (multi-site) CASE3 (multi-calibration)

R2 NS PB KGE R2 NS PB KGE R2 NS PB KGE

280 0.80 0.73 28.5 0.69 0.92 0.80 29.0 0.60 0.87 0.83 19.2 0.75
260 0.83 0.65 30.2 0.45 0.82 0.67 32.1 0.48 0.5 0.67 28.8 0.62
270 0.78 0.75 17.3 0.70 0.80 0.79 12.2 0.75 0.74 0.67 − 0.48 0.76
215 0.71 0.47 48.6 0.48 0.79 0.50 47.7 0.40 0.29 0.14 49.9 0.41
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Table 2  Optimized parameters in CASE3 calibration over Karnali Basin

Parameters Description of parameter File type Chisapani (st 280) Jamu (st 270) Belgaon (st 260) Tholtada (st 215)

CN2 Initial SCS CN II value .mgt 1.89 0.02 0.93 − 1.71
OV_N Manning’s ‘n’ value for overland flow. .hru − 0.62 0.20 − 0.83 0.28
ALPHA_BF Baseflow alpha factor .gw 0.26 0.64 0.43 0.70
GW_DELAY Groundwater delay .gw 87.35 15.92 146.41 4.24
GWQMN Threshold depth of water in the shallow 

aquifer required for return flow to occur
.gw 1965.35 496.81 2172.25 349.71

GW_REVAP Groundwater ‘revap’ coefficient .gw 0.08 0.05 0.04 0.05
RCHRG_DP Deep aquifer percolation fraction. .gw 0.63 0.10 0.72 0.20
REVAPMN Threshold depth of water in the shallow 

aquifer.
.gw 235.29 77.95 43.67 59.82

CH_N2 Manning’s ‘n’ value for the main channel. .rte 0.16 0.12 0.22 0.08
ESCO Soil evaporation compensation factor .hru 0.40 1.00 0.84 0.95
EPCO Plant uptake compensation factor .hru 0.26 0.93 0.64 0.84
TLAPS Temperature lapse rate. .sub 5.68 − 8.19 − 9.21 − 7.00
SOL_AWC Available water capacity of the soil layer .sol − 0.20 − 1.29 − 1.36 − 0.92
SMTMP Snowfall temperature .bsn 3.55
SMFMX Snow melt base temperature .bsn 0.26
SMFMN Melt factor for snow on June 21 .bsn 7.02
SFTMP Melt factor for snow on December 21 .bsn − 0.56
TIMP Snow pack temperature lag factor .bsn 0.47
SURLAG Surface runoff lag time .bsn 7.04

KGEcal = 0.75 & KGEval = 0.6 KGEcal = 0.76 & KGEval = 0.65

KGEcal = 0.62 & KGEval = 0.53 KGEcal = 0.48 & KGEval = 0.38

Cal. Val. Cal. Val.

Cal. Val.Cal. Val.

(a) (b)

(c) (d)

Fig. 2  Observed and model stream flow against observed rainfall over 
a C280, b C270, c C260, and d C215 watershed. KGE values of cali-
bration (KGECal) and validation (KGEval) are also shown in each 

section of the figure. The two red lines in each subplot represent the 
calibration (as Cal.) and validation (as Val.) period
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The effect of ET over Karnali watersheds is shown 
in Fig.  4a. All the watersheds show similar pattern of 
ET–rainfall ratio during the selected time period. However, 

snow-dominated watershed like the watershed of C215 
shows more ET contribution than the rest of the watersheds. 
The mean trend of ET/rainfall reveals a gradual increase in 

Fig. 3  Characteristics of dif-
ferent components of water 
balance over the watershed 
of station C280, C215, C260, 
and C270 in three time slices, 
namely Era-1980s (1971–1980), 
Era-1990s (1981–1990), and 
Era-2000s (1991–2000)

(a) (b)

Fig. 4  a Ratio of ET and rainfall and b the contribution of base flow in the total flow from CASE3 model simulation over the four selected 
watershed
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ET over the study area. The probable cause of this rise can 
be attributed to global warming as increased heat flux results 
in increased ET.

To evaluate the characteristics of flow regime, we cal-
culated the base flow contribution in the total flow of the 
model. The average contribution of base flow over entire 
study area ranges from 65 to 75% of total flow annually 
(Fig. 4b). The watershed with more snow cover showed 
lower contribution of base flow than other watershed. Huang 
et al. (2016) showed that, in mountainous watershed, land 
use changes like forest to agricultural land could increase 
the contribution of base flow. Similar reasoning could be 
made for C215 which had relatively low baseflow. The mean 
annual groundwater contribution in the entire study area is 
about 30% in comparison with the total flow.

To identify the flow regime and its decadal changes, we 
selected five hydrologic indicators that are presented in 
Fig. 5. The duration of flow regime is characterized with 
‘Dur’ index (the duration between Q25 and Q75 flows), 

which is found to exhibit similar pattern for both mod-
eled results and observed data. The index did not show 
any significant changes among the three selected time 
chunks. Different magnitude of the flow regime, which 
is represented by Q75, Q50, and Q25, is detected reason-
able well in model compared to the observed values. It 
should be noted that, during 1987–1988, there were miss-
ing values in the observed data. Therefore, observed flow 
matrix showed some unusual changes during that time. In 
that context, the modeled streamflow helped to determine 
the actual characteristics of river flow, which could not be 
achieved by simple interpolation methods. The MeanBFI 
index showed satisfactory agreement between model and 
observed data which is one of the indicators for the envi-
ronmental flow regime. In terms of capturing the duration 
between high flow and low flow, model underestimated 
the duration between two flows. However, the model repli-
cated other characteristics of flow regime more accurately 
in our analysis. In terms of changes in decadal scale, no 

Fig. 5  Model performance in 
different environmental flow 
regime
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significant changes are found in any of the selected envi-
ronmental flow matrixes.

Conclusion

We calibrated the Karnali watershed using an improved 
multi-site multi-segment calibration technique. We also 
assessed the performance of the environmental flow regime 
in previous climate period. The key findings are summarized 
in the following paragraph:

The new methods of calibration for large watershed in 
this study were found to be more effective in estimating river 
discharge compared to other conventional calibration tech-
niques. In terms of magnitude of the flow regime, the model-
generated discharge was able to capture both low flow (Q25) 
and high flow (Q75) matrices reasonably well. The model 
also accurately replicated the proportion of base flow (Mean-
BFI) in comparison with observed data. The calibrated 
model is also successful in generating similar frequency 
pattern (‘Dur’ index). However, the model underestimated 
the ‘Dur’ index with respect to observed values. In sum-
mary, the performance of the model in reproducing all five 
selected environmental flow regime parameters was found 
to be acceptable. In the decadal trend analysis, it is found 
that the ET proportion in rainfall is increasing in recent years 
which supports the ongoing effect of global warming.

This modeling practice enables a basis for the estima-
tion of flows for mountainous watershed accurately in daily 
scale. As the present study explored the observed condition 
of environmental flow, with the help of climate projections, 
similar methodology can be implemented to explore the 
future condition of the flow in any mountainous watershed.

Acknowledgements This research project is supported by Multi-State 
Hatch S-1063 Project.

References

Abbaspour K (2007) User manual for SWAT-CUP, SWAT calibra-
tion and uncertainty analysis programs. Eawag, Duebendorf, 
Switzerland

Aldous A, Fitzsimons J, Richter B, Bach L (2011) Droughts, floods and 
freshwater ecosystems: evaluating climate change impacts and 
developing adaptation strategies. Mar Freshw Res 62:223–231. 
https://doi.org/10.1071/MF09285

Arnold JG, Moriasi DN, Gassman PW et al (2012) SWAT: Model use, 
calibration, and validation. Asabe 55:1491–1508

Ashraf A (2013) Changing hydrology of the himalayan watershed. 
In: Current perspectives in contaminant hydrology and water 
resources sustainability. InTech

Bai J, Shen Z, Yan T (2017) A comparison of single- and multi-site 
calibration and validation: a case study of SWAT in the Miyun 
Reservoir watershed, China. Front Earth Sci 11:592–600. https://
doi.org/10.1007/s11707-017-0656-x

Beven K (1983) Surface water hydrology—runoff generation and 
basin structure. Rev Geophys 21:721. https://doi.org/10.1029/
RG021i003p00721

Beven K, Binley A (1992) The future of distributed models: model 
calibration and uncertainty prediction. Hydrol Process 6:279–
298. https://doi.org/10.1002/hyp.3360060305

Beven K, Freer J (2001) Equifinality, data assimilation, and uncer-
tainty estimation in mechanistic modelling of complex envi-
ronmental systems using the GLUE methodology. J Hydrol 
249:11–29. https://doi.org/10.1016/S0022-1694(01)00421-8

Cao W, Bowden WB, Davie T, Fenemor A (2006) Multi-variable and 
multi-site calibration and validation of SWAT in a large moun-
tainous catchment with high spatial variability. Hydrol Process 
20:1057–1073. https://doi.org/10.1002/hyp.5933

Chaibou Begou J, Jomaa S, Benabdallah S et al (2016) Multi-site 
validation of the SWAT model on the bani catchment: model 
performance and predictive uncertainty. Water 8:178. https://
doi.org/10.3390/w8050178

Chow VT, Maidment D, Mays L (1988) Applied hydrology. Tata 
McGraw-Hill Education, New York

De Jong C, Collins DN, Ranzi R (2005) Climate and hydrology in 
mountain areas. Wiley, Hoboken

Devkota LP, Gyawali DR (2015) Impacts of climate change on 
hydrological regime and water resources management of the 
Koshi River Basin, Nepal. J Hydrol Reg Stud 4:502–515. 
https://doi.org/10.1016/j.ejrh.2015.06.023

Dewan TH (2015) Societal impacts and vulnerability to floods in 
Bangladesh and Nepal. Weather Clim Extrem 7:36–42. https://
doi.org/10.1016/j.wace.2014.11.001

DHM (2017) Department of hydrology and meteorology. http://www.
dhm.gov.np/climate/

Dierauer JR, Whitfield PH, Allen DM (2017) Assessing the suit-
ability of hydrometric data for trend analysis: the “FlowScreen” 
package for R. Can Water Resour J/Rev Can des ressources 
hydriques 1784:1–7. https://doi.org/10.1080/07011784.2017.
1290553

Dijkshoorn K, Huting J (2009) Soil and terrain database for Nepal. 
ISRIC – World Soil Information, Wageningen

Easton ZM, Fuka DR, White ED et al (2010) A multi basin SWAT 
model analysis of runoff and sedimentation in the Blue Nile, 
Ethiopia. Hydrol Earth Syst Sci 14:1827–1841. https://doi.
org/10.5194/hess-14-1827-2010

Eckhardt K (2012) Technical note: analytical sensitivity analysis 
of a two parameter recursive digital baseflow separation filter. 
Hydrol Earth Syst Sci 16:451–455. https://doi.org/10.5194/
hess-16-451-2012

Gautam MR, Acharya K (2012) Streamflow trends in Nepal. Hydrol 
Sci J 57:344–357. https://doi.org/10.1080/02626667.2011.637
042

Gassman PW, Reyes MR, Green CH, Arnold JG (2007) The Soil and 
Water Assessment Tool: historical development, applications, and 
future research directions. Trans ASABE 50:1211–1250. https://
doi.org/10.13031/2013.23637

Geza M, McCray JE (2008) Effects of soil data resolution on SWAT 
model stream flow and water quality predictions. J Environ Man-
age 88:393–406. https://doi.org/10.1016/j.jenvman.2007.03.016

GON-DHM G of ND of H and M (2008) River Discharge data. http://
www.dhm.gov.np/. Accessed 16 Jun 2017

Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition 
of the mean squared error and NSE performance criteria: implica-
tions for improving hydrological modelling. J Hydrol 377:80–91. 
https://doi.org/10.1016/j.jhydrol.2009.08.003

Hamlin MJ (1983) The Significance of rainfall in the study of hydro-
logical processes at basin scale. J Hydrol Elsevier Sci Publ BV 
65:73–94

https://doi.org/10.1071/MF09285
https://doi.org/10.1007/s11707-017-0656-x
https://doi.org/10.1007/s11707-017-0656-x
https://doi.org/10.1029/RG021i003p00721
https://doi.org/10.1029/RG021i003p00721
https://doi.org/10.1002/hyp.3360060305
https://doi.org/10.1016/S0022-1694(01)00421-8
https://doi.org/10.1002/hyp.5933
https://doi.org/10.3390/w8050178
https://doi.org/10.3390/w8050178
https://doi.org/10.1016/j.ejrh.2015.06.023
https://doi.org/10.1016/j.wace.2014.11.001
https://doi.org/10.1016/j.wace.2014.11.001
http://www.dhm.gov.np/climate/
http://www.dhm.gov.np/climate/
https://doi.org/10.1080/07011784.2017.1290553
https://doi.org/10.1080/07011784.2017.1290553
https://doi.org/10.5194/hess-14-1827-2010
https://doi.org/10.5194/hess-14-1827-2010
https://doi.org/10.5194/hess-16-451-2012
https://doi.org/10.5194/hess-16-451-2012
https://doi.org/10.1080/02626667.2011.637042
https://doi.org/10.1080/02626667.2011.637042
https://doi.org/10.13031/2013.23637
https://doi.org/10.13031/2013.23637
https://doi.org/10.1016/j.jenvman.2007.03.016
http://www.dhm.gov.np/
http://www.dhm.gov.np/
https://doi.org/10.1016/j.jhydrol.2009.08.003


 Environmental Earth Sciences (2017) 76:787

1 3

787 Page 12 of 13

Hannah DM, Kansakar SR, Gerrard AJ, Rees G (2005) Flow regimes 
of Himalayan rivers of Nepal: nature and spatial patterns. J Hydrol 
308:18–32. https://doi.org/10.1016/j.jhydrol.2004.10.018

Huang XD, Shi ZH, Fang NF, Li X (2016) Influences of land use 
change on baseflow in mountainous watersheds. Forests 7:1–15. 
https://doi.org/10.3390/f7010016

Iman RL (2008) Latin hypercube sampling. In: Encyclopedia of quan-
titative risk analysis and assessment. John Wiley & Sons, Ltd, 
Chichester, UK

Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change 
will affect the Asian water towers. Science 328:1382–1385. 
https://doi.org/10.1126/science.1183188

IWG WRBFAO F (2007) World reference base for soil resources 2006, 
first update 2007

Jiang S, Jomaa S, Büttner O et al (2015) Multi-site identification of a 
distributed hydrological nitrogen model using Bayesian uncer-
tainty analysis. J Hydrol 529:940–950. https://doi.org/10.1016/j.
jhydrol.2015.09.009

Khandu K, Awange JL, Forootan E (2015) An evaluation of high-res-
olution gridded precipitation products over Bhutan (1998–2012). 
Int J Climatol 1087:1067–1087. https://doi.org/10.1002/joc.4402

Loague KM, Freeze RA (1985) A comparison of rainfall runoff mod-
elling techniques on small upland catchments. Water Resour Res 
21:229–240

Lu L, Jun X, Chong-yu X et al (2009) Analyse the sources of equifinal-
ity in hydrological model using GLUE methodology. In: Sympo-
sium JS.4 at the joint convention of the international association 
of hydrological sciences (IAHS) and the international association 
of hydrogeologists (IAH). Hyderabad, India, pp 130–138 

Ma LL, Ascough II JCA, Ahuja LR et al (2000) Root zone water qual-
ity model sensitivity analysis using monte carlo simulation. Trans 
ASAE 43:883–895. https://doi.org/10.13031/2013.2984

Mathews R, Richter BD (2007) Application of the indicators of 
hydrologic alteration software in environmental flow set-
ting. J Am Water Resour Assoc 43:1400–1413. https://doi.
org/10.1111/j.1752-1688.2007.00099.x

Monteith JL (1965) Evaporation and environment. The state and 
movement of water in living organisms. Symp Soc Exp Biol 
19:205–234

Moriasi D, Arnold J (2007) Model evaluation guidelines for system-
atic quantification of accuracy in watershed simulations. Trans 
ASABE 50:885–900. https://doi.org/10.13031/2013.23153

Muleta MK, Nicklow JW (2005) Sensitivity and uncertainty analy-
sis coupled with automatic calibration for a distributed water-
shed model. J Hydrol 306:127–145. https://doi.org/10.1016/j.
jhydrol.2004.09.005

Narsimlu B, Gosain AK, Chahar BR (2013) Assessment of future 
climate change impacts on water resources of Upper Sind River 
Basin, India using SWAT model. Water Resour Manag 27:3647–
3662. https://doi.org/10.1007/s11269-013-0371-7

Nash J, Sutcliffe J (1970) River flow forecasting through con-
ceptual models part I—A discussion of principles. J Hydrol 
10(3):282–290

Neitsch S, Arnold J, Kiniry J, Williams J (2011) Soil & water assess-
ment tool: theoretical documentation version 2009. Texas Water 
Resources Institute, TR-406, pp 1–647

Neupane RP, Yao J, White JD, Alexander SE (2015) Projected hydro-
logic changes in monsoon-dominated Himalaya Mountain basins 
with changing climate and deforestation. J Hydrol 525:216–230. 
https://doi.org/10.1016/j.jhydrol.2015.03.048

Nolin AW (2012) Perspectives on climate change, mountain hydrol-
ogy, and water resources in the Oregon Cascades, USA. Mt Res 
Dev 32:S35–S46. https://doi.org/10.1659/MRD-JOURNAL-
D-11-00038.S1

Poff NL, Allan JD, Bain MB et al (1997) The natural flow regime. 
Bioscience 47:769–784. https://doi.org/10.2307/1313099

Rajib MA, Merwade V, Yu Z (2016) Multi-objective calibration 
of a hydrologic model using spatially distributed remotely 
sensed/in situ soil moisture. J Hydrol 536:192–207. https://doi.
org/10.1016/j.jhydrol.2016.02.037

Richter B, Mathews R, Harrison D, Wigington R (2003) Ecologi-
cally sustainable water management: managing river flows for 
ecological integrity. Ecol Appl 13:206–224

Rostamian R, Jaleh A, Afyuni M et al (2008) Application of a SWAT 
model for estimating runoff and sediment in two mountainous 
basins in central Iran. Hydrol Sci J 53:977–988. https://doi.
org/10.1623/hysj.53.5.977

Santhi C, Kannan N, Arnold JG, Di Luzio M (2008) Spatial calibra-
tion and temporal validation of flow for regional scale hydro-
logic modeling. J Am Water Resour Assoc 44:829–846. https://
doi.org/10.1111/j.1752-1688.2008.00207.x

Siderius C, Biemans H, Wiltshire A et al (2013) Snowmelt contri-
butions to discharge of the Ganges. Sci Total Environ 468–
469:S93–S101. https://doi.org/10.1016/j.scitotenv.2013.05.084

Shah SMS, O ’connellbp PE, Hoskingc JRM (1996) Modelling the 
effects of spatial variability in rainfall on catchment response. 
2. Experiments with distributed and lumped models. J J Hydrol 
175:89–111

Shrestha MK, Recknagel F, Frizenschaf J, Meyer W (2016) Assess-
ing SWAT models based on single and multi-site calibration 
for the simulation of flow and nutrient loads in the semi-arid 
Onkaparinga catchment in South Australia. Agric Water Manag 
175:61–71. https://doi.org/10.1016/j.agwat.2016.02.009

Smith PJ, Brown S, Dugar S (2017) Community-based early 
warning systems for flood risk mitigation in Nepal. Nat Haz-
ards Earth Syst Sci 17:423–437. https://doi.org/10.5194/
nhess-17-423-2017

Sorooshian S (2008) Hydrological modelling and the water cycle: cou-
pling the atmospheric and hydrological models. Springer, Berlin

Teshager AD, Gassman PW, Secchi S et al (2016) Modeling agri-
cultural watersheds with the Soil and Water Assessment Tool 
(SWAT): calibration and validation with a novel procedure for 
spatially explicit HRUs. Environ Manage 57:894–911. https://doi.
org/10.1007/s00267-015-0636-4

Thayyen RJ, Gergan JT (2010) Role of glaciers in watershed hydrol-
ogy: a preliminary study of a “Himalayan catchment”. Cryosphere 
4:115–128. https://doi.org/10.5194/tcd-3-443-2009

Tiwari PC, Joshi B (2012) Natural and socio-economic factors affecting 
food security in the Himalayas. Food Secur 4:195–207. https://doi.
org/10.1007/s12571-012-0178-z

Viviroli D, Dürr HH, Messerli B et al (2007) Mountains of the world, 
water towers for humanity: typology, mapping, and global signifi-
cance. Water Resour Res. https://doi.org/10.1029/2006WR005653

WECS (2011) Water resources of Nepal in the context of climate 
change. Government of Nepal, Water and Energy Commission 
Secretariat 

Winchell M, Srinivasan R, Di Luzio M, Arnold JG (2013) ArcSWAT 
interface for SWAT2012: User’s guide. Soil and Water Research 
Laboratory, USDA Agricultural Research Service, Texas

Yang J, Reichert P, Abbaspour KC et al (2008) Comparing uncer-
tainty analysis techniques for a SWAT application to the Chaohe 
Basin in China. J Hydrol 358:1–23. https://doi.org/10.1016/j.
jhydrol.2008.05.012

Yasutomi N, Hamada A, Yatagai A (2011) Development of a long-
term daily gridded temperature dataset and its application to rain/
snow discrimination of daily precipitation. Glob Environ Res 
15:165–172

Yatagai A, Kamiguchi K, Arakawa O et al (2012) Aphrodite con-
structing a long-term daily gridded precipitation dataset for Asia 
based on a dense network of rain gauges. Bull Am Meteorol Soc 
93:1401–1415. https://doi.org/10.1175/BAMS-D-11-00122.1

https://doi.org/10.1016/j.jhydrol.2004.10.018
https://doi.org/10.3390/f7010016
https://doi.org/10.1126/science.1183188
https://doi.org/10.1016/j.jhydrol.2015.09.009
https://doi.org/10.1016/j.jhydrol.2015.09.009
https://doi.org/10.1002/joc.4402
https://doi.org/10.13031/2013.2984
https://doi.org/10.1111/j.1752-1688.2007.00099.x
https://doi.org/10.1111/j.1752-1688.2007.00099.x
https://doi.org/10.13031/2013.23153
https://doi.org/10.1016/j.jhydrol.2004.09.005
https://doi.org/10.1016/j.jhydrol.2004.09.005
https://doi.org/10.1007/s11269-013-0371-7
https://doi.org/10.1016/j.jhydrol.2015.03.048
https://doi.org/10.1659/MRD-JOURNAL-D-11-00038.S1
https://doi.org/10.1659/MRD-JOURNAL-D-11-00038.S1
https://doi.org/10.2307/1313099
https://doi.org/10.1016/j.jhydrol.2016.02.037
https://doi.org/10.1016/j.jhydrol.2016.02.037
https://doi.org/10.1623/hysj.53.5.977
https://doi.org/10.1623/hysj.53.5.977
https://doi.org/10.1111/j.1752-1688.2008.00207.x
https://doi.org/10.1111/j.1752-1688.2008.00207.x
https://doi.org/10.1016/j.scitotenv.2013.05.084
https://doi.org/10.1016/j.agwat.2016.02.009
https://doi.org/10.5194/nhess-17-423-2017
https://doi.org/10.5194/nhess-17-423-2017
https://doi.org/10.1007/s00267-015-0636-4
https://doi.org/10.1007/s00267-015-0636-4
https://doi.org/10.5194/tcd-3-443-2009
https://doi.org/10.1007/s12571-012-0178-z
https://doi.org/10.1007/s12571-012-0178-z
https://doi.org/10.1029/2006WR005653
https://doi.org/10.1016/j.jhydrol.2008.05.012
https://doi.org/10.1016/j.jhydrol.2008.05.012
https://doi.org/10.1175/BAMS-D-11-00122.1


Environmental Earth Sciences (2017) 76:787 

1 3

Page 13 of 13 787

Zhang X, Srinivasan R, Van LiewM (2008) Multi-site calibration 
of the SWAT model for hydrologic modeling. Trans ASABE 
51:2039–2049

Zhang X, Srinivasan R, Van Liew M (2010) On the use of multi-algo-
rithm, genetically adaptive multi-objective method for multi-site 
calibration of the SWAT model. Hydrol Process 24:955–969. 
https://doi.org/10.1002/hyp.7528

Zhang Y, Arthington AH, Bunn SE et al (2012) Classification of flow 
regimes for environmental flow assessment in regulated rivers: the 
Huai River Basin, China. River Res Appl 28:989–1005. https://
doi.org/10.1002/rra.1483

https://doi.org/10.1002/hyp.7528
https://doi.org/10.1002/rra.1483
https://doi.org/10.1002/rra.1483

	Estimation of flow regime for a spatially varied Himalayan watershed using improved multi-site calibration of the Soil and Water Assessment Tool (SWAT) model
	Abstract
	Introduction
	Study area
	Methodology
	Input data
	Model setup
	Calibration
	Calibration cases
	Multi-site multi-segment calibration

	Model evaluation
	Flow regime

	Result and discussion
	Conclusion
	Acknowledgements 
	References




