
ORIGINAL ARTICLE

A novel hybrid integration model using support vector machines
and random subspace for weather-triggered landslide
susceptibility assessment in the Wuning area (China)

Haoyuan Hong1,2,3 • Junzhi Liu1,2,3 • A-Xing Zhu1,2,3 • Himan Shahabi4 •

Binh Thai Pham5
• Wei Chen6 • Biswajeet Pradhan7,8 • Dieu Tien Bui9

Received: 20 March 2017 / Accepted: 16 September 2017 / Published online: 6 October 2017

� Springer-Verlag GmbH Germany 2017

Abstract This study proposed a hybrid modeling approach

using two methods, support vector machines and random

subspace, to create a novel model named random subspace-

based support vector machines (RSSVM) for assessing

landslide susceptibility. The newly developed model was

then tested in the Wuning area, China, to produce a land-

slide susceptibility map. With the purpose of achieving the

objective of the study, a spatial dataset was initially con-

structed that includes a landslide inventory map consisting

of 445 landslide regions. Then, various landslide-influ-

encing factors were defined, including slope angle, aspect,

altitude, topographic wetness index, stream power index,

sediment transport index, soil, lithology, normalized dif-

ference vegetation index, land use, rainfall, distance to

roads, distance to rivers, and distance to faults. Next, the

result of the RSSVM model was validated using statistical

index-based evaluations and the receiver operating char-

acteristic curve approach. Then, to evaluate the

performance of the suggested RSSVM model, a compar-

ison analysis was performed to other existing approaches

such as artificial neural network, Naı̈ve Bayes (NB) and

support vector machine (SVM). In general, the perfor-

mance of the RSSVM model was better than the other

models for spatial prediction of landslide susceptibility.

The AUC results of the applied models are as follows:

RSSVM (AUC = 0.857), followed by MLP

(AUC = 0.823), SVM (AUC = 0.814) and NB

(AUC = 0.783). The present study indicates that RSSVM

can be used for landslide susceptibility evaluation, and the

results are very useful for local governments and people

living in the Wuning area.
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Introduction

Landslides are considered one of the most extensively

distributed mass developments in hilly terrain all over the

world (Blothe et al. 2015; Carey et al. 2015; Nicolussi

et al. 2015; Paulin et al. 2015; Pham et al. 2016a). Due to

their unexpected and seasonal characteristics (Vilimek

and Smolikova 2015; Yang et al. 2015), landslides always

present great risks to human life and economic stability

(Kritikos and Davies 2015; Panek 2015), especially in

industrial and other social activities such as mines, water

resources facilities and hydropower stations (Vranken

et al. 2015; Zhang et al. 2015). Therefore, over the last

two decades, many scientists have engaged themselves to

predict landslide locations spatially, which is critical for

development and planning purposes (Peng et al. 2015;

Posner and Georgakakos 2015). In the formation of

landslides, many factors play key roles; some are natural

factors, and some are human factors. It has also been

observed that climate change and landslide activities have

a significant relationship (Sewell et al. 2015). Some recent

studies have revealed that turbidity currents and sub-

marine landslides will be the main cause of future rapid

global climate warming. However, some research has

indicated that accelerated climate change does not

undoubtedly increase activity and thus does not provide a

direct confirmation of climate change as a dominant

triggering factor (Clare et al. 2015). In fact, heavy rainfall

and snow melt have been supported as great indirect

triggering factors due to complex hydrogeological effects

and isolated groundwater organization. As such, it is

difficult to determine the triggering parameter, especially

when it is particularly affiliated with oblique river erosion

in a landslide appendage (Abolmasov et al. 2015;

Kirschbaum et al. 2015).

Preparation of a high-quality landslide inventory map is

very critical in landslide studies. Field surveys and remote

sensing-based analysis are commonly used, but both of

these approaches have merits and demerits. Field investi-

gation is highly time-consuming and very laborious. On the

other hand, satellite image processing techniques also need

rigorous validation steps to produce an authentic landslide

inventory map (Hong et al. 2016; Lin et al. 2015). High-

resolution imagery is an essential information base for

properly evaluating and certifying landslide features (Ak-

cay 2015; Yusof et al. 2015). Similarly, selecting landslide-

conditioning factors is also an important and complex

process. In this regard, the statistical index method is

generally used for the validation of different landslide-

conditioning factor sets. The method expresses how

forceful every single landslide-conditioning factor enhan-

ces or diminishes the objective task and then excludes a

few factors to acquire superior inputs (Bellugi et al. 2015;

Meinhardt et al. 2015).

In recent years, extensive application of Geographical

Information System (GIS) and Remote Sensing (RS)

technologies has been used to assess landslide suscepti-

bility, hazards and risk extent (Ciabatta et al. 2015; Oli-

veira et al. 2015; Pham et al. 2016c; Shahabi and Hashim

2015; Tan et al. 2015). There are numerous state-of-the-art

approaches and methods that have been adopted in land-

slide susceptibility mapping. For example, the step-wise

weight assessment ratio (Dehnavi et al. 2015), multivariate

adaptive regression spline (MARS) (Chen et al. 2017d;

Conoscenti et al. 2015; Wang et al. 2015b), artificial neural

network (ANN) (Chen et al. 2017e; Dou et al. 2015; Bui

et al. 2016), random forest (RF) (Chen et al. 2017g; Trigila

et al. 2015), multicriteria evaluation (Ahmed 2015), kernel

logistic regression (Chen et al. 2017f; Hong et al. 2015; Bui

et al. 2016), spatial multicriteria evaluation (SMCE)

(Gaprindashvili and Van Westen 2016), and adaptive

neuro-fuzzy inference system (ANFIS) (Chen et al. 2017a;

Nasiri Aghdam et al. 2016; Bui et al. 2012) have all been

used. However, there still remains a question of the

selection of the best method in landslide susceptibility

assessment (Boue et al. 2015; Goetz et al. 2015; Pham et al.

2015). Thus, in order to achieve the most suitable and

optimum model, many scientists have used various models

in geographically different study areas worldwide (Chen

et al. 2017g; Bui et al. 2017; Tsangaratos et al. 2017;

Youssef et al. 2016).

The principal aim of the present study is to analyze

probable utilization of the novel hybrid integration method

of support vector machines (SVM) and random subspace

(RS), named RSSVM, for landslide susceptibility assess-

ment. Random subspace is an integrated algorithm,

whereas RSSVM is a SVM-based classifier. Using statis-

tical index-based assessment and receiver operating char-

acteristic curve (ROC) means, the accuracy of the RSSVM

model has been assessed. In addition, other approaches,

such as Artificial Neural Network (ANN), Naı̈ve Bayes

(NB) and Support Vector Machine (SVM), have been

applied, and the results were compared to the results of the

RSSVM model. All the aforementioned models were

applied in the Wuning area situated in the Jiangxi province

(China). The analysis process was carried out using Weka

3.7 and ArcMap 10.0.

Model background

Support vector machines

A support vector machine (SVM) is defined as a supervised

learning method and is widely applied in the statistical
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categorization and regression test (Chen et al. 2017b; Pham

et al. 2016b). It leads to a map vector in a higher dimension

space, within which there is a maximum separation

hyperplane (Feng et al. 2016; Promper and Glade 2016).

On the opposite side of the hyperplane, SVM separates data

from two parallel hyperplanes from each other (Chen et al.

2017c). In addition, SVM separates a super flat surface to

maximize the distance of two parallel hyperplanes (Bezak

et al. 2016; Iadanza et al. 2016). Assuming that the distance

between parallel gaps is greater, the classifier of the total

error is smaller. The main idea of SVM can be summarized

as follows (Li et al. 2016; Ma et al. 2016):

1. It is used to solve the problem of linear separable

analysis, and in the case of a linear integral, nonlinear

mapping algorithms are generally used, which makes a

low spatial input space linear case into a high spatial

feature space linear separable case (Alvioli and Baum

2016; Bennett et al. 2016; Mertens et al. 2016).

Therefore, it makes possible a high spatial feature

space by using a linear algorithm on nonlinear

characteristics.

2. It is based on a structural opportunity minimization

theory to create an excellent aggressive plane segmen-

tation in the feature space (LaHusen et al. 2016;

Osadchiev et al. 2016; Yamao et al. 2016).

3. More detailed information about the SVM algorithm

can be seen in Chen et al. (2016a, 2016b, 2017h) and

Pradhan (2013). The equation of SVM algorithm can

be described as follows:

yi w � xi þ bð Þ=� 1� ni ð1Þ

Random subspace ensemble

Random subspace is defined as a classic integrated algo-

rithm which was proposed by Ho in 1998 (Tin Kam 1998).

The algorithm is similar to the bagging algorithm and is

randomly selected by the original training set to construct

the training subset (Kotsiantis 2011; Kuncheva et al. 2010;

Mielniczuk and Teisseyre 2014). However, the difference

is that random subspace is randomly chosen from the

original training set of features (Bertoni et al. 2005;

Skurichina and Duin 2001, 2002). Then, the series features

a subset of each subclassifier training at the final forecast

results obtained by a combination of voting methods (Lai

et al. 2006; Sun and Zhang 2007; Tao et al. 2006). The

performance of the results depends on integrated learning

differences, the bagging method subcategories to obtain the

difference between the subclassification among different

samples of each subclassifier training, and the random

subspace ensemble learning method to take samples at

different spatial characteristics to obtain differences

between subclassification (Nanni and Lumini 2008; Zhang

and Jia 2007; Zhu et al. 2009).

Novel hybrid integration of support vector
machines (SVM) and random subspace (RS)
(RSSVM)

The novel hybrid integration of the support vector machi-

nes (SVM) approach and the random subspace (RS),

ensemble (RSSVM), for spatial forecasting of landslides

appearing in the Wuning area, is displayed in Fig. 1.

1. Data collection and processing in GIS The landslide

database is created for building and certifying the

proposed integrated landslide susceptibility model. The

landslide inventory map with 445 landslides was

randomly split into 70% (311 landslides shown in the

yellow color) for coaching themodels and the remaining

30% (134 landslides shown in the red color) for

validation purposes (Fig. 2). The coaching and validat-

ing datasets were applied to build the landslide suscep-

tibilitymodel, whereas the testing dataset was employed

to check the RSSVM model. For this purpose, by

employing the frequency ratio method, fourteen land-

slide-influencing factors were reclassified from categor-

ical classes into continuous values. (Bui et al. 2015).

Subsequently, all 14 landslide-conditioning factor maps

were transformed to a raster format with a pixel of 25 m.

2. Random Subspace ensemble (RSS) optimization Ran-

dom subspace (RSS) can improve the performance of

the SVM classifier by dividing a dataset with a large

dimensional feature space to lower datasets, such as in

training data. Generally, these ensemble data mining

classifiers have better accuracy than a single predictor.

These methods first produce via training the dataset

base classifications. Second, the real classification is

achieved by combining the results of base classifiers

with the previous base classifier (Piao et al. 2015). The

process (1) divides the original feature space (FR) into

L feature subsets (FS) of p-dimensionality, (2) submits

each subset to a base classifier (BC) in the ensemble,

and (3) makes a final decision on the class of the form

achieved by connecting the decisions of these BCs

using a connecting order such as ‘‘most votes’’

(Kuncheva and Plumpton 2010). Because the feature

subsets submitted to the BCs are diverse, an aligned

ensemble is a common selection (Kuncheva and

Plumpton 2010). By evaluating the fitness of each

result, the algorithm constantly searches the solution

space and pursues the most appropriate set of the

model criteria.

Environ Earth Sci (2017) 76:652 Page 3 of 19 652

123



3. Training support vector machines model (SVM) As we

know, the SVM algorithm is a supervised learning

method; a training dataset with input components and

matching desired class labels must be supplied. Using

the RBF kernel function and based on the training

dataset, the SVM algorithm draws the input data from

the original input space into a high-dimensional feature

space (Chen et al. 2016a). Accordingly, the result of

this algorithm builds up a hyperplane. SVM can

separate the input data of influencing factors into two

distinctive decision areas: ‘‘landslide’’ (Y = 1) and

‘‘non-landslide’’ (Y = - 1). When the training case is

finished, the SVM algorithm for classifying input

patterns is displayed.

4. The optimized RSSVM model The SVM-based boost

method continues until the maximum number of

generations is obtained (Piao et al. 2015). When the

exploring process completes, an appropriate set of the

RSSVM adapt parameters is established. Then, it is

used to compose a classification model for spatial

Landslide (445 events)

Landslide Training 70% 
(311)

Landslide Validation 30%
(134)

Data collection and processing 
in GIS

- Slope 
- Aspect
- Altitude
- Topographic wetness index (TWI)
- Stream power index (SPI)
- Sediment transport index (STI)
- Soil
- Lithology
- Normalized difference vegetation 

index (NDVI)
- Land use
- Rainfall
- Distance to road
- Distance to rivers
- Distance to faults 

Comparison by data mining 
techniques

SVM (Support 
Vector Machine)

ANN (Artificial 
Neural Network)

Landslide susceptibility mapping

Validation by Statistical index-
based and ROC

Parameter 
initialization

Training SVM

Fitness evaluation

Random SubSpace 
ensemble (RSS)

optimization

The optimized
SVM-RSS

NB (Naïve Bayes)

Fig. 1 The flowchart of the proposed RSSVM model
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Fig. 2 Landslide location map of the Wuning area [Map of China from the National Geographic World Map (ESRI 2010)]
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evaluation of landslide susceptibility in the Wuning

area. The suggested model is prepared to forecast

invisible input arrangements in the validation dataset.

5. Comparison with data mining techniques The obtained

results from the novel hybrid integration of support

vector machines and random subspace ensemble

(RSSVM) were compared to other well-known data

mining techniques such as Multiple Perceptron Neural

Network (MLPN), Naı̈ve Bayes (NB) and Support

Vector Machine (SVM) for spatial assessment of

landslide susceptibility in the Wuning area.

Experiment and analysis

Description of study region

The Wuning area is almost 3507 km2 and overlays the

entire area of the Wuning region. The Wuning area is

situated in the western part of Jiangxi province. It lies in

the South hilly area of Mubu between the longitudes of

114�290E and 115�270E and the latitudes of 28�530N and

29�350N (Fig. 2). According to a report of geological sur-

vey results (http://www.cgs.gov.cn/), there are more than

56 geologic groups and units recognized (Table 1). In the

Wuning area, the main lithologies are Tuffaceous slate,

phyllite, spilite, quartz keratophyre, (two long; K-feldspar)

granite, and two-mica adamellite (Fig. 3). Geologic data

for the Wuning area were acquired from the China Geology

Survey (http://www.cgs.gov.cn/). Over the last 20 years,

many mines have been developed in the Wuning area.

The Wuning area is in the subtropics monsoon climate

region. The wet period is usually from April to August. The

total average precipitation for 3 months (April–June) is

approximately 638 mm. The largest daily precipitation is

more than 100 mm during the wet period. The dry period is

commonly from September to January with average pre-

cipitation approximately 65.6 mm/month. The annual

Table 1 Types of geological formations in the study area

No. Unit name Lithology

A Hua yansi group; Xi yanshan group; Yang liugan group; Guan

yintang group

Argillaceous limestone; nodular limestone; gray-black shale; stone

seam; siltstone; limestone; carbonate rock

B Shuang shan group; Lao hudong group Pure quartz sandstone; hematite; limestone; dolomite

C Wuning group; Mou xia group; Zheng jiazu group Conglomerate; pebbly sandstone; siltstone; limestone; sandy shale

Shuang qiaoshan group; Xiu shui group; An lelin group Tuffaceous slate; phyllite; spilite; quartz keratophyre

D Jiu xiantang group; Mu bushan group; Xia changshan group;

Huang xie group

(Two long; K-feldspar) granite

Hai hui group; Xi huashan group Two-mica adamellite

Nan tuo group Adamellite

Liu ken unit Porphyry

E Lian cang group; Dou shantuo group Gray conglomerate; sandstone; conglomerate bottom; moraine mud

conglomerate

Lan tian group; Pi yuancun group; Deng cai group Clay gravel moraine; shale; limestone and manganese; dark gray

chert; siliceous limestone; dolomitic limestone

F Hu le group; Xin kailing group; Tan shan group; Tan tou group;

Hong hua group

Dolomite; limestone; nodular limestone; mudstone; shale silicon

G Long tan group; Wu jiacheng group; Da long group; Liang shan

group; Xi xia group; Xiao jiabian group

Limestone; dark gray siltstone; clay shale; coal seams; flint limestone;

chert siliceous shale

Mao kou group; Yun taishuang group; Huang long group Sandstone; dolomite; limestone; coal-bearing shale; limestone flint;

chert

H Luo kedong group Conglomerate; volcanic breccia; tuff; slate; lava

Jiu lin unit; Kuai bu unit; Shi huajian unit Tonalite-diorite; granodiorite; monzonite granite

Hu qiaoli unit Monzonite granite; adamellite

Tuo lin unit Sandstone

I Fengtou group; Mao shan group; Xin tang group; Dian bei group;

Li shuwo group

Sandy mudstone; argillaceous siltstone and fine sandstone; sandstone

J Zhou chongcun group; Qing long group Micrite; silty shale; calcareous mudstone; marl

Lan tiancun group; Pi yuancunoup Dark gray silty shale; shale; limestone and manganese; dark gray

chert; siliceous limestone; dolomitic limestone

A, B, C, D, E, F, G, H, I, J represent the class of lithology
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average precipitation in the Wuning area varies from 578 to

1183 mm, with an average of 162.4 wet days. The annual

average temperature is 16.6 �C. The highest and lowest

average temperatures are 39.1 and - 5.2 �C, respectively.
The annual average sunshine in the Wuning area is

1700.5 h.

Data preparation

Historical landslide events

There are numerous different methods and techniques

being used to construct landslide inventory maps. These

methods are field survey, satellite image interpretation,

aerial photography and historical landslide records (Benoit

et al. 2015; Palamakumbure et al. 2015; Varilova et al.

2015; Wang et al. 2015a). However, until now, there has

been no agreement among scientists on the best suit-

able primary method for producing an accurate landslide

inventory map ((Hong et al. 2017; Uhlemann et al. 2016).

In this research, the landslide inventory map was gen-

erated by combining field survey data with satellite image

data. The landslide inventory map for the Wuning area had

445 landslide locations, which were provided by the

Jiangxi Province Meteorological Bureau (http://www.

weather.org.cn) and the Department of Land and Resources

of Jiangxi Province (http://www.cgs.gov.cn; Fig. 2). Fig-

ure 4 shows Google Earth photographs of landslides in the

study area. The landslide inventory map demonstrates that

the volume of the smallest landslide is 20 m3, the volume

of the largest is 96,000 m3, and the average volume of

landslides is 1761.3 m3. In the study area, large-sized

landslides ([ 1000 m3) account for 8.1% of the total

landslides, and 254 people have been threatened. Medium-

sized (200–1000 m3) landslides account for approximately

16.0% of the total landslides and have threatened 121

people in the study area. Small-sized landslides (\ 200 m3)

have threatened 551 people and account for 75.9% of the

total landslides. Heavy rainfall is major reason for these

landslide occurrences; there have been no reports about

earthquake-induced landslides. Approximately 38.5% of

the landslides occurred when the measured rainfall was

approximately 100 mm per day. The other landslides

occurred when the daily rainfall was greater than 105 mm.

Landslide-conditioning parameters

In the current study, based on the analysis of the landslide

inventory map and some literature, a total of 14 landslide-

conditioning factors were selected as follows: slope,

aspect, altitude, topographic wetness index (TWI), stream

power index (SPI), sediment transport index (STI), soil,

Fig. 3 Geology map of the study area
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lithology, normalized difference vegetation index (NDVI),

land use, rainfall, distance to roads, distance to rivers and

distance to faults.

A digital elevation model (DEM) for the Wuning area

was produced from ASTER GDEM Version 2 (http://gdem.

ersdac.jspacesystems.or.jp). Based on this DEM, slope,

altitude, aspect, TWI, SPI and STI were extracted Using

Arcgis 10.2 software (Fig. 5a–f). The soil map was com-

piled in 1995 by the Institute of Soil Science, Chinese

Academy of Sciences (ISSCAS) China (http://www.issas.

ac.cn; Fig. 5g). The lithology map was categorized into

eight groups (A, B, C, D, E, F, G, H, I and J) (Fig. 5h). The

NDVI and land use map were obtained from Landsat 7

ETM? satellite images that were acquired on 10 December

1999 (Fig. 5i, j). These images were obtained from the

Computer Network Information Centre of Chinese Acad-

emy of Sciences (http://www.gscloud.cn). The NDVI was

calculated using the common formula:

NDVI ¼ NIR� Rð Þ= NIRþ Rð Þ ð2Þ

where NIR and Red are the near infrared and red bands,

which are from 0.7 to 1 and 0.6 to 0.7 lm, respectively, of

the electromagnetic spectrum. The maximum likelihood

supervised method was used for the land use classification,

with a classification accuracy of 90.7%. Rainfall data are

from the Jiangxi Province Meteorological Bureau (http://

www.weather.org.cn). For the period 1960–2012, there

were 37 rainfall stations that were used to create the rain-

fall map. The mean annual precipitation was divided into

five classes (Fig. 5k) using the inverse distance weighted

method (Zhu et al. 2012). Distance to roads and rivers and

distance to faults were produced from topographic maps

and geological maps, respectively (Fig. 5l–n). The detailed

information of the classes for each landslide-influencing

factors is provided in Table 2. Finally, all these maps were

transformed into the same resolution of 25 m 9 25 m.

Results and discussion

Feature selection of linear support vector machine

(LSVM)

The Linear Support Vector Machine (LSVM) is a classifier

of the Support Vector Machine (SVM) algorithm, which

has been widely used in landslide susceptibility modeling

(Chou et al. 2016; Conte et al. 2016; Gullà et al. 2016).

According to a one-vs-the-rest arrangement, this class

holds both sparse and dense input, and the multiclass hold

is controlled (Fan et al. 2016; Lora et al. 2016; Romano

et al. 2016).

It is very meaningful to assess the predictive ability of

an assembling training dataset using fourteen landslide-

conditioning causes. In this study, we use the Linear

Support Vector Machine method with tenfold cross-vali-

dation. Figure 6 presents the predictive ability of landslide-

conditioning factors in the Wuning area. It was demon-

strated that slope angle has the best predictive ability in

landslide susceptibility models (AM = 13.8). Rainfall also

has a very high offering in landslide susceptibility models

(AM = 12.8). TWI (AM = 12) and STI (AM = 11.4)

have relatively high offerings in landslide susceptibility

models as well. Slope aspect (AM = 10) and distance to

road (AM = 9) have moderate offerings in the modeling.

Fig. 4 Google Earth photographs showing landslides of the study area
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Fig. 5 Landslide-conditioning

factor maps of the Wuning area:

a slope degree, b aspect,

c altitude, d topographic

wetness index (TWI), e stream

power index (SPI), f sediment

transport index (STI), g soil,

h lithology, i normalized

difference vegetation index

(NDVI), j land use, k rainfall,

l distance to roads, m distance

to rivers, n distance to faults
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Other factors, such as distance to faults (AM = 7.3) and

distance to rivers (AM = 7.2), had nearly similar predic-

tive abilities. Altitude (AM = 5.4), land use (AM = 4.9)

and lithology (AM = 4.9) had similar offerings. In con-

trast, NDVI (AM = 2.3) and SPI (AM = 2.1) had low

predictive ability, and soil type (AM = 1.9) had the lowest

predictive ability.

In sum, all fourteen landslide-conditioning factors con-

tributed to the landslide susceptibility models (AM[ 0).

Overall, these fourteen landslide-conditioning factors have

been used in landslide susceptibility.

Preparation of dataset and training the RSSVM

model

Performance of the RSSVM model significantly depended

on the selection of the calculating parameter, which is the

number of iterations. Thus, a test of the performance of the

RSSVM model was accomplished with different numbers

of iterations to filter the optimal parameter. For this pur-

pose, the ROC curve method was used to evaluate the

performance of RSSVM.

Figure 7 shows the analytical results of the ROC curve

with various numbers of iterations for training and testing

Fig. 5 continued
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the RSSVM model. It can be seen that when the number of

iterations is 14, this results in the best performance of the

RSSVM model. Thus, in the present study, the number of

iterations has been set to 14 for training the RSSVM

classifier in the novel classifier framework.

Validation of predictive ability of the RSSVM model

Performance of the RSSVM model for landslide suscepti-

bility assessment using statistical index-based evaluations

is shown in Table 3. It can be seen that the RSSVM model

achieved good classification of both landslide and non-

landslide pixels. The positive predictive value is 77.39% in

the training dataset and 78.18% in the testing dataset,

indicating that the probability the RSSVM model accu-

rately classifies pixels to the landslide class is 77.39 and

78.18%. The sensitivity is 88.62% for the training dataset

and 78.18% for the testing dataset indicating that 88.62 and

78.18% of the landslide pixels are accurately classified into

the landslide class. Overall, the performance of the

RSSVM model for classification of landslide pixels

(specificity = 79.93%) is slightly better than those of non-

landslide pixels (specificity = 78.18%).

Table 2 Classes of landslide-influencing factors

No. Classes Method

Slope degree (�) (1) 0–8, (2) 8–15, (3) 15–25, (4) 25–35, (5) 35–45, (6)[ 45 Equal interval

Aspect (1) Flat, (2) North, (3) Northeast, (4) East, (5) Southeast, (6) South, (7) Southwest, (8) West, (9)

Northwest

Equal interval

Altitude (1) 150, (2) 150–250, (3) 250–400, (4) 400–700, (5) 700–1000, (6)[ 1000 Defined interval

TWI (1)\ 5, (2) 5–7, (3) 7–9, (4) 9–11, (5)[ 11 Equal interval

SPI (1)\ 20, (2) 20–40, (3) 40–70, (4) 70–100, (5)[ 100 Defined interval

STI (1)\ 5, (2) 5–20, (3) 20–40, (4) 40–60, (5)[ 60 Defined interval

Soil (1) ACH, (2) ALF, (3) ATC, (4) CMD, (5) LVH, (6) WR Soil

Lithology (1) A, (2) B, (3) C, (4) D, (5) E, (6) F, (7) G, (8) H, (9) I, (10) J Litho facies

NDVI (1)\ 0.05, (2) 0.05–0.1, (3) 0.1–0.15, (4) 0.15–0.2, (5)[ 0.2 Equal interval

Landuse (1) Water, (2) residential area, (3) forest land, (4) bare land, (5) farm land, (6) grass land Supervised

classification

Rainfall (1)\ 850, (2) 850–950, (3) 950–1050, (4) 1050–1150, (5)[ 1150 Equal interval

Distance to

roads

(1)\ 50, (2) 50–100, (3) 100–150, (4)[ 150 Equal interval

Distance to

rivers

(1)\ 50, (2) 50–100, (3) 100–150, (4)[ 150 Equal interval

Distance to

faults

(1)\ 200, (2) 200–400, (3) 400–700, (4) 700–1000, (5)[ 1000 Defined interval

Fig. 6 Predictive ability of landslide trigging factors using the LSVM approach
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The receiver operating characteristic (ROC) curve was

also applied to evaluate the general performance of the

RSSVM model. The ROC curve is widely used in landslide

susceptibility mapping. In general, the AUC value varies

from 0.5 to 1; if the AUC value is equal to 1, the result of

the landslide model is excellent; otherwise, if the AUC

value is equal to 0.5, the result of the landslide model is

imprecise. Figures 8 and 9 show the results of the RSSVM

model for landslide susceptibility assessment using the

ROC curve technique. In this study, the RSSVM model

executed very well based on the analysis of the ROC curve

(AUC = 0.918); additionally, the ROC curve for testing

the RSSVM model is 0.857, which is reasonably

satisfactory.

Comparison of the RSSVM model with popular

landslide models

In this study, other popular landslide susceptibility models,

such as Multiple Perceptron Neural Network, Naı̈ve Bayes

and Support Vector Machine, have been applied and

compared to the result of the proposed hybrid model.

Multiple Perceptron Neural Network (MLP) Based on

the technique of biological nervous systems, which contain

the brain and process information, artificial neural net-

works are defined as an information processing method

(Haeberli et al. 2001; Satorra and Bentler 2001). The real

function and effectiveness of neural network algorithms

demonstrate their capability to perform both linear and

nonlinear connections and to master these connections

directly from the modeling data (Carlini et al. 2016;

Gutiérrez and Lizaga 2016). Classic linear models are

naturally poor when they input modeling data that includes

nonlinear information (Andrews 1988; Ye and Chen 2001).

As we know, neural network algorithms are being adapted

to an expanding number of real-world problems (Dickson

and Perry 2016; Wang et al. 2016). Their basic conve-

nience is that they can address issues that are too compli-

cated for normal methods (Leung et al. 2000; Rao and

Scott 1987). In general, neural network algorithms are well

suited to address problems that include pattern recognition

of trends in data (Ogneva-Himmelberger et al. 2009; Song

et al. 2014). The most ordinary neural network algorithm is

the multiple perceptron. Due to its need for a desired output

Fig. 7 Analysis of the results of

the RSSVM model using ROC

curve with various numbers of

iterations

Table 3 Performance of the

RSSVM model using statistical

index-based evaluations

No. Parameter Training dataset Testing dataset

1 True-positive 397.00 172.00

2 True-negative 462.00 172.00

3 False-positive 116.00 48.00

4 False-negative 51.00 48.00

5 Positive predictive value (%) 77.39 78.18

6 Negative predictive value (%) 90.06 78.18

7 Sensitivity (%) 88.62 78.18

8 Specificity (%) 79.93 78.18

9 Accuracy (%) 83.72 78.18
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to study, this type of neural network algorithm is famous as

a supervised system (Moore and Sawyer 2016). The goal of

it is to build a model that correctly maps the input and

output data so that it can then be applied to obtain the

output result even if the output is unknown (Webster et al.

2016). Back propagation is the most common algorithm

adopted by the multiple perceptron neural network algo-

rithm (Shi et al. 2016). With back propagation, the input

data are often given to the neural network algorithm (Ci-

urleo et al. 2016). The neural network algorithm always

adjusts the weights and decreases with each iteration error,

moving closer and closer to acquiring the coveted result

(Gutiérrez and Lizaga 2016).

Naı̈ve Bayes (NB) The definition of a Bayesian network

is a directed acyclic diagram with a probability annotation

where every node in the graph represents random variables;

two nodes in the graph occur if there is an arc, and the two

nodes correspond to the probability of whether a random

variable is dependent and conversely indicates that two

independent random variables are the conditions (Pirdavani

et al. 2014a, b). An arbitrary node in the network of X has a

corresponding Conditional Probability Table (Conditional

aim-listed Probability Table, CPT), and nodes X in the

father obtain all the possible values of the Conditional

Probability (Chen et al. 2012; Harris et al. 2010). If nodes

are without father X, then X CPT for the prior probability

is the distribution (Wei and Qi 2012). A Bayesian network

structure of the nodes and the CPT define the likelihood of

allocation of each variable in the system. Naı̈ve Bayes

models originated through classical mathematics theory

and have a solid mathematical foundation as well as the

stability of classification efficiency (Zhang et al. 2011). At

the same time, the NB model requires only a few estimated

parameters, is less sensitive to missing data, and the

algorithm is simpler (Zhang and Mei 2011). In theory, the

NB model of minimum error rate compares well with other

classification methods (Hadayeghi et al. 2010). However,

this is not always the case because the NB model

assumptions are independent of each other between attri-

butes. This assumption is often not established in practical

applications, and this brings a certain influence to the

correct classification of the NB model (Koutsias et al.
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2010). Depending on the number of attributes or when the

attribute correlation is large, the NBC model classification

efficiency is better than the decision tree model. If the

attribute correlation is small, the performance of the NB

model is good (Sharma et al. 2011). The Naı̈ve Bayes

theorem is a kind of unsupervised learning with no itera-

tion; the learning efficiency is high, and it is easy to

implement under large sample sizes with better perfor-

mance (Kumar et al. 2012; Lukawska-Matuszewska and

Urbanski 2014). However, because the conditional inde-

pendence assumption is too strong, assumption features

associated with the condition of the characteristics of the

input vector of scenarios do not apply (Martinez-Fernandez

et al. 2013; Paez et al. 2011).

Using the results from analyzing the performance of the

ROC curve for different landslide models (Fig. 10), it can

be found that the RSSVM model (AUC = 0.857) has the

highest performance, followed by the SVM model

(AUC = 0.814), MLPN model (AUC = 0.823) and NB

model (AUC = 0.783).

Delineating landslide susceptibility maps

In this study, 311 landslides were used for training data

(70%), and 134 landslides were used for validation data

(30%). First, the training dataset of the SVM and NB

models were run using Weka 3.7.12 software. The polygon

of the study area in ArcGIS 10.2 was then converted to

rasters with a pixel size of 25 9 25 m, which was similar

for all conditioning factors. The raster polygon was sam-

pled in GIS with all conditioning factors, and this layer is

the test dataset used in the Weka program for landslide

Table 4 Landslide bulk on landslide susceptibility map

Class LSIs intervals Pixels of class Pixels of landslides % Class % Landslides Landside density (LD)

Very low (0.019–0.153) 1,431,546 0 25.47 0.00 0

Low (0.153–0.301) 1,330,357 7 23.67 3.57 0.15

Moderate (0.301–0.459) 1,145,280 23 20.37 11.73 0.58

High (0.459–0.622) 984,530 56 17.51 28.57 1.63

Very high (0.622–0.939) 729,472 110 12.98 56.12 4.32

Fig. 11 Landslide

susceptibility map generated

using the RSSVM model
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susceptibility mapping. Consequently, according to the

samples for each point raster of the study area, a proba-

bility of landslide incidence was obtained and transferred

to GIS, and a landslide susceptibility map for the RSSVM

model was produced. Ultimately, the range of values of the

susceptibility map was classified into five categories based

on the natural break classification method (Basofi et al.

2015), including very low susceptibility (VLS), low sus-

ceptibility (LS), moderate susceptibility (MS), high sus-

ceptibility (HS) and very high susceptibility (VLS) (Dai

and Lee 2002; Table 4). The landslide susceptibility map

of the RSSVM model is shown in Fig. 11.

Interpretation of the landslide susceptibility map gen-

erated using the RSSVM model shows that the very high

class covers only 12.98% of the total study area but con-

tains 56.12% of the total landslide locations. In contrast,

the low and very low classes account for 49.14% of the

total study area; however, they contain only 3.57% of the

total landslide locations. This indicates that the RSSVM

model produces a high accuracy result and that the map fits

well with the landslide inventories.

Conclusions

Landslides are a most dangerous and hugely destructive

disaster all over the world. For this reason, landslide sus-

ceptibility research is most important for local management

and town planners. Many scientists have utilized different

methods to develop landslide susceptibility maps in various

regions worldwide. However, until now there has been no

agreement about the best method to use in landslide sus-

ceptibility modeling. Thus, the current study aimed to

discover a new ensemble method to achieve this target.

In this study, a novel hybrid integration approach was

used by integrating support vector machines (SVM) and

random subspace (RS) for landslide susceptibility assess-

ment. The result shows that the RSSVM model performs

very well in landslide susceptibility mapping in the Wun-

ing area (China). The predictive ability of a base classifier

of SVM is significantly improved through the newly pro-

posed RSSVM model. In comparison with Multiple Per-

ceptron Neural Network (MLP), Naı̈ve Bayes (NB) and

Support Vector Machine (SVM), the RSSVM model has

the best performance. In general, the landslide suscepti-

bility map of this model is very beneficial for decision

makers and land use planners in the Wuning area.
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