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Abstract In order to study the heavy metal accumulation

and distribution in the roots, stems, and leaves of Spartina

alterniflora, we collected S. alterniflora samples and the

associated sediments along three transects at the Andong

tidal flat, Hangzhou Bay. Co, Ni, Cd, Pb, Cu, and Zn were

mainly accumulated in the aerial parts (stems and leaves) of

the plants, and their distributions depended on their

mobility and their roles during the metabolism processes of

S. alterniflora. The concentrations of Cu, Zn, Cd, Hg, and

Pb were significantly enhanced with the increasing of heavy

metal concentrations in the sediments, while those of Co

and Ni remained relatively constant. Bioaccumulation fac-

tors results showed that the serious heavy metal contami-

nation in the sediments from the transect A may overwhelm

the accumulation capability of the plants. In addition, the

physicochemical properties of the sediments and the pore

water therein also play a role in the heavy metal concen-

trations and accumulations in the plants, because they can

influence the behaviors and bioavailabilities of heavy

metals during nutrition and bioaccumulation processes of

the plants. The sediments with vegetation did not show

significantly decreased heavy metal concentration with

respect to the unvegetated sediments, although the plants

did absorb heavy metals from the sediments. Principal

component analysis and correlation analyses indicated that

Co–Ni, Cu–Cd–Hg behaved coherently during accumula-

tion, which may be ascribed to their similar accumulation

mechanisms. This work provided essential information on

the heavy metal accumulation by plants in a tidal flat, which

will be useful for the environmental control through phy-

toremediation at estuaries.
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Introduction

Heavy metals are harmful and widespread in the environ-

ment, especially in the estuary zone such as tidal flats and

salt marshes. They may originate from both natural and

anthropogenic processes (Markert and Friese 1999). These

pollutants are characterized by high toxicity, persistence,

and bioaccumulative behaviors. Previous studies suggested

that heavy metals may pose a significant threat to human

health and living organisms and therefore produce a serious

damage for natural ecosystem (Bryan and Langston 1992;

Williams et al. 1994; Wong et al. 2002; Diagomanolin et al.

2004; DeForest et al. 2007). Consequently, it is important to

study the heavy metal pollution within the studied coastal

environment (Marcovecchio 2000; Hempel et al. 2008).

Numerous studies reported the occurrence and distribu-

tion of heavy metals in the sediments and plants from tidal

flats at estuary zones (Marcovecchio 2000; Ferrer et al.
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2006). The periodical tide can carry large quantities of

pollutants which can be accumulated in the sediments of

tidal flats. In addition, the tidal flat plays an important role

in the biogeochemical cycling of pollutants through their

active and positive circulation mechanisms (Weis and Weis

2002). Vegetation can absorb the nutrients and metals from

the sediments when their concentrations are relatively high

(Reboreda and Cacador 2007a; Cacador et al. 2009;

Almeida et al. 2004; Weis et al. 2003; Windham et al.

2003). The bioaccumulation process is depended on the

mobility and bioavailability of metals as well as the

physicochemical characteristics of the sediments such as

pH, salinity, redox potential, organic matter content, grain

size (Alloway et al. 1990). These physicochemical proper-

ties could change the microenvironment and therefore

affect the bioavailability of metals in the tidal flats (Wind-

ham and Lathrop 1999; Windham et al. 2003). The uptake

and accumulation of heavy metals by plants follow two

different paths: (1) by the root system and (2) by the foliar

surface (Sawidis et al. 2001). Path (1) is usually the domi-

nated process. Therefore, tidal flat is often considered to be

a sink for heavy metals (Cacador et al. 1996, 2000; Weis

et al. 2004; Reboreda and Cacador 2007b), where the heavy

metals play key roles for the local ecological systems.

Hangzhou bay is a typical macro-tidal estuary along the

east coast of China, and the Andong tidal flat is one turning

point of the hydrodynamic environment within Hangzhou

Bay. It is widely accepted that the Andong tidal flat is the

transition zone from middle tidal to spring tidal, open sea

to semi-enclosed sea, and also the influence boundary

between the Qiantang River and Yangtze River (Su and

Wang 1989). In recent years, Hangzhou Bay suffered high

urbanization and industrial activities. Large quantities of

pollutants were discharged into Hangzhou Bay (Marcov-

ecchio and Ferrer 2005; McGann 2008). Therefore, the

heavy metal contamination in Hangzhou Bay attracted

great attentions (Zhang et al. 2001; Deng et al. 2004). For

instance, Liu et al. (2012) investigated the distribution of

major and trace elements in the surface sediments of

Hangzhou Bay and suggested that the anthropogenic

impact was enriched near the Qiantang River mouth.

The Andong tidal flat in Hangzhou Bay is largely cov-

ered by Spartina alterniflora. In China, S. alterniflora was

intentionally introduced from North America in 1979 to

control the erosion of flats, improve the soil quality and

protect the dikes. Nowadays, S. alterniflora has been a

predominant macrophytes in the estuaries of China (Huang

et al. 2008; Jiang et al. 2009; Zuo et al. 2009). S. alterni-

flora can accumulate metals from sediments via roots and

transport some of them to its aerial structures. The metals

can be stored in the belowground parts as well (Weis and

Weis 2004). In addition, S. alterniflora can transport oxy-

gen through aerenchyma to the rhizosphere, and therefore

the absorbed metals are enriched in the roots (Burke et al.

2000). This phenomenon is similar to the cases of other

marsh plants that the absorbed metals tend to accumulate in

the belowground tissues (Burke et al. 2000; Reboreda and

Cacador 2007a; Hempel et al. 2008; Duarte et al. 2010).

Current studies on the S. alterniflora at coastal zones of

China mainly focused on its ecological and physiological

characteristics (Gallagher et al. 1980; Fang et al. 2004;

Davis et al. 2004), its restoration for tidal flats (Gallagher

et al. 1976; Gallagher and Plumley 1979; Valery et al.

2004; Mendelssohn and Kuhn 2003), its effect on the

biogeochemical processes of intertidal ecosystem in coastal

region (Zhou et al. 2008), and its influence on the uptake

and distribution of N, P, and metals in the Yangtze River

estuary (Quan et al. 2007).

To date, however, the research on the accumulation and

distribution of heavy metals in the organs of S. alterniflora

within Hangzhou Bay is scarce. The main objectives of this

study are to: (1) assess the accumulation and distribution of

heavy metals (Co, Ni, Cd, Hg, Pb, Cu, and Zn) in the

organs of S. alterniflora and the associated sediments from

the Andong tidal flat; (2) comprehend the relationship

between heavy metal concentrations in the plants and

sediments and explore the role of S. alterniflora on the

translocation of heavy metals in the ecosystem of tidal flat;

(3) preliminarily identify the accumulation mechanisms of

heavy metals by the S. alterniflora.

Geological settings

Hangzhou Bay, which lies in the northeast of Zhejiang pro-

vince and covers an area of about 8500 km2, embodies one of

the largest tidal gulfs in the world (Xie et al. 2010). Hang-

zhou Bay can be divided into an inner bay and an outer bay

according to the hydrological and sediment characteristics of

the bay (Fig. 1) (Chen et al. 1990). The sediments of the

triangle shaped Hangzhou Bay mainly come from: (1) the

particles carried by the Qiantang River and Yangtze River

and forced by the river flows and tidal currents (Milliman

et al. 1985; Su andWang 1989); (2) sediments formed by the

erosion of the seabed of the East China Sea (Dai et al. 2014).

The sediments from the Yangtze River and Qiantang River

played an important role in the distribution of heavy metals

in the sediments and the anthropogenic influences were

concentrated near the Qiantang River mouth (Li and Xie

1993; Liu et al. 2012; Pan and Wang 2012).

The Andong tidal flat, which is located at the southern

part of Hangzhou Bay, situates near the boundary between

the inner bay and outer bay. The Andong tidal flat is

composed by tidal flats, tidal slopes, and tidal creeks,

covering an area of about 300 km2. The tidal flat is dom-

inated by silt and clayed silt (Li and Xie 1993). The clayed
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silts are mainly distributed in the nearshore areas, and the

silt sediments are widespread in the tidal flat and tidal

creek areas. The sedimentation rate of the Andong tidal flat

was 2.0–4.5 cm a-1 in recent centuries (Li 1993; Guo et al.

2004), and the average annual deposition volume of sedi-

ments was 6 9 107 t a-1 in recent decades (Li and Xie

1993). The Andong tidal flat received considerable

anthropogenic pressures from engineering constructions,

local aquaculture, and industrial activities from adjacent

towns and cities (red spheres in Fig. 1b).

The Andong tidal flat is mainly covered by halophyte

vegetation with a width of about 5 km from shore to off-

shore and an area of 100–150 km2. S. alterniflora is the

most commonly and widely distributed speciation. Our

previous study investigated the heavy metal concentrations

in the sediments from the Andong tidal flat and found that a

transect was severely polluted by heavy metals (Pang et al.

2015). Therefore, it is essential to investigate the accu-

mulation and distribution of heavy metals in the S.

alterniflora from the Andong tidal flat, which may provide

important information for the ecological, environmental,

and geochemical studies on estuaries.

Materials and methods

Sampling

We collected 17 plant samples and 29 associated sediment

samples from the Andong tidal flat during low tide. All of

our samples were collected by hands that wore pre-cleaned

gloves. We conducted three transects in this tidal flat, and

the sample locations were recorded by a handhold GPS

(Fig. 1). The samples from the transect A (A1–A8) were

collected on August 14, 2014; the samples from the tran-

sect B (B1–B10) and transect C (C1–C11) were collected

on September 14, 2014. Both sampling days were cloudy

with light raining. The transect A is situated along a major

passenger way and a creek in this area and therefore may

be significantly affected by human activities (Pang et al.

2015). The transects B and C are relatively natural and

should be excluded from significant human pollution. The

sample locations include both vegetated and unvegetated

areas. Therefore, these transects are suitable to investigate

the accumulation of heavy metals by the plants and the

resilience of plants to the heavy metal contaminations. In

each site, duplicate S. alterniflora samples were collected

and the adjacent sediment samples were also collected for

referencing. Furthermore, offshore sediments (A5–A8, B8–

B10, C7–C11) where plants were absent were also col-

lected by the same method for comparison. The collected

samples were stored in polyethylene bags and preserved in

an icebox (T = 10–15 �C). The samples were taken back

to laboratory for subsequent analyses.

Pretreatment of the samples

Digestion of the sediment samples

The sediment samples were dried in an oven at 50 ± 5 �C
overnight to a constant weight and were ground in an agate

grinder until homogeneous particles were obtained. Then, the

Fig. 1 a Detailed sampling sites and b the geographic location of the

studied area in Andong tidal flat, Hangzhou Bay, China. The blue

lines indicate the main tidal creeks along the sampling transects. The

yellow line shows the passageway of local fishermen to catch aquatic

products. The red tags indicate the plant samples and the associated

sediments samples, while the green tags are the unvegetated sediment

samples. The red spheres in (b) indicate the factories near the Andong
tidal flat, including chemical plants, steel plants, plastics factories
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samples were digested by concentrated HNO3 and H2O2

(Fernandez-Cadena et al. 2014) using the following proce-

dures: 1.00 g sediment sample was weighted and placed into

flaskswithdistillationdevice. 10.0 mL (1:1)HNO3was added

to each flask. Each mixture was gently shaken using a mag-

netic stirrer and then placed in an aluminum-heating block.

The digestion of the sediment samples was performed as the

following sequence of operations: heat the sample to 200 �C,
stop heating to non-boiling, and reflux the mixture for

10–15 min. After cooling, 5 mL concentrated HNO3 was

added to the residual mixture and the mixture was heated at

200 �C for 30 min again. The above steps were repeated until

there was no brown fume. Then, the solution was evaporated

to about 5 mL in the state of non-boiling. After finishing the

above steps, 2 mL distilled water and 3 mLH2O2 were added

into the cooled sample, and the mixture was heated again till

there was no bubble. The mixture was shaken gently and

poured into polyethylene tubes. Then, it was diluted to 40 mL

and centrifuged prior to elemental analyses.

Pretreatment of the plant samples

All of the plant samples were washed thoroughly by tap

water to remove the attached impurities such as mud and

sand. Then, each sample was divided into leaves, stems,

and roots for our subsequent study. Each part was cut into

small pieces by plastic scissors in order to avoid metal

interference. Then, these pieces were washed thoroughly

by distilled water (Phillips et al. 2015; Bonanno and Lo

Giudice 2010). The samples were dried in a temperature-

controlled oven at 50 ± 5 �C for 48 h and then were cal-

cined in a muffle furnace (Nabertherm, L3/11/B180) at

500 �C for 90 min. The ashed plant samples were ground

by a mortar for the following digestion procedures (Ca-

cador et al. 2000; Padinha et al. 2000).

A portion of ashed plant samples (0.20 g) was weighted

and placed into flasks with distillation device. Then, 10 mL

mixture of HNO3–HClO4 (4:1 v/v) and a magnet were

added into each flask. The mixture was gently shaken using

a magnet and then placed in an aluminum-heating block.

The operation procedures were as follows: heat the sample

to approximately 100 �C, stop heating to non-boiling until

nitrous fumes formed, then boil the mixture to approxi-

mately 200 �C. Repeat the above steps till there was no

brown fume, and then evaporate the solution to about 5 mL

in the state of non-boiling. After finishing the above steps,

cool the sample, transfer it into a centrifugal tube, and

dilute it to 50 mL with deionized water (Quan et al. 2007).

Elemental determination

The digested solutions from the sediment and plant sam-

ples were centrifuged at 3000 rpm for 5 min prior to the

analyses of elemental concentrations. Metal concentrations

(Co, Ni, Cd, Hg, Pb, Cu, and Zn) were determined by

Inductively Coupled Plasma–Mass Spectrometry (ICP–

MS, Thermo Fisher Scientific, XSeries II). The standard

stock solution was diluted by 1% HNO3 step by step. Some

10 lg L-1 mixed standard solutions were measured to

determine the sensitivity of the analyses. Reagent blanks,

duplicate samples, and multi-elements standard solutions

(Chinese national standard, GBS-04 series) were used for

quality controls. The errors of the analyses as relative

standard deviation were less than 10%. The detection limit

(unit lg L-1) of ICP-MS for each metal was: Co 0.0035,

Ni 0.036, Cd 0.0051, Hg 0.00024, Pb 0.016, Cu 0.075, Zn

0.00024. The calculated detection limits (unit: lg kg-1) for

each metal were: in the sediment samples, Co 0.14, Ni

1.44, Cd 0.204, Hg 0.0096, Pb 0.64, Cu 3, Zn 0.0096; and

in the plant samples, Co 0.875, Ni 9, Cd 1.275, Hg 0.06, Pb

4, Cu 18.75, Zn 0.06. The recoveries for all metals in both

sediment and plant samples ranged from 90 to 110%. The

operating parameters of ICP-MS were: 1200 WRF power

and scanning mode of peak jumping, sampling time of 20 s

with a dwell time of 1000 ls, sampling depth of 120 mm,

and sample extraction yield of 1.0 mL min-1. The total

injection time for each sample was 60 s, and the cleaning

time was maintained at 60 s. The flowing rates of cooling

air, auxiliary gas, and atomization gas were 14.0, 0.75, and

0.92 L min-1, respectively.

The physicochemical characteristics

of the sediments

The temperatures (T, �C) of the sediments were measured

in situ using a TES-1310 thermometer with a thermocouple

(TES, Taiwan). The total organic carbon (TOC, %) and

total nitrogen (TN, %) of the sediment samples were

measured by a 2400 Series II CHNS/O Analyzer (Perk-

inElmer, US). The grain size of the sediments was mea-

sured by a Microtrac S3500 Laser Particle Size Analyzer

(Microtrac, US). The measuring range and accuracy of the

instrument were 0.02–2800 lm and 0.6%, respectively.

The pore water was extracted by a RHIZON 1921SA

soil solution sampler with a diameter of 2.5 mm. The pH

values of the sediments and pore water were measured by a

TZS-pH-I pH meter (Tuopu, China). The pH calibration

was performed using buffer solutions of pH 4, pH 7, and

pH 10. The redox potential (Eh value) was measured by a

ORP-401 m (Shanghai, China) with a platinum electrode.

Statistical analysis

Statistical analyses on the data were performed by a SPSS

Windows release 18.0. Pearson’s correlation coefficients

were used to verify the relationships among variables.
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Principal component analysis (PCA) was used to distin-

guish the associations among these elements (Armid et al.

2014). Bioaccumulation factors (BAF) were calculated to

assess the accumulation of heavy metals by the S.

alterniflora. The BAF was obtained by dividing the trace

element concentrations in the plant samples by that in the

sediments. The calculation equation is listed as follows:

BAF ¼ Xð Þplant organ= Xð Þsediment ð1Þ

where X refers to the concentration of the assessed heavy

metal. BAF value of[1 indicates the significant accumu-

lation of heavy metals by S. alterniflora from the sediments

(Idaszkin et al. 2014).

Results and discussion

Heavy metal concentrations in the plant samples

Heavy metal concentrations in the different organs of S.

alterniflora from the transects A, B, and C are given in

Figs. 2, 3, and 4, respectively. The raw data can be found

in Table S1. All of the samples exhibited higher concen-

trations of Cu and Zn with respect to other heavy metals.

Both Cu and Zn were enriched in the stems and leaves. The

accumulations of Cu and Zn in the aerial parts may be

attributed to their roles in the plants. Cu and Zn play vital

roles in the nutrition and enzymatic activities of plants

(Bonanno and Lo Giudice 2010). Cu can be present in

many oxidizing enzymes involving the redox processes of

plants. In addition, Cu can also act as the components of

chloroplast and participate in the electron transfer process

during the photosynthesis (Lee et al. 2012). Zn is the metal

activator of enzymes. It distributes in the chloroplast and

promotes the formation of carbohydrates (Grill et al. 1989).

In addition, Larsen (1983) and Lehtonen (1989) proposed

that Zn is essentially important for the biosynthesis of the

plant growth hormone indolyl-3-acetic acid, which is pri-

marily active in the stems.

Co was mainly accumulated in the leaves with con-

centrations of less than 20 mg kg-1 in all three transects.

Co is an essential nutrition element for plants and plays an

important role for the plant physiology, such as the

responses of stress and loads of process controls (Bush

Fig. 2 Heavy metal concentrations in the roots, stems, and leaves of S. alterniflora in the transect A from the Andong tidal flat, Hangzhou Bay,

China
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1995). In addition, Co can fix the chloroplast membrane

protein complexes, which are also concentrated in the

leaves (Hajar et al. 2014). Ni was also mainly concentrated

in the leaves of S. alterniflora with concentrations of

2–32 mg kg-1. Ni is a toxic element for plants, and it can

be significantly enriched in the leaves at the end of the

growing period (Sainger et al. 2011). Therefore, it is rea-

sonable to suggest that the accumulation of Ni in the plant

leaves in this study may be ascribed to fact that we sampled

mature plants in August and September.

Cd concentrations ranged from 0.03 to 4.73 mg kg-1 in

the different organs of S. alterniflora. The distribution of

Cd was relatively homogenous in all parts of the plants

from the transect A and was mainly accumulated in the

leaves in the transects B and C. Cd is a highly toxic and

nonessential element, and it can hinder the growth and

metabolism process of plants (Scholze et al. 1988; Divan

Junior et al. 2009). Cd is rather mobile in the sediments,

and it is readily available for plants (Madejon et al. 2004).

It is suggested that Cd tends to be enriched in the aerial

parts rather than the belowground parts of S. alterniflora

(Hempel et al. 2008). Cd could also go into the root cells

by competitive relationship with nutrients and then be

transferred into the stems and leaves by leaf vacuoles

(Almeida et al. 2004; Reboreda and Cacador 2007b;

Vymazal et al. 2007). In addition, some studies suggested

that ultrastructural modifications of aerial organs of plants

in case of high Cd concentrations could lead to Cd accu-

mulation in the stems and leaves (Pietrini et al. 2003).

Hg concentrations varied from below detection limit

(\0.002 mg kg-1) to 0.27 mg kg-1. Hg concentrations

were relatively homogenous in all parts of S. alterniflora

with slightly enrichment in the roots of the samples from

the transect A, and in the roots and leaves from the tran-

sects B and C. Hg is a toxic metal especially when its

availability increased (Scholze et al. 1988). Recent reports

suggested that the plants in aquatic environments prefer-

ably accumulate Hg in the roots (Fay and Gustin 2007;

Zhang and Wang 2013), while early literatures reported

that Hg was enriched in the leaves because the absorbed Hg

can be quickly transported upwards (Shaw 1986; Lindberg

et al. 1979). In addition, Hg enrichment in the leaves could

also due to the Hg absorption from atmosphere by stomas

(Ericksen et al. 2003).

Fig. 3 Heavy metal concentrations in the roots, stems, and leaves of S. alterniflora in the transect B from the Andong tidal flat, Hangzhou Bay,

China
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Pb is considered as more toxic than other metals (Ka-

bata-Pendias and Mukherjee 2007). Pb concentrations

varied in three orders of magnitude among different sam-

ples. In the transects A and C, Pb was concentrated in the

aerial parts, especially in the leaves. In the transect B;

however, Pb was mainly enriched in the roots. Previous

studies on the trace element accumulation in Phragmites

australis showed that anthropogenic emission was a pri-

mary origin for Pb (Bonanno and Lo Giudice 2010). In

addition, Pb accumulation in the leaves may be addition-

ally affected by the exposure to the waste gas exhausted

from automobiles (Schierup and Larsen 1981; Djingova

et al. 2003; Bonanno and Lo Giudice 2010). Adjacent to

our studied area, there are some factories (Fig. 1) produc-

ing mechanical and electrical equipment, auto parts, and

nonferrous metals. These factories may act as sources for

the heavy metals. In addition, Pb is an immobile element

for its strong binding to organic matters and other com-

ponents in plants (Aksoy et al. 2005; Mazej and Germ

2009).

The sediments from the transect A exhibited the highest

heavy metal concentrations in the plants, while the

transects B and C showed lower values, suggesting that the

plants from the transect A were severely polluted by the

assessed heavy metals (Pang et al. 2015). As shown in

Fig. 5, Cu concentration in the transect A was elevated in

all organs of the plant samples, Zn and Ni showed slightly

increased concentrations in the stems and leaves, and Cd

was especially accumulated in the stems. It is suggested

that heavy metals could be adsorbed and accumulated by

the plants, and some heavy metals may be eventually

transported to the aerial parts of the plants according to

their functions during metabolic processes. Hg concentra-

tions in the transect A exhibited the highest values in the

roots. It may be attributed to the severe contamination of

Hg in the sediments, which overwhelmed the transportation

ability of S. alterniflora (D’Souza et al. 2013; He et al.

2014; Wu et al. 2014). The Co concentrations in the plant

samples from the transects B and C were slightly higher

than those of transect A, while Co concentrations in the

transect A sediments were much higher than those in the

transects B and C (Table S2). This contradiction may be

attributed to the fact that Co in the plants is limited by the

metabolism of plants. Therefore, Co concentrations

Fig. 4 Heavy metal concentrations in the roots, stems, and leaves of S. alterniflora in the transect C from the Andong tidal flat, Hangzhou Bay,

China
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changed slightly with the background values (Bush 1995;

Hajar et al. 2014).

Accumulation of heavy metals in the plants

In order to investigate the accumulation of heavy metals in

the plants, we calculated the bioaccumulation factors

(BAFs) of heavy metals by S. alterniflora (Idaszkin et al.

2014). As shown in Table 1, Co and Ni exhibited BAF

values of less than 1 in most of the transects and organs,

suggesting that the accumulations of Co and Ni by the

plants were quite limited. Cd, Hg, Cu, and Zn showed BAF

values between 1 and 5 in the transects B and C, indicating

that these elements were significantly accumulated and

were easily adsorbed by the plants (Bonanno and Lo

Giudice 2010; Divan Junior et al. 2009; Zhang and Wang

2013). Most of the heavy metals presented BAF values of

leaves[ stems[ roots, because these elements were

essentially transported upward according to their functions

during the metabolism of the plants. However, another

possibility is that the S. alterniflora will be submerged by

water during high tides. The leaves may additionally

absorb metals from the water. As a consequence, the leaves

presented enhanced BAF values with respect to the roots.

An exception was Pb which exhibited BAF values of

roots[ stems[ leaves, maybe because the Pb contami-

nation in the transect B sediments has exceeded the

transportation capability of the plants (Lisamarie et al.

2001; Windham et al. 2003). Note that all of the BAF

values in the transect A were below 1 and were much lower

than those in the transects B and C. It is ascribed to the fact

that the transect A was a seriously polluted area, and the

heavy metal contamination overwhelmed the accumulation

capabilities of the plants (D’Souza et al. 2013; Wu et al.

2014). As a result, the BAF values were much lower

although the heavy metal concentrations in the plants were

significantly higher than those in the transects B and C.

The heavy metal distribution and accumulation in the

plants may also be affected by the physicochemical char-

acteristics of the sediments such as T, TOC, TN, pH, and

grain size. As shown in Table S3, all of the sediment

samples (and the pore water therein) from all transects

exhibit relatively comparable physicochemical properties,

although the samples from the transect A showed slightly

higher T, lower TOC and TN, lower grain size, and lower

pH values. Table S4 shows the correlations between the

physicochemical properties and the heavy metal concen-

trations of the sediment samples. It is suggested that the

temperature of the sediments was positively correlated

(0.05 level) with Co, Cd, Hg, and Pb. The TOC, TN, pH,

Fig. 5 Comparisons of the

heavy metal concentrations in

the roots, stems, and leaves of S.

alterniflora from different

transects in the Andong tidal

flat, Hangzhou Bay, China. The

root-A indicates the root

samples from transect A

Table 1 Bioaccumulation

factors (BAF) of Co, Ni, Cd,

Hg, Pb, Cu, and Zn in the S.

alterniflora samples from the

Andong tidal flat, Hangzhou,

China

Site Transect A Transect B Transect C

BAF Root Stem Leave Root Stem Leave Root Stem Leave

Co 0.01 0.01 0.04 0.48 0.44 1.03 0.30 0.32 0.88

Ni 0.02 0.03 0.05 0.57 0.57 1.11 0.38 0.42 0.73

Cd 0.04 0.13 0.05 2.11 1.57 4.52 1.36 1.44 4.30

Hg 0.05 0.03 0.21 2.81 2.78 4.54 0.95 1.35 1.93

Pb 0.02 0.04 0.06 13.67 6.36 2.89 0.08 0.08 0.86

Cu 0.10 0.61 0.34 1.04 1.49 1.47 1.20 1.52 1.86

Zn 0.04 0.13 0.14 1.45 2.21 1.77 1.30 1.69 2.23

BAF values of[1 are shown in bold
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and grain size of the sediments were negatively correlated

with their heavy metal concentrations, although the corre-

lations were not significant. The pH and Eh of the pore

water in the sediments, however, significantly (0.01 level)

negatively correlated with almost all of the heavy metals. It

is ascribed to the fact that the pH and Eh values control the

balance between the sediment and the pore water, where

lower pH values and a reducing environment facilitate the

accumulation of heavy metals in the sediment.

These physicochemical properties can further affect the

heavy metal accumulation in the plant samples. As shown

in Table S5, the physicochemical properties of the sedi-

ments and the pore water therein did not show significant

correlations with some of the heavy metals (Ni, Pb, and Zn)

in the plants. Co positively correlated with TOC, TN, pH,

and grain size, because Co is a nutrient for plants and it will

be absorbed together with other nutrients. Cd, Hg, and Cu

negatively correlated with the TOC and TN of the sedi-

ments and the pH and Eh values of the pore water. It is

suggested that all of these heavy metals are biological toxic

elements and they are unfavorable during the nutrition of

the plants. In addition, the accumulations of these heavy

metals were significantly affected by the pH and redox

conditions of the pore water, which can change the speci-

ation of these metals and consequently affect their

bioavailabilities by the plants.

On the other hand, the bioaccumulation of heavy metals

by the plants can in turn affect the heavy metal concen-

trations of the associated sediments. Although the plants

can also absorb heavy metals from water besides the sed-

iments, the heavy metal concentrations of the pore water

within sediments are associated with the sediments. The

heavy metals in the sediments and the pore water are in

equilibrium and the metal concentrations of the sediments

can represent the overall heavy metals that the plant can

absorb (Doyle et al. 2003; Katsev et al. 2006; Santos-

Echeandia et al. 2010) giving the fact that the physico-

chemical characteristics of the sediments are comparable.

As shown in Fig. 6, however, the vegetation of the plants

did not positively decrease the heavy metal concentrations

of the associated sediments. The unvegetated sediments

actually exhibited lower heavy metal concentrations than

those with plants, although the plants do accumulate heavy

metals from the sediments. This phenomenon was ascribed

to two reasons: (1) The heavy metals removed by the plants

were trivial for the total amounts of heavy metals in the

sediments. Therefore, the heavy metal concentrations in the

sediments were only slightly affected by the accumulation

by plants. (2) The vegetated sediments are near shore and

experienced stronger anthropogenic pollution and showed

higher heavy metal concentrations with respect to the

unvegetated sediments which located offshore.

Multi-statistical analyses

Pearson’s correlation coefficients and PCA analyses are

widely used to distinguish the correlations among elements

and the sources of these elements. As shown in Table S6,

almost all of the heavy metals in the sediments significantly

positively correlated among each other. It is indicated that

they were either derived from similar sources, or experi-

enced analogous biogeochemical or accumulation pro-

cesses (Ghandour et al. 2014; Maanan et al. 2015; Armid

et al. 2014). In the S. alterniflora samples, however, only

Co–Ni and Cu–Cd–Hg exhibited significant positive cor-

relations (Table 2). The different correlations of heavy

metals in the plants and sediments may be attributed to the

differences in the bioavailability of trace metals for the

plants. It is determined by many factors including the

affinity of heavy metals, the speciation of heavy metals, the

functions of heavy metals in the plants, the physicochem-

ical properties of sediments or waters (Baldantoni et al.

2004; Kumar et al. 2006; Mishra et al. 2008; Zhang and

Wang 2013). The Cd–Hg–Cu correlations and Co–Ni

correlation in the plants suggested their analogous accu-

mulation mechanisms in the plants, which is consistent

Fig. 6 Comparisons of the

heavy metal concentrations of

the sediments from the Andong

tidal flat, Hangzhou Bay, China.

A1—vegetated sediments from

the transect A, B2—unvegetated

sediments from the transect B
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with previous arguments on the accumulation processes of

these metals in the plants (Almeida et al. 2004; Reboreda

and Cacador 2007b).

The PCA analyses showed similar results to the corre-

lation analyses. As shown in Table 3, all of the heavy

metals in the S. alterniflora can be grouped into two

principal components, which occupied appropriately

79.30% of the total variance. The first component (PC1)

generated 49.68% of total variance and exhibited high

weights ([0.7) for Cd, Hg, and Cu, and moderate weights

for Ni and Zn. The second component (PC2) accounted for

29.63% of the total variance, showing high weights for Co

and Ni and moderate weight for Pb. Ni exhibited high

loadings of[0.6 in both components. Trace metals in the

sediments could be divided into two components

(Table S7), accounting 86.87% of the total variance. The

first component (PC1) produced 69.61% of the total vari-

ance and presented high weights ([0.7) for Co, Ni, Cd, Hg,

Pb, and Zn, and moderate weight (0.62) for Cu. The second

component (PC2) occupied about 17.28% of the total

variance and exhibited high weight (0.76) for Cu (Bonanno

and Lo Giudice 2010).

Figure 7 shows the loading plots of heavy metals in S.

alterniflora and in the associated sediments, respectively.

The results showed that the heavy metals in the plants could

be grouped into two parts using 0.6 as a boundary value: The

first group includes Co, Pb, and Ni, and the second group is

comprised of Cd, Hg, Zn, and Cu. The heavy metals in the

sediment samples could also be divided into two groups, the

single Cu group, and the second group comprised of Zn, Cd,

Hg, Ni, Co, and Pb. These results suggested that (Co, Ni, Pb)

and (Zn, Cu, Hg, Cd) behaved relatively coherently during

the accumulation processes although they can be divided into

different groups in the sediments. Furthermore, the two-

factor cluster analysis (Fig. 7c) suggested that the plant and

the sediment samples are not correlated, indicating that the

bioaccumulation of the heavymetals was largely affected by

the bioavailabilities of the heavy metals by the plants, which

is consistent with former statements.

Conclusion

In summary, we collected marsh plant (S. alterniflora)

samples and the associated sediments from the Andong

tidal flat, Hangzhou Bay, and investigated the heavy metals

accumulation in different organs of S. alterniflora. Most of

the heavy metals including Co, Ni, Cd, Pb, Cu, and Zn

were accumulated in the aerial parts (stems and leaves) of

the plants. The heavy metal distributions were determined

by their mobility in the plants and their roles during

metabolic processes. With increasing heavy metal con-

taminations in the transect A, the accumulation of most of

the heavy metals (such as Cu, Zn, Cd, Hg, and Pb) in the

plants was significantly enhanced, while that of Co and Ni

remained relatively constant. Most of the heavy metals

except Pb exhibited BAF values of[1 and presented BAF

values in the order of leaves[ stems[ roots in the tran-

sects B and C. In the transect A, however, most of the BAF

values were less than 1, suggesting that the heavy metal

contamination in the transect A may has exceeded the

accumulation capabilities of the plants. PCA and correla-

tion analyses indicated that Co–Ni and Cu–Cd–Hg behaved

coherently during accumulation, while the correlations

among other elements were disturbed due to their different

accumulation mechanisms. The bioaccumulation of the

heavy metals may be additionally affected by the physic-

ochemical properties of the sediments and the pore water

therein, which can influence the speciation and the

behaviors of the heavy metals during nutrition and accu-

mulation processes. Although the plants can adsorb and

accumulate heavy metals from the sediments, the heavy

metal contamination of the sediments cannot be relieved

Table 2 Pearson’s correlation coefficients of heavy metals in S.

alterniflora from the Andong tidal flat, Hangzhou Bay, China

Co Ni Cd Hg Pb Cu Zn

Co 1

Ni 0.670 1

Cd -0.500 0.541 1

Hg -0.328 0.355 0.904 1

Pb 0.446 0.261 -0.133 -0.201 1

Cu -0.302 0.410 0.820 0.938 -0.244 1

Zn 0.249 0.531 0.507 0.423 -0.055 0.501 1

The statistically significant pairs (P\ 0.01) are shown in bold

Table 3 PCA analyses of heavy metals in the S. alterniflora samples

from the Andong tidal flat, Hangzhou Bay, China

PC1 PC2

Eigenvalues 3.477 2.074

% of variance 49.676 29.626

Cumulative % 49.676 79.302

Eigenvectors

Co -0.052 0.946

Ni 0.606 0.717

Cd 0.945 -0.011

Hg 0.922 -0.272

Pb -0.178 0.658

Cu 0.925 -0.242

Zn 0.691 0.314

PCA loadings[0.5 are shown in bold. The eigenvalues, percent of

variance and cumulative, eigenvectors are given for the two principal

components (PC1 and PC2)
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since the sediments with dense vegetation showed analo-

gous heavy metal concentrations to those of unvegetated

sediments. This study provides essential information on the

heavy metals accumulation by plants in estuaries, and we

will investigate the accumulation mechanisms in depth in

our subsequent study.
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