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Abstract The shortage of surface water in arid and semi-

arid regions has led to the more use of the groundwater

resources. In these areas, the groundwater is essential for

activities such as water supply and irrigation. One of the

most important stages in sustainable yield of groundwater

resources is awareness of groundwater level. In this study,

we have applied artificial neural networks (ANN) and

autoregressive integrated moving average (ARIMA) mod-

els for groundwater level forecasting to 4 months ahead in

Shiraz basin, southwestern Iran. Time series analysis was

conducted according to the Box–Jenkins method. Mean-

while, gamma and M-test were considered for determining

the optimal input combination and length of training and

testing data in the ANN model. The results indicated that

performance of multilayer perceptron neural network (4,

14, 1) and ARIMA (2, 1, 2) is satisfactory in the ground-

water level forecasting for one month ahead. The perfor-

mance comparison shows that the ARIMA model performs

appreciably better than the ANN.

Keywords Groundwater level � Artificial neural network �
ARIMA � Forecasting � Gamma test � M-test

Introduction

One of the most important factors in wise management of

water resources is a proper attitude and a vision of future

events which may happen. This has not been exempted in

water resources management. Awareness of the status of

water resources in a region, especially in arid and semiarid

regions, where groundwater is scarce and vital plays an

important role in the planning process for different sectors

such as domestic, industry and agriculture. Due to the

stochastic nature of hydrologic parameters such as

groundwater level, its status in the future can be predicted

using statistical analysis, mathematical models, etc. Eval-

uation and forecast of groundwater level through specific

models help in groundwater resources management. Hence,

we can use time series modeling to predict groundwater

level fluctuations during the following months for optimal

and proper management of groundwater resources.

Since groundwater resources are mostly related to

many factors and have complex fluctuations, it is nec-

essary to decompose the complexity and their variations

by mathematical methods (Lu et al. 2013). Among the

different available robust tools, the artificial neural net-

works (ANNs) and ARIMA models are commonly used

to hydro-climatological variables forecasting (Choubin

et al. 2014; Sigaroodi et al. 2014; Choubin et al.

2016a, b, 2017a).

ARIMA models are a mathematical approach capable to

simulating the both stationary and non-stationary time

series. However, these models are lesser studied in the field

of groundwater resources. In recent years, ARIMA model

has been used for predicting hydro-meteorological param-

eters (e.g., Boochabun et al. 2004; Abghari et al. 2010;

Chattopadhyay and Chattopadhyay 2010; Chattopadhyay

et al. 2011; Zakaria et al. 2012). Also, Lee et al. (2009)
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used ARIMA model according to the Box–Jenkins method

to groundwater level forecasting in Changwon, Korea.

The intelligence knowledge methods such as neural net-

works as have been applied for groundwater level fore-

casting (Coulibaly et al. 2001; Lin and Chen 2005;

Daliakopoulos et al. 2005; Bidwell 2005; Nayak et al. 2006;

Tsanis et al. 2008; Trichakis et al. 2009; Banerjee et al.

2009; Sethi et al. 2010; Dash et al. 2010; Behzad et al. 2010;

Nourani et al. 2008; 2011; Shirmohammadi et al. 2013).

However, in the previous studies, determining the optimal

input variables for nonlinear models (such as ANN) in

groundwater modeling is less considered. In this regard,

Rashidi et al. (2016) mentioned that determination of opti-

mal parameters in nonlinear modeling is important. They

used gamma test to selecting the best input to simulate the

suspended sediment. Also, Jajarmizadeh et al. (2015)

applied gamma test to identifying the best combination of

the input variables for support vector machines (SVM) to

predict the stream flow in a semiarid basin in Iran.

Therefore, the objectives of this research are (1) deter-

mining the optimal input combination for ANN modeling

approach; (2) selecting the best length of data during train-

ing and testing periods in the ANN model; and (3) com-

paring the performance of linear (ARIMA) and nonlinear

(ANN) mathematical models in monthly groundwater level

forecasting at a semiarid region of Iran. Besides the time

series model considered for groundwater level forecasting,

another advantage of this study is determining the optimal

input combination and best length of training and testing

data in the ANN model based on the gamma and M-tests.

Materials and methods

Study area and data

The study area is located in Shiraz basin, Fars province,

southwestern Iran. Shiraz basin extends between 52�120
and 52�450 E longitude and 29� 250 to 29� 580 N latitude

and 1450 km2. Location of Shiraz aquifer and piezometric

monitoring wells, hydrometric and meteorological stations

is shown in Fig. 1. The long-term average annual precipi-

tation of Shiraz plain is 350 mm. The time period con-

sidered in this study is 18 years (1993–2010), and the data

used are including monthly total precipitation, monthly

average stream flow, temperature, evaporation and

groundwater level.

ARIMA models

Box and Jenkins (1970) introduced autoregressive inte-

grated moving average (ARIMA) models which are a class

of linear models representing stationary and non-stationary

time series. If non-stationarity (d) is combined to a mixed

ARMA (p, q) model, then the general ARIMA (p, d, q) is

obtained. Equation for non-seasonal ARIMA model of

order (p, d, q) for a standard normal variable (Zt) is as

follows (Box and Jenkins, 1970):

u Bð Þ 1� Bð ÞdZt ¼ h Bð Þ et ð1Þ

In Eq. 1, /(B) and h(B) polynomial of degree p and q,

respectively, are:

Fig. 1 Location of Shiraz

basin, Iran
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uðBÞ ¼ 1� u1B� u2B
2 � � � � � upB

p ð2Þ

hðBÞ ¼ 1� h1B� h2B
2 � � � � � hqB

q ð3Þ

where p is the number of autoregressive terms, d is the

number of differences and q is the number of moving

average terms.

The time series modeling with Box–Jenkins approach is

consisting three steps namely identification, estimation and

diagnostic check (Box and Jenkins 1970). In this study, the

time series were tested for normality and then Augmented

Dickey–Fuller (ADF) and Phillips–Perron (PP) tests were

used to analyze groundwater level time series stationarity.

Non-stationary series converted to stationary ones through

the method of differencing (Yurekli et al. 2007) that

number of differencing determined the value of d. ADF or

unit root test by Dickey and Fuller (1979) and PP method

by Phillip and Perron (1988) were conducted. Then, the

graphical properties of the autocorrelation function and the

partial autocorrelation function were used in the estimation

step, to determine the value of p and q. To select the best

fitted model, we used the minimum amount of Akaike

Information Criterion (AIC) and Schwarz Bayesian Crite-

rion (SBC). In the general case, the AIC is (Akaike 1974):

AIC ¼ �2 logðLÞ þ 2m ð4Þ

where m is the number of parameters in the statistical

model and L is the maximized value of the likelihood

function for the estimated model. SBC criterion (Schwarz

1978) is similar in use to Akaike’s index which is defined

as:

SBC ¼ �2 logðLÞ þ m lnðnÞ ð5Þ

where n is denotes the number of observations.

In the diagnostic checking step, the models must be

checked for adequacy. In this study, we used Kolmogorov–

Smirnov (K–S) test and P–P plot to check the normality of

residuals, while Portmanteau test was considered as the

criterion to determine the independence of the residuals.

Artificial neural networks

An artificial neural network retrieved from natural nerve

cells in order to transform the inputs into meaningful out-

puts. In this study, we used a feedforward artificial neural

network called multilayer perceptron (MLP) for ground-

water level forecasting. According to Kim and Valdés

(2003), MLP is able to simulate 90% of the processes

related with the climate. The Levenberg–Marquardt algo-

rithm is one of the fastest methods implemented with high

performance for neural network training (Huang et al.

2006). So, we have used it as the training algorithm in the

MLP, also the Logsig and Purelin transfer function in the

hidden and output layers. The time lags of t-1, t-2, t-3

and t-4 for input layers were chosen to forecasting of the

monthly groundwater level from one to 4 months ahead

(t ? 1, t ? 2, t ? 3, t ? 4), while hidden neurons was

determined by trial-and-error process.

Gamma test

Koncar (1997) and Agalbjörn et al. (1997) reported the

gamma statistic (C) which can provide the best mean

square error in any nonlinear smooth models (Han et al.

2010). The gamma test is based on N [k,i], which are the

kth (1 B k B p) nearest neighbors xN [k,i] for each vector

xi(1 B k B p). Particularly, the gamma test is taken from

the Delta function of the input vectors (Moghaddamnia

2009c),

dm kð Þ ¼ 1=M
XM

i¼1

jxN k;i½ � � xij2. . . 1� k � pð Þ ð6Þ

where|…| gives the meaning Euclidean distance, and the

corresponding gamma function of the output values,

cm kð Þ ¼ 1=2M
XM

i¼1

yN k;i½ � � yi
�� ��2. . . 1� k � pð Þ ð7Þ

where yN [k, i] is the corresponding y value for the kth

nearest neighbor of xi in Eq. 6. In order to calculate C, a
least squares regression line is constructed for the p points

(dm(k), cm(k)).

c ¼ Adþ C ð8Þ

The intercept on the y axis (d = 0) is the C value, as can

be shown, cm(k) ? Var(r) in probability as dm(k) ? 0.

The graphical output of Eq. 7 provides valuable infor-

mation. First, the intercept (C) on the y axis (or gamma)

represents an estimate of the best MSE attainable utilizing a

modeling method for unclear smooth functions of continu-

ous variables (Evans and Jones 2002). Second, the gradient

gives the complexity of model (whatever slope be steeper

indicates that model have greater complexity), (Moghad-

damnia 2009c). V-ratio returns a scale invariant noise esti-

mate between 0 and 1. A V-ratio close to zero shows a high

degree of predictability (by a smooth model) of the specific

output. The V-ratio is obtained by dividing the gamma to the

output data variance, (Durrant 2001). Smaller values of the

gamma and V-ratio indicate the optimal combination of the

used input data (Agalbjörn et al. 1997; Končar 1997).

M-test

Determining the proper length for the training data is

important to improve the prediction (Choubin et al.
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2014). Wingamma M-test curve is a method for deter-

mining the number of data required to produce a

stable asymptote. Here, we used M-test based on the

V-ratio and gamma value to select the best length of

training and testing data in the neural networks method

similar to some other works (e.g., Evans and Jones 2002;

Remesan et al. 2008; Moghaddamnia et al. 2008;

2009a, b; Piri et al. 2009; Tsui et al. 2002; Piri et al.

2009; Singh 2005; Stefansson et al. 1997; Noori et al.

2010; Han et al. 2010). The values of V-ratio and

gamma statistics are determined with increasing number

of data points. Data length is determined based on

M-test curve stabilized for a specific value of V-ratio

and gamma statistics. This test reduces overfitting in the

nonlinear modeling (Shamim et al. 2016).

Data normalization

Data normalization is the best way to ensuring data

integrity and eliminating redundancy (Choubin et al.

2017b). Thus, the hydrologic data must be normalized, and

the best range recommended for normalization is between

0.05 and 0.95 (Hsu et al. 1955). Thus, the series was nor-

malized to the range [0.05, 0.95] as follows:

Xnorm ¼ 0:05þ 0:95
X � Xmin

Xmax � Xmin

ð9Þ

where Xnorm and Xr are the normalized and the original

inputs, and Xmin and Xmax are the minimum and maximum

of input ranges, respectively.

Performance criteria

The performance criteria used in the current research are

RMSE, MAE and R (Eqs. 10, 11 and 12). Also, Violin plot

(Hintze and Nelson 1998) was used to visual diagnostic

analysis.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðOi � PiÞ2
vuut ð10Þ

MAE ¼ 1

N

XN

i¼1

ðj Oi � PiÞj ð11Þ

R ¼

PN

i¼1

ðOi � OÞðPi � PÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1

ðOi � OÞ2
PN

i¼1

ðPi � PÞ2
s ð12Þ

where N is the number of data points, Oi and Pi are the

observed and predicted value, �O and �P are the mean of the

observed and predicted values, respectively.

Results

Selection of the ARIMA model structure

At this step, the stationary and normality status of the GL

time series were investigated. Table 1 shows the result of

ADF and PP test before and after differencing. The null

hypothesis of the ADF and PP test is H0: h = 0 (i.e., the

data are non-stationary and need to be differenced to make

it stationary). When the opposite hypothesis is true that

P value is lower than confidence level (a = 0.01). Table 1

indicates unit root test for assessing the stationary status of

the GL time series. First, unit root test was conducted for

groundwater level time series (i.e., the observed data

without any differencing). According to Table 1 and the

significance level of ADF and PP test statistic

(P value[ 0.01), GL data are non-stationary and need to

be converted to stationary ones for time series modeling.

Then, stationarity of data was evaluated through first dif-

ferencing of the time series. The results indicate that the

GL time series is stationary after the first differencing

(P value\ 0.01; Table 1). Afterward, using the Box–

Jenkins method in the estimation step, the orders of p and q

(p B 2 and q B 4) were determined through the graphical

properties of the autocorrelation function and the partial

autocorrelation function. The best fitted model among the

different models was identified based on the orders of p and

q and evaluation of AIC and SBC criteria through trial-and-

error method. The best model was ARIMA (2, 1, 2) with

lowest AIC and SBC than other candidate models (114.2

and 129.9, respectively).

The result of Portmanteau test showed that the residuals

are independent, since Ljung–Box–Pierce statistic, i.e., Q

statistic is less than v2 value (Q = 32.399\ v2 = 33.4)

with degrees of freedom equal to 17 in the one percent

confidence level. The normality of the residuals was con-

firmed through probability–probability (P–P) plot and

Kolmogorov–Smirnov Test (Z value of K–S test is equal to

0.45 with the P value of 0.98 which is greater than 0.05, so

the residuals distribution is normal). The result of Port-

manteau test and K–S test showed that ARIMA (2, 1, 2)

Table 1 ADF and P–P test for evaluation of stationary status of the

GL time series

Time series Unit root

test

Statistic P value

Before differencing

(level)

ADF test 1.20 0.55

PP test 1.12 0.57

After differencing

(one differencing)

ADF test 11.34 0.003

PP test 54.14 0.001
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can be adequately used for prediction purposes. Table 2

shows the coefficients for the ARIMA (2, 1, 2) model. As

regards to /1 ? /2\ 1 and h1 ? h2\ 1, the values

obtained are allowable. Finally, the forecast of ARIMA (2,

1, 2) is generated by the following equation for the next

month (t ? 1).

Ytþ1 ¼ Yt þ u1Yt � u1Yt�1 þ u2Yt�1 � u2Yt�2 � h1et
� h2et�1 þ c ð13Þ

Ytþ1 ¼ Yt þ 1:7281Yt � 1:7281Yt�1 � 0:9988Yt�1

þ 0:9988Yt�2 � 1:7073et þ 0:958et�1 � 0:006

ð14Þ

where Y is the groundwater level and e is the white noise

(the difference between observed and predicted ground-

water level).

Model input selection and training data length

Mostly, the limiting factor on the predictive accuracy of the

model will be measurement noise or insufficient data.

Wingamma software package estimates the least mean

squared error that any smooth data model can achieve on

the given data without over-training. In this study, we have

determined the best combination of input data, length of

training and testing data with gamma test and M-test,

respectively. To determine the best combination of input

data, the different combinations were applied to assess their

influence on the groundwater level modeling. We used

genetic algorithms (GA) for finding the best combinations

that the optimal combination has minimum of gamma (U).
The goal of model identification for a particular output is to

choose a selection of inputs that minimizes the asymptotic

value of the modulus of the gamma statistic. At each time

step ahead (up to 4 ahead steps), we choose the suit-

able combination of the inputs including precipitation (P),

stream flow (SF), temperature (T), evaporation (E) and

groundwater level (GL). Table 3 shows the different

combination for 1 month ahead. The optimal combination

was selected on the basis of the least amount of V-ratio and

gamma statistic. Table 3 clearly shows that V-ratio and

gamma statistic in the 10111 mask are less than others.

Therefore, the combination of precipitation (P), tempera-

ture (T), evaporation (E) and groundwater level (GL) can

make a good model compared to the other inputs combi-

nation (for 1 month ahead).

After achieving the optimal input combination, M-test

was used to determine the proper length of training and

testing data (Fig. 2) for the best combination of 10111

model (i.e., with P, T, E, GL) in the 1 time step ahead.

M-test curve stabilized around 180 data points with the

gamma statistic equal to 0.00083. The value of V-ratio is

close to zero in the 180 data points which indicate a high

degree of predictability of the output data by a smooth

model. Therefore, the best length of training data is about

Table 2 Coefficients of the

ARIMA (2, 1, 2) model
Model parameters Coefficients Standard error t P value

u1 1.7281 0.004 468.85 0.00

u2 -0.9988 0.004 -254.75 0.00

h1 1.7073 0.039 43.55 0.00

h2 -0.958 0.045 -21.16 0.00

Constant -0.006 0.023 -0.24 0.81

Table 3 Determining the best combination for GL forecasting in

1 month ahead

Input Gamma Standard error V-Ratio Mask

E, GL 0.0020 0.0 0.045 00011

T, GL 0.0020 0.0 0.048 00101

P, GL 0.0020 0.0 0.05 10001

P, T, GL 0.0010 0.0 0.029 10101

SF, E, GL 0.0010 0.0 0.033 01011

SF, T, GL 0.0010 0.0 0.042 01101

P, SF, GL 0.0020 0.0 0.045 11001

P, T, E, GL 0.0009 0.0 0.021 10111

SF, T, E, GL 0.0010 0.0 0.036 01111

P, SF, E, GL 0.0011 0.0 0.026 11011

P, SF, T, E, GL 0.0013 0.0 0.028 11111

P precipitation; SF stream flow; T temperature; E evaporation; GL

groundwater level
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Fig. 2 M-test curve: the variation of gamma statistic and V-ratio with

unique data points to determining the proper length for training data
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180 data (i.e., 83% of the total data). The result of gamma

and M-test in the model input selection and training and

testing data length for 1–4 time steps ahead is shown in

Table 4.

Results of forecasting groundwater level by ARIMA

and MLP network

The multilayer perceptron (MLP) neural network and

ARIMA modeling were done for forecasting groundwater

level. We used the results of gamma test (the optimal input

combination) and M-test (training and testing data length)

to forecasting of groundwater level by MLP neural network

(Table 4). The root-mean-square error (RMSE), mean

absolute error (MAE) and correlation coefficient (R) were

calculated to check the accuracy of the models perfor-

mance (Table 5). The results indicate that ARIMA (2, 1, 2)

has a better performance than the MLP. So that in the

ARIMA model, RMSE and MAE values are less whiles the

value of R is more than the MLP. It is noticeable that

ARIMA model predicts based on the historical data, so the

model performance is not different in the months ahead.

The result of MLP (4, 14, 1) neural network shows that

model has better performance in the 1 month ahead fore-

casting. MLP (4, 14, 1), i.e., multilayer perceptron network

with 4 input neurons (obtained by the gamma test), 14

neurons in the hidden layer (obtained by trial and error) and

has one output neuron. Figure 3 shows the scatter plot of

Table 4 Optimal input

combination and data length

obtained through gamma and

M-test

Forecasting step Optimal input combination Mask Training length Testing length

N % N %

1 month ahead P, T, E, GL 10111 180 83 35 17

2 months ahead P, D, E, GL 11011 198 92 16 8

3 months ahead P, D, T, E, GL 11111 183 85 30 15

4 months ahead P, D, T, E, GL 11111 182 85 30 15

P precipitation; SF stream flow; T temperature; E evaporation; GL groundwater level

Table 5 Performance of MLP

and ARIMA models for GL

forecasting

Model Structure Forecasting step (month) Training period Testing period

RMSE MAE R RMSE MAE R

MLP (4, 14, 1)a 1 ahead 0.305 0.234 0.974 0.537 0.446 0.874

(4, 10, 1)a 2 ahead 0.901 0.682 0.861 1.403 1.254 0.691

(5, 8, 1)a 3 ahead 0.876 0.695 0.860 1.247 1.092 0.718

ARIMA (5, 12, 1)a 4 ahead 1.405 1.137 0.608 1.455 1.297 0.459

(2, 1, 2)b 1–4 aheadc 0.325 0.241 0.968 0.209 0.171 0.980

a Number of neurons in input, hidden and output layers
b Orders of p, d, and q
c ARIMA model simulates same data for training and testing period in each time ahead, so performance

results are similar in each time step forecasting

Y = 0.9729x + 40.664
R² = 0.96

1497

1498

1499

1500

1501

1502

1497 1499 1501

A
R

IM
A

 (m
)

Observation (m)

Y = 0.8746x + 188.25
R² = 0.85

1497

1498

1499

1500

1501

1502

1497 1498 1499 1500 1501 1502

M
L

P 
(m

)

Observation (m)

Fig. 3 Scatter plots between

observed and forecasted data by

MLP and ARIMA in 1 month

ahead for testing data sets

538 Page 6 of 10 Environ Earth Sci (2017) 76:538

123



testing data sets between the observed and forecasted by

MLP (4, 14, 1) and ARIMA (2, 1, 2) for 1 month ahead. As

shown, ARIMA have better fit with the observation

(R2 = 0.96) than MLP model (R2 = 0.85). Figure 3 con-

firms higher accuracy of the results obtained from ANN

and ARIMA in the forecasting GL and the observed versus

forecasted data results by MLP and ARIMA in 1 month

ahead are presented in Fig. 4.

In addition to the performance criteria (Table 5) and

scatter plot (Fig. 3), we applied the Violin plot (Hintze and

Nelson 1998) to evaluate the model performance. This plot

is a boxplot combined with kernel density plots, to show

the probability distribution of the data (Choubin et al.

2017a). The Violin plot (Fig. 5) indicates the visual per-

formance of models in forecasting the GL in 1 month

ahead, where the ARIMA model has better fit with the

observation compared with the MLP model. As, the med-

ian of the observed data is well predicted by ARIMA

(white points in the graphs), also the 25th and 75th per-

centiles (thick lines in plots) in ARIMA have better fit than

the MLP model. Although, ARIMA overestimated the 5th

percentile (thin lower line in violin plots) of GL data than

MLP but have closer fit with the observation in 95th per-

centile (thin upper line in the violin plots).

Discussions

One of the most important stages in sustainable utilization

of groundwater resources is understand of groundwater

level fluctuations. Exploitation and utilization of ground-

water resources in the Shiraz aquifer and persistently

drought periods in recent years are caused a dramatic

reduction in groundwater table. As a result, forecasting the

groundwater level as a tool for better and proper manage-

ment is very crucial and important issue in this the plains.

In this study, we tried to forecast the groundwater level

(GL) from one to four months ahead in Shiraz plain, Iran.

The result of the ANN indicated that the model has better

performance in the 1 months ahead forecasting. Similarly,

Shirmohammadi et al. (2013) reported that prediction of

groundwater level for 1 and 2 months ahead is better than

3 months ahead.

We also evaluated various performance criteria to

examine the abilities of ANN and ARIMA models in

forecasting the GL. Although the result of ANN model

was satisfactory in the one month ahead forecasting

(RMSE = 0.537, MAE = 0.446 and R = 0.874), the

1496
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Fig. 4 Observed versus

forecasted data by MLP and

ARIMA in 1 month ahead

Fig. 5 Violin plots for comparison of the models performance in

1 month ahead
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evaluation results showed that the ARIMA model per-

forms better than the ANN (RMSE = 0.209,

MAE = 0.171 and R = 0.980). Lee et al. (2009) have

obtained satisfactory results for groundwater level fore-

casting by ARIMA model according to the Box–Jenkins

method. Also, some other studies (Voudouris 2002;

Aflatooni and Mardaneh 2011; Adhikary et al. 2012; Lu

et al. 2013) have successfully demonstrated the perfor-

mance of ARIMA model in the groundwater level

forecasting. Lu et al. (2013) suggested that ARIMA

model has less accuracy in groundwater level forecasting

compared with the decomposition method in China. The

scatter and violin plots of current study reveal that the

predicted values have suitable fit with the observed data,

both in ANN and in ARIMA models, although the

ARIMA model performance is better than MLP neural

network. Narayanan et al. (2013) suggested that ARIMA

modeling is capable to forecast of premonsoon rainfall

over the northwest part of India. Yang et al. (2009)

indicated that the backpropagation ANN (BPANN)

model is superior to the integrated time series (ITS) in

forecasting the groundwater level time series.

Selection of the proper input variables and the training

data length in the neural network method using gamma and

M-test is one of the advantages of this study. Jajarmizadeh

et al. (2015) and Rashidi et al. (2016) suggested that pre-

processing the input variables in forecasting process by

nonlinear models is important as confirmed by the current

study results. Also, Kakaei Lafdani et al. (2013) indicated

that ANN models based on gamma test can estimate

accurately during training and testing periods.

According to the Moghaddamnia et al. (2009c), gamma

test reduces huge workload of the trial-and-error process

prior to the actual model development. One reason for

efficiency of the gamma test is that it can immediately tell

us directly from the data whether or not we have sufficient

data form a smooth nonlinear model and how a model can

present good results.

Conclusions

The results show that both of ANN and ARIMA have good

forecasting accuracy, and they are suitable for the fore-

casting the groundwater level in semiarid regions. This

study presented how the gamma test and M-test can be

applied together to reduce the huge workload of the trial

and error in nonlinear modeling process. In general, the

potential of identifying the input parameters and best

length of training data may turn gamma test and M-test as

an efficient technique for preprocessing the data to predict

the groundwater level. It might be helpful for future

researches to use these methods as a time-consuming

approach for swiftly attaining the appropriate results. We,

in this study, indicated that both performance of MLP (4,

14, 1) and ARIMA (2, 1, 2) are satisfactory in the

groundwater level forecasting for 1 month ahead. Some

works have suggested that ANNs can be a promising

alternative to the traditional ARMA structure; however,

this study demonstrates that ARIMA model can be useful

to predict the groundwater level.
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