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Abstract Accurate prediction of the chemical constituents

in major river systems is a necessary task for water quality

management, aquatic life well-being and the overall

healthcare planning of river systems. In this study, the

capability of a newly proposed hybrid forecasting model

based on the firefly algorithm (FFA) as a metaheuristic

optimizer, integrated with the multilayer perceptron (MLP-

FFA), is investigated for the prediction of monthly water

quality in Langat River basin, Malaysia. The predictive

ability of the MLP-FFA model is assessed against the

MLP-based model. To validate the proposed MLP-FFA

model, monthly water quality data over a 10-year duration

(2001–2010) for two different hydrological stations (1L04

and 1L05) provided by the Irrigation and Drainage Min-

istry of Malaysia are used to predict the biochemical

oxygen demand (BOD) and dissolved oxygen (DO). The

input variables are the chemical oxygen demand (COD),

total phosphate (PO4), total solids, potassium (K), sodium

(Na), chloride (Cl), electrical conductivity (EC), pH and

ammonia nitrogen (NH4-N). The proposed hybrid model is

then evaluated in accordance with statistical metrics such

as the correlation coefficient (r), root-mean-square error, %

root-mean-square error and Willmott’s index of agreement.

Analysis of the results shows that MLP-FFA outperforms

the equivalent MLP model. Also, in this research, the

uncertainty of a MLP neural network model is analyzed in

relation to the predictive ability of the MLP model. To

assess the uncertainties within the MLP model, the per-

centage of observed data bracketed by 95 percent predicted

uncertainties (95PPU) and the band width of 95 percent

confidence intervals (d-factors) are selected. The effect of

input variables on BOD and DO prediction is also inves-

tigated through sensitivity analysis. The obtained values

bracketed by 95PPU show about 77.7%, 72.2% of data for

BOD and 72.2%, 91.6% of data for DO related to the 1L04

and 1L05 stations, respectively. The d-factors have a value

of 1.648, 2.269 for BOD and 1.892, 3.480 for DO related to

the 1L04 and 1L05 stations, respectively. Based on the

values in both stations for the 95PPU and d-factor, it is

concluded that the neural network model has an acceptably

low degree of uncertainty applied for BOD and DO sim-

ulations. The findings of this study can have important

implications for error assessment in artificial intelligence-

based predictive models applied for water resources man-

agement and the assessment of the overall health in major

river systems.
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Cl Chloride

COD Chemical oxygen demand

EC Electrical conductivity

DO Dissolved oxygen

FFA Firefly algorithm

K Potassium

MLP Multilayer perceptron

Na Sodium

NH4-N Ammonia nitrogen

PO4 Total phosphate

95PPU 95 Percent predicted uncertainty

TS Total solids

Introduction

Pollution control in river systems via the modeling of

qualitative parameters of water is one of the primary

components that warrant a special focus in managerial

scheduling. In some cases, pollution indices of an aquatic

system are evaluated by two terms, namely biochemical

oxygen demand (BOD) and declined dissolved oxygen

(DO). BOD, which is an important parameter to be esti-

mated accurately, reflects all present materials that can be

oxidized by chemical processes and aerobic organisms and

also the abundance and activity of the oxidizing organisms

and is deemed as one of the primary criteria that are

required for any aquatic system. Since an inverse rela-

tionship exists between the BOD and DO, the higher value

of BOD is symptomatic of the deficiency of dissolved

oxygen. Moreover, the concentration of DO in water

should be known before measuring the value of BOD.

Hence, both of the above criteria should be determined

simultaneously. However, the determination of these val-

ues in laboratory constrained conditions is both time-con-

suming and costly. This clearly warrants a need for indirect

methods to be applied to predict these values (Singh et al.

2009).

In recent years, there have been a number of statistical

and deterministic models developed for modeling water

quality; however, most of the existing models for water

quality parameters are very complex and require a signif-

icant amount of field data to support the analysis (Chen

et al. 2003; Kurunç et al. 2005). Many statistical-based

water quality models assume that the relationship between

response variable and prediction variable is linear and

distributed normally. However, as water quality can be

affected by many factors, the traditional data processing

methods are no longer efficient enough for solving the

problem, as such factors encompass a complicated non-

linear relation to the variables of water quality forecast

(Wu et al. 2000; Xiang et al. 2006). Therefore, utilizing

statistical approaches usually does not possess high

precision. In recent decades, promising results have been

reported by several studies that investigated water quality

modeling problems using artificial intelligence (AI) tech-

niques (Diamantopoulou et al. 2005; Sengorur et al. 2006;

Palani et al. 2008; Hore et al. 2008; Najah et al. 2009;

Singh et al. 2009; Dogan et al. 2009; Najah et al. 2011;

Kim and Seo 2015; Sarkar and Pandey 2015; Salami and

Ehteshami 2015). In most of these studies, the monthly

parameters of water quality have been used for the simu-

lation of water quality parameters (Diamantopoulou et al.

2005; Sengorur et al. 2006; Palani et al. 2008; Singh et al.

2009; Dogan et al. 2009; Sarkar and Pandey 2015).

Despite being relatively successful, these research works

have covered a comprehensive range of forecasting accu-

racy which varied significantly owing to the environmental

features of locations. Hence, the significance of input data

to forecast the river water quality became evident. There-

fore, so far, a comprehensive model capable of simulating

various environments has been out of reach. Yet, an

inspiring question for researchers in the area of water

resources management is: Does a hybrid intelligent model

integrated with optimization algorithm enhance the pre-

dictive model’s precision? (Fahimi et al. 2016).

Different combinations of input (or predictor) data have

proven to govern the predictive accuracy of an objective

model (Abbot and Marohasy 2014; Deo et al. 2016; Galelli

and Castelletti 2013; Quilty et al. 2016), but moreover, the

need for a novel methodology to extract the information

concealed in the input dataset to yield desirable and

accurate artificial intelligence model is strongly required in

the field of river systems engineering. Quite often, a stand-

alone model is seen to lack a suitable optimization proce-

dure for the extraction of features within the input data,

from which the best model can be obtained, which is a

prerequisite to enhance the performance of the predictive

model (Long and Meesad 2013; Quilty et al. 2016; Sedki

and Ouazar 2010). Firefly algorithm (FFA) used in this

paper acts as an optimization tool for artificial intelligence

models and has recently been in area of predictive mod-

eling (Ghorbani et al. 2017). Mainly, the conceptual theory

of FFA is triggered by the flashing pattern of fireflies as

stated by Yang (2010). FFA has performed favorably in

many different fields (Kavousi-Fard et al. 2014; Fu et al.

2015; Emary et al. 2015; Kazemzadeh-Parsi 2014; Nasci-

mento et al. 2013; Talatahari et al. 2014; Yang 2010). In

estimation problems, FFA method culminated in a con-

siderable improvement solution procedures. In conclusion,

this study revealed that the modified FFA model performed

very efficiently in comparison with other optimization

algorithms.

Considering all the arguments above, different results

obtained from AI techniques for all sets of input data can

render the optimal evaluation of results to be impossible,
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thereby causing uncertainty in the output results (Kim and

Seo 2015). Consequently, uncertainty in AI-based models

is considered to be one of the most important restrictions

especially in using the well-established ANN technique

applied to develop strategies for appropriate control and

management of water quality (Noori et al. 2015b).

Despite numerous publications in the area of uncertainty

assessment in qualitative models applied in water research

(Canale and Seo 1996; Wagener and Gupta 2005; Gupta

et al. 2006; Sin et al. 2009; Cea et al. 2011; Srivastava et al.

2014), the number of studies in uncertainty analyses based

on AI techniques (e.g., ANN) is insufficient and thus

requires further research (Noori et al. 2015b). Out of the

many research works by different authors, uncertainty

analysis of AI techniques was also performed by Aqil et al.

(2007) who have investigated the uncertainty of output

values in a neuro-fuzzy model applied for the prediction of

weekly flows of a river. Using a Monte Carlo method, they

found that the method was suitable for assessing uncer-

tainty of a neuro-fuzzy model. Noori et al. (2010) inves-

tigated the uncertainty within ANN and adaptive neuro-

fuzzy inference system (ANFIS) models applied to predict

carbon monoxide’s (CO) concentration in the atmospheric

region of Tehran. In another work, the uncertainty within

ANFIS and ANN models was investigated by Noori et al.

(2013a, b) to predict the value of BOD5 in Sefidrood River.

Jiang et al. (2013) used a new and efficient model based on

an ANN and the Monte Carlo method (ANN-MCS) to

analyze the uncertainty in the prediction of COD pollution

hazard within the Yellow River located in Lanzhou.

A study by Dehghani et al. (2013) examined the

uncertainties within the multilayer feedforward artificial

neural network (FFANN) model using the Monte Carlo

method and applied the model to predict hydrological

drought in Karoon River located in southeast Iran.

Antanasijevic et al. (2014) evaluated the uncertainty of the

general regression neural network (GRNN) in predicting

the DO parameter in Danube River. Noori et al. (2015a)

assessed the uncertainty of ANN, support vector machine

(SVM) and ANFIS techniques to predict the longitudinal

distribution coefficient (LDC) in natural rivers, while Noori

et al. (2015b) investigated the uncertainty of the SVM

model to estimate the 5-day BOD in Sefidrood River.

Recently, Ghorbani et al. (2016) examined uncertainties of

an SVM, radial basis function (RBF) and MLP model in

predicting the monthly current of Zarrinehrud River.

In this paper, an artificial intelligence model, namely

multilayer perceptron (MLP), is integrated with FFA for

river water quality (BOD and DO) modeling. In general,

the MLP model is a common artificial neural network

architecture (Ghorbani et al. 2017). The aims of this study

are: (I) to investigate the applicability of an MLP model for

BOD and DO prediction in Langat River, (II) to combine

an MLP model with FFA to create a hybrid MLP-FFA

model, and (III) to assess the predictive precision of MLP-

FFA using a number of visual and statistical criteria

observed and predicted BOD and DO (IV) uncertainty

assessment of MLP model and comparison of results. To

the best of the author’s knowledge, there is no prior

research in the literature that investigated the ability of

multilayer perceptron-based FFA hybrid model for river

water quality prediction.

In current paper, the code used for the MLP model is a

readily available code, while the codes used for the hybrid

MLP-FFA method and for uncertainty assessment have

been developed by the authors as their original contribution

to this research. The structure of the proposed hybrid MLP-

FFA model is shown in Fig. 1. It is noted that the list of

used abbreviations is given at the end of the article.

Methodology

Multilayer perceptron neural network (MLP)

In recent decades, efforts have been undertaken to simulate

a natural neuron, capable of capturing the characteristics of

a biological system which is also easy to implement in NN

models. Modeled networks are also known as ‘‘paradigms

of the NN.’’ ANN models were firstly introduced by Pits

and McCulloch (Govindaraju 2000). ANN is a mathemat-

ical structure designed to simulate the data processing of

brain neurons (Hinton 1992; Jensen 1994).

In this study we have applied a very popular and a

widely applied neural network model, which is known as

the multilayer perceptron (MLP). It is important to mention

that the MLP model is a variant form of the classical ANN

model and this model has been widely used in the current

era of big data analytics (Gardner and Dorling 1998; Ay

and Kisi 2011). The basic MLP model comprises of three

layers: (I) input layer, (II) hidden layer and (III) output

layer. The input layer receives the set of input data, the

processing of the features is performed in the hidden lay-

er(s), and the output layer is used to reveal the predicted

results. Figure 2 illustrates a sample of a three-layer per-

ceptron neural network.

The identification of the most accurate architecture of

the ANN-MLP model is based on a trial-and-error method,

and its final structure is determined through hidden layer

and neuron values. In the structure of the MLP model, the

inputs to the ith layer (x1 to xj) are multiplied by their

assigned weights (wi1 to wij) and then summed up. A

threshold (bi) is added to the input, and the net input (Neti)

is determined, which is always greater than zero. The

weights indicate the strength of neurons’ connection and

are optimized through the learning process.
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Neti ¼ bi þ
Xn

j¼1

wijxj ð1Þ

Subsequently, the member function receives inputs and

outputs and transfers them to the next layer. Sigmoid

functions are often used in artificial neural networks to

introduce nonlinearity in the model (Maier and Dandy

2000).

f ðNetiÞ ¼
1

1 þ e�Neti
ð2Þ

In this research, all datasets were normalized and divi-

ded into two categories of testing and training data. In

order to predict the quality of water, tangent sigmoid, linear

stimulator and the Levenberg–Marquardt algorithm

(LMA), which is a fastest method for training the feedback

neural network (Adamowski et al. 2012; Deo and Şahin

2016), were used for mapping the information from the

input layer to the hidden layer and from the hidden layer to

the output layer, respectively. LMA is a simple and robust

feature extraction tool which provides a solution for the

minimization problem with respect to the function vari-

ables. The optimum number of neurons in the hidden layer

is obtained by a trial-and-error method and by changing the

number of neurons from 1 to 20 in the hidden layer in the

present study.

Hybrid MLP-FFA model

It should be noted that the Levenberg–Marquardt training

algorithm, known as a robust predictive training algorithm

(in terms of speed and efficiency) (e.g., Tiwari and Ada-

mowski 2013; Deo and Şahin 2016, 2017), was used in

identifying the local minima, which may not necessarily be

Preliminary analysis Correlation analysis

Select the best input 
variables

Modelling ANN

Select the best models

Uncertainty assessment

d-factor95ppu

Water quality data
collection

Output

MLP MLP-FFA

Water quality estimation
(BOD, DO)

Fig. 1 Modeling methodology

Fig. 2 A typical multilayer

perceptron neural network

architecture (Najah et al. 2009)
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the global minimum within the feature dataset. This indi-

cates that there is a room for further improvement in the

MLP model’s performance. In our study, this has been

achieved by the application of the FFA as an optimization

tool following our earlier studies (e.g., Ghorbani et al.

2017). In general, the FFA is an optimization algorithm

that is known to yield better performance that is attributed

to identifying the global minimum within the feature

datasets.

In essence, the nature-inspired FFA procedure was first

introduced by Yang (2010) as an extension of the swarm

intelligence optimization method relying on the movement

of fireflies. In this approach, the solution to an optimization

problem can be regarded as an agent, i.e., firefly which

shines in proportion to its quality. As a result, each brighter

firefly is able to attract its partners, regardless of their sex,

which render the exploration of the search space more

effective (Lukasik and Zak 2009).

As fireflies are attracted toward light, the whole swarm

moves toward the brightest firefly. In this case, the attrac-

tiveness of the fireflies is highly proportional to their

brightness and the brightness relies on the intensity of the

agent (Kayarvizhy et al. 2014). The main defect of firefly

algorithm is the construction of its objective function and

the differentiation of the light intensity.

The variables of the FFA are the light intensity I(r), the

attractiveness bð Þ, and the Cartesian distance between any

two fireflies i and j at xi and xj, respectively, that best can

expressed (Yang 2010) as:

I rð Þ ¼ IO exp �cr2
� �

ð3Þ

b rð Þ ¼ bO exp �cr2
� �

ð4Þ

rij ¼ xi þ xj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd

K¼1

xi;k � xj;k
� �

vuut ð5Þ

where xi;k is the kth component of the spatial coordinate xi
of the ith firefly, c is the light absorption coefficient, d is the

dimensionality of the given problem, I(r) and IO are the

light intensity at distance r and initial light intensity from a

firefly, and b rð Þ and bO are the attractiveness b at a dis-

tance r and r = 0.

The next movement of firefly i can be represented as

(Yang 2010):

xiþ1
i ¼ xi þ Dxi ð6Þ

Dxi ¼ bOe�cr2

xj � xi
� �

þ a�i ð7Þ

Here, the first phase of formula (7) indicates the

attraction, whereas the second phase denotes the random-

ization processes. The a controls the randomization values

that range between 0 and 1, and �i represents the random

number of the Gaussian distribution (Ch et al. 2014).

In this paper, a novel contribution to the prediction of

BOD and DO is made where a newly constructed MLP-

FFA hybrid model is attained. The MLP-FFA hybrid model

was generated by integrating the traditional MLP model

with the FFA that is a popular optimization tool used in

data-driven modeling. Figure 3 shows the procedure of

obtaining optimal MLP weights with FFA.

The simulation procedure of the MLP-FFA model

involves determining the combination of input parameters

with regard to the correlation coefficient among input and

output (target) variables. Afterward, the firefly algorithm is

supplied with a selection of best inputs based on their

congruence with the target variable normally assessed by

the objective function, and the chosen inputs are utilized in

the MLP-FA model to generate the prediction of BOD and

DO.

Uncertainty analysis

Uncertainty is a result-dependent factor that demonstrates

the range of values a modeling result can attain. It also

represents the possibility that the measured value may fall

into the specified range. This research paper aims to esti-

mate the uncertainty of neural network output. Here, we

apply the method recommended by Abbaspour et al. (2007)

and Noori et al. (2015b) that was used to analyze the

uncertainty of river quality prediction. In this method, the

percentage of measured data bracketed by 95 percent pre-

dicted uncertainties (95PPU) are considered. In order to

gain this value, the ranges of empirical cumulative distri-

bution probability (X_L) 2.5% and (X_U) 97.5% are

determined through 1000 predictions.

The appropriate confidence level is the level in which

two requirements are met: (1) The 95PPU band brackets

‘‘most of the observations’’ and (2) the average distance

between the upper (at 97.5% level) and the lower (at 2.5%

level) parts of the 95PPU is ‘‘small.’’ Quantifications of the

two requirements are problem dependent to an extent.

Abbaspour et al. (2007) reported that 80–100% of

measured data should be in the 95PPU level provided that

they are of good quality. In some regions that data are not

of good quality, having 50% of data in the 95PPU level

would suffice.

For the second requirement, it is essential that the

average distance between the upper and the lower 95PPU

be smaller than the standard deviation of the measured data

(Abbaspour et al. 2007). We utilize the above two mea-

sures to quantify the strength of calibration, accounting for

the combined parameter, model, and input uncertainties.

To evaluate the average width of the confidence interval

band, the band width indicator was suggested by Abbas-

pour et al. (2007) as follows:
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d-factor ¼ dX

rX
ð8Þ

where rX is the standard deviation of observed data and dX
is the confidence band’s average width which is defined as

follows:

dX ¼ 1

k

Xk

l¼1

XU � XLð Þi ð9Þ

The percentage of the data within the confidence band of

95% is determined as follows:

Bracketed by 95PPU ¼ 1

k
Count jjXl

L �Xl
reg �Xl

U

� �
� 100

ð10Þ

where 95PPU indicates 95% predicted uncertainty; k is the

number of observed data; l is the current month which

changes from 1 to k; Xl
L and Xl

U are, respectively, the lower

and the upper bands of uncertainty; and Xl
reg is the current

month’s registered data.

Whenever the recorded data for the present month (l) are

placed in the uncertainty range, one unit is added to the

counter (j) and the maximum amount of j will occur when

l ¼ k. If all the recorded amounts are within the lower and

the upper band, then the maximum amount of ‘‘Bracketed

by 95PPU’’ will be 100.

Model performance criteria

In order to assess the accuracy of the model’s results and

the model fitness, the correlation coefficient (r), root-mean-

square error (RMSE) (Willmott and Matsuura, 2005) and

Willmott’s index of agreement (WI) (Willmott 1981, 1984)

are used.

Yes

No

Evaluate fitness of all fireflies
from the objective function 

MLP

Input data

Data normalization

Training the model

Training Accuracy (%)

Meeting a stop
Criterion?

Optimal model

Firefly Algorithm
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Generate initial population

Update the fitness value of 
fireflies

Rank the fireflies and 
update the position

Optimal model

Reach
Maximum
Iteration?
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No
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ij
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.
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n

.

.

. .
.
.
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y
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W
jkb
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Optimal model
by FFA

Fig. 3 Flowchart of the MLP-FFA structure
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The correlation coefficient (r) is defined as the correla-

tion between the observed and modeled data:

r ¼
Pn

i¼1 Pi � �Pð Þ Oi � �Oð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Pi � �Pð Þ2Pn

i¼1 Oi � �Oð Þ2
q ð11Þ

RMSE is defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

Oi � Pið Þ2

s
ð12Þ

WI is defined as:

WI ¼ 1 �
Pn

i¼1 Oi � Pið Þ2

Pn
i¼1 Pi � �Oj j þ Oi � �Oj jð Þ2

" #
ð13Þ

%RMSE is defined as:

%RMSE ¼ RMSE
�O

� 100 ð14Þ

where n is the number of input variables, Oi and Pi are,

respectively, the measured and the output of the ith ele-

ment, and �O and �P are the average of the values within the

testing dataset.

In this study, the optimal model’s accuracy was con-

sidered to be excellent when the %RMSE\ 10%; good if

10%\%RMSE\ 20%; fair if 20%\%RMSE\ 30%;

and poor if %RMSE[ 30% (Heinemann et al. 2012;

Jamieson et al. 1991).

Study area and model development data

In this research, the monthly water quality datasets of data

of two stations in Langat River from the period 2001–2010

are utilized. Langat River is one of the most important

rivers in Malaysia, and it is located in geographical loca-

tion of 2� 400 M 15200 N to 3� 160 M 15N latitude and 101�
190 M 2000 E to 102� 10 M 1000 E longitude. Catchment of

Langat River is an important catchment which provides

water and other facilities for some 1.2 million people. Its

total area is 1,815 km2. Big cities that receive their water

from this catchment are Cheras, Kajang, Bangi, govern-

ment center of Putrajaya, etc. The length of the main water

flow is about 141 km located at 40 km east of Kuala

Lumpur.

The basin of Langat River is located in southern and

southeastern parts of the Selangor Darul Ehsan state.

Langat River originates from Pahang–Selangor border in

which highlands are 1500 m above sea level. It drains

westward to the Straits of Malacca. Figure 4 provides

detailed geographical features and water quality control

stations of the Langat River. Sets of data are divided in two

categories: Monthly data of the first 7 years from 2001 to

2007 (84 sets or 70% of the whole dataset) are used for

training and monthly data of the last 3 years from 2008 to

2010 (36 sets or 30% of the whole data) are used for

testing.

Models proposed by researchers with regard to the

prediction of the BOD and DO using various input

parameters are summarized in Table 1. Based on Table 1

and parameters utilized by other researchers in their stud-

ies, in this study the following parameters are used:

chemical oxygen demand (COD), total phosphate (PO4),

total solids (TS), potassium (K), sodium (Na), chloride

(Cl), electrical conductivity (EC), pH and ammonia nitro-

gen (NH4-N).

A key reason why the monthly data have been used is

the discrete nature of the daily or hourly data for the case

study, which is highly challenging to acquire. Besides this,

there is enough evidence in the literature that gives cre-

dence to credibility of this choice, as explained in Intro-

duction and Table 1. It is noteworthy that due to

insufficient water quality data in the study area, in this

research, only the aforementioned parameters are utilized

for BOD and DO prediction. The statistical parameters of

water quality data of the Langat River in two considered

stations are shown in Table 2.

Results and discussion

Combination of input parameters

Table 3 lists the most suitable combination of input

parameters. Using SPSS software, correlation coefficients

of parameters, previously mentioned in Table 2, are cal-

culated. Subsequently, in Fig. 5, the correlation map of

parameters for both stations was drawn based on a color

scale such that the closeness of values to 1 or -1 indicates

high correlation. Based on Table 3, all 9 input parameters

were used in the first combination. However, in combina-

tions 2, 3 and 4, PO4, pH and TS which had the lowest

correlation with BOD and DO were eliminated, respec-

tively (based on Fig. 5), and the best combination was

obtained for input parameters.

It should be noted that BOD and DO indicators are

dependent variables, while the rest are independent

variables.

A total of four models with various input combinations

have been developed. Both non-optimized (MLP) and

hybrid (MLP-FFA) models were constructed and tested in

order to specify the optimum number of nodes in the hid-

den layer and transfer functions. Selection of an appro-

priate number of nodes in the hidden layer is of paramount

importance as a large number of these may result in over-

fitting, while a smaller number of nodes may not capture

the information desirably (Singh et al. 2009). The optimum
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Fig. 4 Location of the study area and the water quality monitoring station

Table 1 Input parameters used in previous studies for the AI models

Literature Input variables Model Output Study area

Sengorur et al. (2006) NO2-N, NO3-N, BOD, Q, T ANN DO Turkey Reservoir

Singh et al. (2009) pH, TS, T-Alk, T-Hard, Cl, PO4, K, Na, NH4-N,

NO3-N, COD

ANN BOD, DO Gomti River

Wen et al. (2013) pH, EC, Cl, Ca, T-Alk, T-Hard, NO3-N, NH4-N ANN DO Heihe River

Chen and Liu (2014) pH, EC, COD, Turb, T-Hard, T-Alk, DO,

Chlorophyll a, PO4, NO2-N

BPNN, ANFIS DO Feitsui Reservoir

Noori et al. (2015b) NO3, TP, EC, DO SVM BOD5 Sefidrood River

Sarkar and Pandey (2015) Q, T, pH, BOD, EC ANN DO Mathura city on Yamuna River
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number of neurons was determined based on the minimum

value of mean square error (MSE) of the training dataset.

The network was trained in 1000 epochs, learning rate of

0.0013 and momentum coefficient of 0.9. In Tables 4 and

5, r, RMSE, %RMSE and WI values obtained from BOD

and DO simulations in both testing and training data are

shown along with optimal number of neurons. From the

four sets of input data, the best set that has higher r and WI

values and the lower RMSE and %RMSE during test is

chosen as the best set.

Tables 4 and 5 also represent the best network structure

and their respective function criteria. Based on the results

of non-optimized MLP model (Tables 4, 5), the perfor-

mance criteria reveal that the models designated as

ANN(8,9,1) and ANN(8,6,1) are the best models to predict

BOD and DO in 1L04 station, respectively (Table 4), and

ANN(7,8,1) and ANN(9,13,1) are the best models to pre-

dict BOD and DO in 1L05 station, respectively (Table 5).

The structure of ANN(8,9,1) consists of one input layer

with eight input variables, one hidden layer with nine

nodes and one output layer with one output variable.

A relatively low correlation coefficient between the

measured and model output variables (BOD and DO) in the

present study, especially at 1L05 station, may be due to the

heterogeneous nature of the water quality (input and out-

put) variables as these were measured over a span of

10 years in two sampling sites (as shown in Fig. 4).

Moreover, relatively higher correlations between measured

and model (NN) computed values of BOD and DO in

various aquatic systems (Sengorur et al. 2006; Soyupak

Table 2 Basic statistics of the

measured water quality

parameters in Langat River

Station Variable Unit Min Max Mean SD CV%

1L04 COD mg L�1 8 113 37.1 14.75 39.75

PO4 mg L�1 0.01 3.1 0.17 0.39 229.41

TS mg L�1 94 3554.5 341.7 358.68 104.94

K mg L�1 0.1 38.75 4.6 3.5 5.94

Na mg L�1 2.9 941.7 19.4 85.56 441.22

Cl mg L�1 1 1925.5 26.5 175.9 661.93

EC lS 69 6484.1 224 582.3 259.95

pH – 6.2 7.7 7.05 0.27 3.86

NH4-N mg L�1 0.1 5 2 1.16 57.67

BOD mg L�1 2 25 7.5 4.02 53.6

DO mg L�1 0.82 8.05 5.09 1.29 25.46

1L05 COD mg L�1 5 93 35.4 15.39 43.54

PO4 mg L�1 0.01 2.6 0.152 0.382 251.31

TS mg L�1 13 1955 435.2 373.41 85.79

K mg L�1 0.1 26.9 4.3 2.89 66.72

Na mg L�1 0.1 419 13.5 37.88 279.93

Cl mg L�1 1 875 15.4 79.75 516.73

EC lS 58 3223 173.5 289.1 166.67

pH – 5.8 7.6 7 0.27 3.91

NH4–N mg L�1 0.01 6.5 1.7 1.27 75.46

BOD mg L�1 1 17 6.8 3.55 52.20

DO mg L�1 2.5 7.8 5.5 1.1 20

SD = standard deviation; CV% = SD/mean

Table 3 Combinations of

model inputs
Combination Input parameters Output parameters Models

MLP MLP-FFA

1 COD, PO4, TS, K, Na, Cl, EC, pH, NH4-N BOD, DO MLP 1 MLP-FFA 1

2 COD, TS, K, Na, Cl, EC, pH, NH4-N BOD, DO MLP 2 MLP-FFA 2

3 COD, TS, K, Na, Cl, EC, NH4-N BOD, DO MLP 3 MLP-FFA 3

4 COD, K, Na, Cl, EC, NH4-N BOD, DO MLP 4 MLP-FFA 4
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et al. 2003; Ying et al. 2007; Dogan et al. 2009) may be

ascribed to the limited number of the input variables used.

To fix this problem we investigated the model’s precision

with respect to firefly optimizer algorithm.

In the MLP-FFA hybrid models, the multilayer per-

ceptron model and firefly algorithm were integrated

(Fig. 3). Tables 4 and 5 show the results of this study. It

is obvious that the prediction performance of the MLP-

FFA-based models in terms of r, RMSE, %RMSE and

WI for training and testing periods is higher compared to

the non-optimized models. That is, the MLP-FFA model

displayed the smallest value of RMSE and %RMSE and

the highest value of r and WI in the testing set

(Tables 4, 5). In general, based on results, the MLP-FFA

Fig. 5 Correlation map of river water quality variable dataset for 1L04 and 1L05 stations

Table 4 Comparative performance of the selected models for monthly river water quality prediction in 1L04 station

1L04 station

Model Neuron Output Testing Training

RMSE (mg/l) RMSE (%) r WI RMSE (mg/l) RMSE (%) r WI

MLP 1 14 BOD 2.698 39.040 0.823 0.808 2.345 30.064 0.828 0.897

9 DO 0.842 15.171 0.606 0.746 0.725 14.826 0.857 0.923

MLP 2 a9 BOD 2.397 34.739 0.821 0.847 2.341 30.016 0.824 0.896
a6 DO 0.606 10.91 0.727 0.786 0.930 19.018 0.751 0.853

MLP 3 20 BOD 2.866 41.471 0.758 0.800 2.641 33.860 0.774 0.859

14 DO 0.781 14.072 0.576 0.718 0.945 19.325 0.735 0.829

MLP 4 17 BOD 2.713 39.257 0.740 0.805 2.511 32.193 0.798 0.875

11 DO 0.616 11.099 0.707 0.724 0.966 19.754 0.719 0.815

MLP-FFA 1 14 BOD 2.158 31.226 0.903 0.880 2.302 29.512 0.915 0.926

9 DO 0.561 10.108 0.796 0.881 0.580 11.860 0.908 0.951

MLP-FFA 2 a9 BOD 1.801 26.101 0.898 0.906 2.000 25.641 0.910 0.960
a6 DO 0.497 8.954 0.820 0.891 0.716 14.642 0.860 0.910

MLP-FFA 3 20 BOD 1.906 27.580 0.858 0.921 2.113 27.090 0.866 0.913

14 DO 0.586 10.558 0.760 0.845 0.756 15.460 0.847 0.896

MLP-FFA 4 17 BOD 2.170 31.400 0.846 0.879 2.298 29.462 0.881 0.922

11 DO 0.498 8.972 0.820 0.885 0.773 15.807 0.841 0.888

a The results in bold show the selected model
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model is a powerful tool in predicting the water quality

of rivers.

Also based on Tables 4 and 5, and results obtained from

both MLP and MLP-FFA models, a relatively better per-

formance (r between measured and computed values) of

the BOD model as compared to that of the DO model

shows that the selected influential factors (input variables)

have relatively greater impact on BOD than on DO. Also,

selection of the influential factors might affect the model

output considerably (Ying et al. 2007).

Figures 6 and 7 show the comparison between MLP and

MLP-FFA results and the observed data for the set of

monthly test data. It is clear that the MLP-FFA model

results are closer to the observed water quality values

compared to MLP model. Moreover, BOD and DO

parameters in station 1L04 show a higher correlation than

that of the 1L05.

As previously discussed, one of the aims of this study is

the uncertainty analysis of the multilayer perceptron neural

network using two criteria, namely 95PPU and d-factor,

such that the increase in observed data in 95PPU level and

the decrease in average value of upper and lower bands

(smaller than the standard deviation of the measured data)

in uncertainty eventuate in a more favorable uncertainty. In

this section, optimal structure of the models discussed in

previous sections is used. Uncertainty indices of 95PPU

and d-factor for testing datasets are given in Table 6. As

shown in Figs. 6, 7 and Table 6, values bracketed by

95PPU indicate that about 77.7%, 72.2% of data for BOD

and 72.2%, 91.6% of data for DO relate to 1L04 and 1L05

stations, respectively. Furthermore, the d-factor has a value

of 1.648, 2.269 for BOD and 1.892, 3.480 for DO, which

relate to 1L04 and 1L05 stations, respectively.

Based on the obtained values in both stations for

95PPU and d-factor indices, it can be concluded that all

the observed data fall into the 95PPU band range (over

50% of observed data), and reasonable extent of uncer-

tainty is achieved in simulating both BOD and DO.

Simulation results for BOD are better than DO since the

average distance between the upper and lower values of

95PPU (d-factor) is smaller than the standard deviation

(SD) of measured data (2.269\ 3.55, 1.648\ 4.02) for

BOD, while this is not valid for DO. Moreover, the

uncertainty of MLP model in modeling BOD’s uncer-

tainty is lower than that of DO’s as indicated by smaller

d-factor.

In general, there are three types of uncertainties in all

simulation processes. The first type involves the uncer-

tainties associated with the simulator model. The second

type involves uncertainties arising from data. The third

type involves the local knowledge. Hence, the level of

uncertainties varies significantly with the problem type. In

this research, the uncertainty originates from the ANN

model, local knowledge and the data, which stem from

human and machine errors and some other unknown

problems.

Table 5 Comparative performance of the selected models for monthly river water quality prediction in 1L05 station

1L05 station

Model Neuron Output Testing Training

RMSE (mg/l) RMSE (%) r WI RMSE (mg/l) RMSE (%) r WI

MLP 1 12 BOD 3.371 54.813 0.505 0.624 2.824 30.648 0.673 0.777
a13 DO 0.702 12.158 0.575 0.738 0.979 18.305 0.602 0.767

MLP 2 10 BOD 3.387 55.073 0.533 0.620 3.008 42.231 0.626 0.734

15 DO 0.850 14.722 0.555 0.696 0.935 17.483 0.674 0.774

MLP 3 a8 BOD 2.537 41.252 0.584 0.660 3.017 42.358 0.610 0.728

6 DO 0.777 13.457 0.543 0.624 1.051 19.652 0.560 0.694

MLP 4 8 BOD 3.326 54.081 0.538 0.617 3.065 43.032 0.589 0.695

11 DO 0.796 13.786 0.519 0.579 0.910 17.015 0.640 0.771

MLP-FFA 1 12 BOD 2.528 41.105 0.733 0.760 2.259 31.715 0.812 0.874
a13 DO 0.520 9.145 0.782 0.841 0.721 13.481 0.793 0.873

MLP-FFA 2 10 BOD 2.540 41.300 0.758 0.756 2.406 33.779 0.793 0.852

15 DO 0.676 11.708 0.758 0.799 0.748 13.986 0.810 0.860

MLP-FFA 3 a8 BOD 2.175 35.365 0.772 0.784 2.514 35.296 0.778 0.818

6 DO 3.371 10.461 0.759 0.721 1.027 19.203 0.780 0.762

MLP-FFA 4 8 BOD 0.702 39.869 0.723 0.728 2.452 34.425 0.767 0.837

11 DO 3.387 10.340 0.687 0.778 0.728 13.612 0.793 0.857

a The results in bold show the selected model
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Sensitivity analysis

To evaluate the effective input parameters, two criteria (r

and RMSE) are used to determine the most effective

variables on the output. Based on Tables 4 and 5, and the

obtained results, owing to relatively better performance,

second (8 input variables) and third (7 input variables)

combinations for BOD and second (8 input variables) and

first (9 input variables) combinations for DO were used for

sensitivity analyses in both stations. The analyses consisted

of the comparison of overall 9 and 8 networks for BOD and

9 and 10 networks for DO in stations 1L04 and 1L05,

respectively. Each one demonstrated to what extent the

eliminated parameter would affect the network accuracy.

Obviously, the precision of MLP would become higher

if all the suggested parameters were used as the input to the

model for the testing dataset. Next, the most influential

parameters were selected after determining the networks

with reduced accuracy (lower r and higher RMSE) after the

elimination of a parameter in testing stage compared to first

network (all input parameters). Taking above arguments

into consideration along with the results presented in

Tables 7 and 8, in both stations the BOD parameter is more

sensitive to Na, Cl and NH4-N, while DO parameter is

more sensitive to COD, pH and NH4-N in station 1L04, and

to K, pH and NH4-N in station 1L05.

Conclusion

In this paper, a multilayer perceptron (MLP) forecasting

model integrated with a firefly (FF) optimizer algorithm

(MLP-FFA) was used for forecasting a river water quality

‘‘i.e., BOD and DO.’’ The case study was Langat River

basin in Malaysia. By applying correlation coefficient to

water quality data, a set of four input combinations were

deemed suitable for prediction of BOD and DO.

Hence, a number of forecasting models were developed,

including the traditional MLP and integrated MLP-FFA

models over a 10-year duration (2001–2010) for 1L04 and

1L05 stations. The results were assessed with several sta-

tistical and visual criteria and showed the better efficiency

of MLP-FFA model in terms of the correlation coefficient

(r) between forecasted and observed water quality, root-

mean-square error (RMSE), % root-mean-square error

(%RMSE) and Willmott’s index of agreement (WI). It was

obvious that the MLP-FFA model with (8,9,1) and (8,6,1)
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Fig. 6 Comparative plots of observed and predicted monthly river water quality by MLP and MLP-FFA models for testing period 2008–2010 for

1L04 station: a, b BOD, c, d DO
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structure to predict BOD and DO in 1L04 station, respec-

tively, and (7,8,1) and (9,13,1) structure to predict BOD

and DO in 1L05 station, respectively, was more accurate

than the other counterparts, thus impressing upon the

importance of the firefly algorithm as an optimizer for

better accuracy of conventional models.

The results of this study suggest that the firefly optimizer

algorithm is a useful add-on tool for improving the fore-

casting accuracy of forecasting models applied for water

quality prediction. Also, this research gives credence to the

effectiveness of the hybrid model that is applicable to other

engineering problems where historical data can provide

features for developing a predictive model.

Despite the good performance of MLP-FFA model

attained in this study, it should be admitted that there are

limitations in this study that demand further research.

Presumably, it is speculated that further improvement in

the performance accuracy is possible by the inclusion of

more significant information in the learning process of the

predictive model. This study was limited to available data

at hand. Hence, for simulation purposes, it is very impor-

tant to include the other important variables, such as dis-

charge, temperature, T-Alk, T-Hard, NO3-N, and datasets

that may contain factors which may help to predict the

value of the BOD and DO. A future research work could

apply the model for short-term prediction of water quality

(e.g., daily or hourly parameters). Such a study is likely to

generate a thorough model for operational usage, but was

beyond the scope of this paper and thus awaits another

independent investigation.

Additionally, the reliability of the MLP model predic-

tion was calculated by an uncertainty estimation. Based on

the values in both stations for the 95PPU and d-factor

indices, it is concluded that the neural network model has

an acceptably low degree of uncertainty applied for BOD

and DO simulations. Besides, a comparison between the

presented results for uncertainty determination of MLP

model showed a lower degree of uncertainty in simulating

the BOD compared to the DO dataset as indicated by

smaller d-factor. In future work, the above-mentioned
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Fig. 7 Comparative plots of observed and predicted monthly river water quality by MLP and MLP-FFA models for testing period 2008–2010 for

1L05 station: a, b BOD, c, d DO

Table 6 Uncertainty indices of the MLP model for the testing stage

Station Statistic BOD DO

1L04 d-Factor 1.648 1.892

95PPU 77.7% 72.2%

1L05 d-Factor 2.269 3.480

95PPU 72.2% 91.6%
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restrictions can be obviated using other robust methods of

uncertainty analysis, which in turn improve results and

reduce uncertainty.

At the end, the effective input variables analyzed

through sensitivity analysis showed that in both stations,

the BOD parameter was more sensitive to the Na, Cl and

Table 7 Results of sensitivity

analysis of the MLP model with

regard to the simulation of BOD

in 1L04 and 1L05 stations

Station Model Combination Structure BOD

Training Testing

RMSE r RMSE r

1L04 1 All (8,9,1) 2.341 0.824 2.397 0.821

2 Eliminate COD (7,9,1) 3.217 0.636 3.263 0.429

3 Eliminate TS (7,9,1) 2.634 0.781 2.830 0.708

4 Eliminate K (7,9,1) 2.420 0.813 3.294 0.760

5 Eliminate Na (7,9,1) 2.307 0.831 3.341 0.747

6 Eliminate Cl (7,9,1) 2.298 0.832 3.335 0.747

7 Eliminate EC (7,9,1) 2.300 0.832 3.325 0.750

8 Eliminate pH (7,9,1) 2.570 0.784 2.403 0.815

9 Eliminate NH4-N (7,9,1) 2.516 0.795 3.374 0.741

1L05 1 All (7,8,1) 3.017 0.610 2.537 0.584

2 Eliminate COD (6,8,1) 3.300 0.438 2.619 0.376

3 Eliminate TS (6,8,1) 3.065 0.589 3.326 0.538

4 Eliminate K (6,8,1) 3.170 0.562 2.867 0.540

5 Eliminate Na (6,8,1) 2.881 0.647 3.430 0.471

6 Eliminate Cl (6,8,1) 2.842 0.662 3.327 0.442

7 Eliminate EC (6,8,1) 3.191 0.553 2.938 0.411

8 Eliminate NH4-N (6,8,1) 2.913 0.636 3.917 0.449

BOD and DO parameters are more sensitive to the bold values in comparison to other values

Table 8 Results of sensitivity

analysis of the MLP model with

regard to the simulation of DO

in 1L04 and 1L05 stations

Station Model Combination Structure DO

Training Testing

RMSE r RMSE r

1L04 1 All (8,6,1) 0.931 0.744 0.601 0.727

2 Eliminate COD (7,6,1) 0.890 0.768 0.794 0.613

3 Eliminate TS (7,6,1) 0.830 0.803 0.749 0.642

4 Eliminate K (7,6,1) 0.806 0.815 0.713 0.678

5 Eliminate Na (7,6,1) 0.804 0.817 0.658 0.718

6 Eliminate Cl (7,6,1) 0.860 0.786 0.743 0.593

7 Eliminate EC (7,6,1) 0.808 0.817 0.600 0.719

8 Eliminate pH (7,6,1) 0.984 0.707 0.748 0.550

9 Eliminate NH4-N (7,6,1) 0.879 0.775 0.799 0.596

1L05 1 All (9,13,1) 0.979 0.602 0.702 0.575

2 Eliminate COD (8,13,1) 0.907 0.655 0.660 0.613

3 Eliminate PO4 (8,13,1) 1.091 0.515 0.708 0.582

4 Eliminate TS (8,13,1) 1.009 0.553 0.715 0.509

5 Eliminate K (8,13,1) 0.977 0.573 0.765 0.308

6 Eliminate Na (8,13,1) 1.340 0.417 0.872 0.505

7 Eliminate Cl (8,13,1) 0.958 0.591 0.656 0.568

8 Eliminate EC (8,13,1) 1.175 0.437 0.580 0.515

9 Eliminate pH (8,13,1) 0.980 0.575 0.735 0.393

10 Eliminate NH4-N (8,13,1) 1.014 0.525 0.808 0.206

BOD and DO parameters are more sensitive to the bold values in comparison to other values
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NH4-N data, while the DO parameter was more sensitive to

the COD, pH and NH4-N data in station 1L04, and to the K,

pH and NH4-N data in station 1L05.
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from Yeşilirmak River, Turkey. Environ Model Softw

20(9):1195–1200

Long NC, Meesad P (2013) Meta-heuristic algorithms applied to the

optimization of type-1 and type-2 TSK fuzzy logic systems for

sea water level prediction. In: 2013 IEEE 6th international

workshop computational intelligence and applications IWCIA

2013—proceedings, pp 69–74. doi:10.1109/IWCIA.2013.

6624787

Łukasik S, _Zak S (2009) Firefly algorithm for continuous constrained

optimization tasks. Firefly Algorithm Contin Constrained Optim

Tasks 5796:97–106. doi:10.1007/978-3-642-04441-0_8

Maier HR, Dandy GC (2000) Neural networks for the prediction and

forecasting of water resources variables: a review of modelling

issues and applications. Environ Model Softw 15(1):101–124

Najah A, Elshafie A, Karim OA, Jaffar O (2009) Prediction of Johor

River water quality parameters using artificial neural networks.

Eur J Sci Res 28(3):422–435

Najah A, El-Shafie A, Karim OA, Jaafar O, El-Shafie AH (2011) An

application of different artificial intelligences techniques for

water quality prediction. Int J Phys Sci 6(22):5298–5308

Nascimento Z, Sadok D, Fernandes S (2013) Comparative study of a

hybrid model for network traffic identification and its optimiza-

tion using firefly algorithm. In: 2013 IEEE symposium on

computers and communications, pp 000862–000867. doi:10.

1109/ISCC.2013.6755057

Noori R, Hoshyaripour G, Ashrafi K, Araabi BN (2010) Uncertainty

analysis of developed ANN and ANFIS models in prediction of

carbon monoxide daily concentration. Atmos Environ

44(4):476–482

Noori R, Safavi S, Shahrokni SAN (2013a) A reduced-order adaptive

neuro-fuzzy inference system model as a software sensor for

rapid estimation of five-day biochemical oxygen demand.

J Hydrol 495:175–185

Noori R, Karbassi A, Ashrafi K, Ardestani M, Mehrdadi N (2013b)

Development and application of reduced-order neural network

model based on proper orthogonal decomposition for BOD5

monitoring: active and online prediction. Environ Prog Sustain

Energy 32(1):120–127

Noori R, Deng Z, Kiaghadi A, Kachoosangi FT (2015a) How reliable

are ANN, ANFIS, and SVM techniques for predicting longitu-

dinal dispersion coefficient in natural rivers? J Hydraul Eng

142(1):04015039

Noori R, Yeh HD, Abbasi M, Kachoosangi FT, Moazami S (2015b)

Uncertainty analysis of support vector machine for online

prediction of five-day biochemical oxygen demand. J Hydrol

527:833–843

Palani S, Liong SY, Tkalich P (2008) An ANN application for water

quality forecasting. Mar Pollut Bull 56(9):1586–1597. doi:10.

1016/j.marpolbul.2008.05.021

Quilty J, Adamowski J, Khalil B, Rathinasamy M (2016) Bootstrap

rank-ordered conditional mutual information (broCMI): a non-

linear input variable selection method for water resources

modeling. Water Resour Res 52:2299–2326. doi:10.1002/

2015WR016959

Salami E, Ehteshami M (2015) Simulation, evaluation and prediction

modeling of river water quality properties (case study: Ireland

Rivers). Int J Environ Sci Technol 12(10):3235–3242

Sarkar A, Pandey P (2015) River water quality modelling using

artificial neural network technique. Aquat Procedia 4:1070–1077

Sedki A, Ouazar D (2010) Hybrid particle swarm and neural network

approach for streamflow forecasting. Math Model Nat Phenom

5:132–138. doi:10.1051/mmnp/20105722

Sengorur B, Dogan E, Koklu R, Samandar A (2006) Dissolved

oxygen estimation using artificial neural network for water

quality control. Fres Environ Bull 15(9):1064–1067

Sin G, Gernaey KV, Neumann MB, van Loosdrecht MC, Gujer W

(2009) Uncertainty analysis in WWTP model applications: a

critical discussion using an example from design. Water Res

43(11):2894–2906

Singh KP, Basant A, Malik A, Jain G (2009) Artificial neural network

modeling of the river water quality—a case study. Ecol Model

220(6):888–895. doi:10.1016/j.ecolmodel.2009.01.004
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