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Abstract The main objective of this study is to investigate

potential application of frequency ratio (FR), weights of

evidence (WoE), and statistical index (SI) models for

landslide susceptibility mapping in a part of Mazandaran

Province, Iran. First, a landslide inventory map was con-

structed from various sources. The landslide inventory map

was then randomly divided in a ratio of 70/30 for training

and validation of the models, respectively. Second, 13

landslide conditioning factors including slope degree, slope

aspect, altitude, plan curvature, stream power index, topo-

graphic wetness index, sediment transport index, topo-

graphic roughness index, lithology, distance from streams,

faults, roads, and land use type were prepared, and the

relationships between these factors and the landslide

inventory map were extracted by using the mentioned

models. Subsequently, the multi-class weighted factors were

used to generate landslide susceptibility maps. Finally, the

susceptibility maps were verified and compared using sev-

eral methods including receiver operating characteristic

curve with the areas under the curve (AUC), landslide

density, and spatially agreed area analyses. The success rate

curve showed that the AUC for FR, WoE, and SI models

was 81.51, 79.43, and 81.27, respectively. The prediction

rate curve demonstrated that the AUC achieved by the three

models was 80.44, 77.94, and 79.55, respectively. Although

the sensitivity analysis using the FR model revealed that the

modeling process was sensitive to input factors, the accuracy

results suggest that the three models used in this study can

be effective approaches for landslide susceptibility mapping

in Mazandaran Province, and the resultant susceptibility

maps are trustworthy for hazard mitigation strategies.

Keywords Susceptibility modeling � Geographic
information systems (GISs) � Bivariate statistics �
Mazandaran Province

Introduction

The world’s development infrastructure is at risk from

landslides and their consequences in many areas across the

globe. There is evidence that landslide disaster risk is

increasing in developing countries (Anderson andHolcombe

2013). With rapid urbanization, the growth of densely pop-

ulated communities in mountainous and hazardous locations

is continuing and this leads to the instability of slopes and

thus increases the potential for landslides. Therefore,

developing landslide susceptibilitymaps, risk analyzing, and

adopting suitable land use policies for different environ-

mental settings are urgently needed.

Landslides occur due to complex and relate to various

factors such as geology, topography, hydrogeological

conditions, vegetation, rainstorm, and human activities

(Cruden 1991; Montgomery and Dietrich 1994; Wu and

Sidle 1995; Guzzetti et al. 1999; Gorsevski et al. 2006;

Ardizzone et al. 2007).

A wide variety of methods and techniques have been

proposed and applied for landslide susceptibility mapping
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(LSM). The most common approaches proposed in the

literature are frequency ratio (FR), statistical index (SI),

weights of evidence (WoE), logistic regression, multivari-

ate regression, discriminant analysis, index of entropy,

spatial multi-criteria evaluation, analytical hierarchy pro-

cess, evidential belief function, decision tree, artificial

neural network, fuzzy logic, neuro-fuzzy, and support

vector machines (Gorsevski et al. 2003, 2005; Nefeslioglu

et al. 2008; Gorsevski and Jankowski 2010; Pourghasemi

et al. 2012, 2013; Ozdemir and Altural 2013; Pradhan

2013; Jebur et al. 2014; Jaafari et al. 2014, 2015a, 2017a;

Pham et al. 2016, 2017).

Each method differs in terms of input process, calcula-

tions, output process, and predictive reliability. Although

many comparative studies that have been carried out on

predictive ability of different methods (e.g., Pradhan 2013;

Pourghasemi et al. 2013; Jebur et al. 2014; Hong et al.

2015; Pham et al. 2016), decision makers and engineers

involved in slope management and land use planning still

need to select the best method for different environmental

settings. Among the commonly used geographic informa-

tion system (GIS)-based models for susceptibility model-

ing, FR, SI, and WoE have been widely investigated in the

literature (e.g., Mohammady et al. 2012; Pourghasemi et al.

2013; Ozdemir and Altural 2013; Regmi et al. 2014; Jaafari

et al. 2014; Youssef et al. 2016). While, in these models,

input process and calculations are very straightforward and

can easily be implemented within a GIS environment

(Mohammady et al. 2012; Jaafari et al. 2014), their results

prove high level of accuracy for prediction of future

landslides that give rise to appealing qualitative and

quantitative maps for the landslide-prone areas (Moham-

mady et al. 2012; Youssef et al. 2016). These advantages

have motivated us to use these three models to assess

landslide susceptibility for a part of Mazandaran Province

of northern Iran. Our study aims to compare the predictive

ability of FR, WoE, and SI methods for LSM in the study

area. Since this is a prototype study performed in one of the

characteristic landslide susceptible regions of northern

Iran, the findings can be utilized for regions that show

similar geoenvironmental and landslide characteristics.

Study area

The study area is located about 80 km southwest of Sari

between 36�1104300N to 36�1801400N latitude and

51�1403700E to 52�5804900 E longitude in the Mazandaran

Province of northern Iran. It covers an area of about

270 km2 and encompasses farmlands, mountainous terrains

of forest, rangelands, and residential areas. The area rep-

resents a variable and rough topography, with slope gra-

dients between 0� (flat) and 62� and altitudes between 1173

and 3536 m. The climate in the study area is Mediterranean

with a mean annual precipitation of 800 mm that occurs in

the form of snow during the winter. The lithology of the

study area consists of several geologic units such as

dolomite, siltstone, sandstone, marl, and conglomerate

(Table 1). The soil texture consists of several types

including sand, loamy sand, sandy clay loam, sandy loam,

silty clay, silty loam, and silty sand, of which sandy clay

loam occupies about 78% of the total area. In this area,

deforestation and inappropriate land use practices con-

tribute to natural disasters such as flooding, soil erosion,

and landslides in the past several years. The most important

fault in this area is the Alborz Fault that is a reverse fault

and follows the west–east orientation (Jaafari et al. 2017a).

Some reports suggest that this fault is the main source of

most earthquakes and landslides that occur in the Mazan-

daran Province (Darvishzadeh 2004; Jaafari et al. 2017a).

Database construction

Our database for LSM involves an inventory map of

landslides occurred within the study area and a set of

landslide conditioning factors. The inventory map of

existing landslides of the study area was compiled using

Table 1 Lithology of the study area

Geological

age

Code Formation Lithology

Cretaceous Ku2 – Limestone, sandy limestone, sandstone

Jurassic Js Shemshak Sandstone, shale, and conglomerate

Jl Lar Dolomite, dolomitic limestone, chert nodules

Triassic TRe
1 Elika Pale red, thin-bedded to thick-bedded calcareous silty shale, argillaceous limestone, sandy limestone,

limestone, and quartzarentic

TRe
2 Elika Pale gray to pale yellow, thick-bedded cherty dolomite

TRb Elika Thick-bedded massive dolomites and dolomitic limestone

Permian Pr Ruteh Fusulina limestone, dolomitic limestone, with chert in the upper part

Quaternary Qs – Scree, locally may include undivided alluvial deposits

499 Page 2 of 16 Environ Earth Sci (2017) 76:499

123



aerial photography interpretation and extensive field sur-

veys. In total, 105 landslides were mapped as georefer-

enced points (Fig. 1). The detected landslides were then

divided into two subsets: The training dataset that con-

tained 70% of the landslide inventory (74 landslides) was

used in the training phase of landslide models, and the

validation dataset with 30% of the data (31 landslides) was

used for the validation purpose (Pourghasemi et al. 2013;

Hong et al. 2015; Jaafari et al. 2015a).

Given the multiplicity of the landslide conditioning

factors, they are usually selected based on the landslide

types, the failure mechanisms, the map scale of analysis,

and the characteristics of the study area and data avail-

ability (Glade and Crozier 2005). A total number of 13

landslide conditioning factors were considered to be used

in this study. They are slope degree, slope aspect, altitude,

plan curvature, stream power index (SPI), topographic

wetness index (TWI), sediment transport index (STI),

topographic roughness index (TRI), lithology, distance

from streams, faults, roads, and land use type (Figs. 2, 3, 4,

5; Table 1). The significance of these factors on landslide

occurrence has explicitly been acknowledged by other

authors (e.g., Dai et al. 2001; van Westen et al. 2008;

Yalcin et al. 2011; Guillard and Zezere 2012; Mohammady

et al. 2012; Kayastha et al. 2012; Ozdemir and Altural

2013; Pourghasemi et al. 2013; Jebur et al. 2014; Jaafari

et al. 2014, 2015a; Pham et al. 2017). Slope degree, slope

aspect, altitude, and TRI were selected to represent the

effect of topographic factors on slope stability analysis.

Topographic factors generally control several characteris-

tics (e.g., topographic heterogeneity, land use/cover, shear

forces, amount of rainfall, terrain humidity, and erosion–

weathering processes) of the landscape that may modulate

occurrence of landslides (Guzzetti et al. 1999). Plan cur-

vature and water-related factors (i.e., SPI, STI, and TWI)

were chosen due to their influence on hydrogeological

conditions that, in turn, exert effect on the surface runoff

and infiltration. We also used lithology and distance from

faults factors to represent the influence of geomorpholog-

ical processes and tectonic factors on the occurrence of

landslides (Jaafari et al. 2015a; Pham et al. 2017). Since the

under-cutting actions and erosion process of streams can

Fig. 1 Location and landslide inventory map of the study area
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trigger landslides (Xu et al. 2012; Jaafari et al. 2015a), the

distance from streams was also included to our analysis.

Types of land use/cover, which reflect the human activities

on the landscape, can significantly affect the susceptibility

of a given landscape (Catani et al. 2013). Road develop-

ment, especially in mountainous regions, is usually the

main cause of erosion and slope failure (Nefeslioglu et al.

2008; Jaafari et al. 2015a, b). Thus, distance from roads is a

commonly used conditioning factor in landslide suscepti-

bility modeling (e.g., Pourghasemi et al. 2013; Hong et al.

2015; Pourghasemi and Kerle 2016; Pham et al. 2016).

A digital elevation model (DEM) with 20 9 20 m grid

size (Projection: UTM 39N; Datum: WGS1984) and the

data prepared by Geological Survey of Iran were used as

the main input data to generate the aforementioned con-

ditioning factors (Table 2). All the calculations and data

processing were hosted in ArcGIS 9.3 and SAGA GIS

2.1.4. The map of all of the conditioning factors was

generated and converted into raster format with the size of

20 9 20 m (Kayastha et al. 2012; Ozdemir and Altural

2013; Jaafari et al. 2014, 2015a, b; Pham et al. 2017). To

implement the FR, WoE, and SI models, the conditioning

factors were classified into different classes. The different

classes were selected based on previous landslide studies

(e.g., Pourghasemi et al. 2013; Jaafari et al. 2014) that were

further informed by our surveys and observations in the

study area.

Multi-collinearity analysis of landslide conditioning

factor

In the final step of preparing a spatial database for landslide

modeling, we examined whether any of the selected con-

ditioning factors exhibited multi-collinearity. Tolerance

and variance inflation factors (VIF) (Hair et al. 2006) are

the most common metrics to check for multi-collinearity

among factors (e.g., Hong et al. 2015; Jaafari et al. 2017b)

that a violation of their critical values (VIF[ 5 and tol-

erance \0.2) indicates a potential problem with multi-

collinearity (Hair et al. 2006). In our study, the computa-

tion of these metrics showed that no significant multi-

collinearity existed among the conditioning factors

(Table 3) and therefore all factors can be used in the

modeling process.

Methodology

Frequency ratio model

As a bivariate statistical technique, FR model is a robust

geospatial assessment tool for computing the probabilistic

relationship between dependent and independent variables

(Oh et al. 2011). For the purpose of LSM, FR considers

the impact of each conditioning factor on landsliding and

assigns the weights very precisely (Lee and Pradhan

2007). If the weight be more than 1, it means a greater

correlation, whereas the weights less than 1 represent a

minor correlation (Lee and Min 2001). The calculation

process of FR model is very straightforward and can be

bFig. 2 Topographic parameter maps of the study area; a slope

degree, b slope aspect, c altitude, d plan curvature, e stream power

index, f topographic wetness index, g sediment transport index,

h topographic roughness index

Fig. 3 Lithology map of the

study area
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Fig. 4 Distance factors; a distance from streams, b distance from faults, c distance from roads

Fig. 5 Land use types of the

study area
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readily realized as follows (Regmi et al. 2014; Jaafari

et al. 2014):

FR ¼ E=F

M=L
ð1Þ

where E is the number of pixels with landslide for each

conditioning factor; F, the number of total landslides in

study area; M, the number of pixels in the class area of the

conditioning factor; and L, the number of total pixels in the

study area.

Weights of evidence model

WoE model is a data-driven method based on the Bayesian

probability framework (Bonham-Carter et al. 1989). This

model is suitable for LSM because its uncertainty is con-

nected with landslide events and their associations with the

complex landscape (Chung and Fabbri 1998; Gorsevski

et al. 2003; Regmi et al. 2014; Jaafari et al. 2015a, b). This

model is based on the determination of positive (W?) and

negative weights (W-). The WoE calculates the weight for

each class of conditioning factors (B) based on the presence

or absence of the landslides (L) within the area as follows

(Bonham-Carter et al. 1989):

Wþ
i ¼ ln

P BjLf g
P Bj�Lf g ð2Þ

W�
i ¼ ln

P �BjLf g
P �Bj�Lf g ð3Þ

C ¼ Wþ þW� ð4Þ

SðCÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2ðwþÞ þ S2ðw�Þ
q

ð5Þ

S2ðwþÞ ¼ 1

N B \ Lf g þ
1

B \ �Lf g ð6Þ

S2ðw�Þ ¼ 1

N �B \ Lf g þ
1

�B \ �Lf g ð7Þ

W ¼ C

SðCÞ ð8Þ

where Wþ
i is positive weight; W�

i , negative weight; ln,

natural log; P, conditional probability; B, the presence of a

potential conditioning factor; �B, the absence of a potential

conditioning factor; L, the presence of a landslide; �L, the

absence of a landslide; C, weight contrast; S2 (w?) and S2

(w-), variances of positive and negative weights; W, stu-

dentized contrast (final weight); and S (C), the standard

deviation of the contrast.

Statistical index model

SI model is a bivariate statistical method proposed by van

Westen (1997) for the purpose of LSM. This method is

based on the following equation:

WSI ¼ ln
Fij

F

� �

¼ ln
Lij=LT
Pij=PL

 !

ð9Þ

whereWSI is the weight given to a certain class i of factor j;

Fij, landslide density within class i of factor j; F, total

landslide density within the entire map; Lij, number of

landslides in a certain class i of factor j; Pij, number of

pixels in a certain class i of factor j; LT, total number of

landslides in the entire map; and PL, total pixels of the

entire map.

A positive value of WSI demonstrates the existence of a

relationship between the presence of the factor class and

landslide distribution, the stronger the relationship the

higher the score. The WSI is negative when the presence of

Table 2 Data source for the landslide conditioning factors

Factor Source

DEM and its derived factors (slope

degree, slope aspect, altitude, plan

curvature, TRI, SPI, STI, and TWI)

ASTER Global DEM (http://

earthexplorer.usgs.gov)

Lithology Geological map at 1:100,000

scale (www.gsi.ir)

Distance from streams Stream network map

Distance from faults Geological map at 1:100,000

scale (www.gsi.ir)

Distance from roads Road network map

Land use type Landsat 7 ETM? images

(http://earthexplorer.usgs.

gov)

Table 3 Multi-collinearity analysis for the conditioning factors

Factor Collinearity statistics

Tolerance VIF

Slope degree 0.528 2.128

Slope aspect 0.719 3.153

Altitude 0.924 2.243

Plan curvature 0.869 2.111

SPI 0.799 1.712

TWI 0.87 2.259

STI 0.811 2.217

TRI 0.708 3.091

Lithology 0.907 2.736

Distance from streams 0.687 3.001

Distance from faults 0.794 2.241

Distance from roads 0.751 2.452

Land use type 0.716 1.984
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the factor class is not relevant in landslide development

(Pourghasemi et al. 2013).

The weights calculated using the three models were then

assigned to the classes of each conditioning factor to pro-

duce multi-class weighted maps for all factors, which were

overlaid and numerically added according to the following

equation in order to calculate the landslide susceptibility

index (LSI) maps (Jaafari et al. 2015a):

LSI ¼
X

13

i¼1

W ð10Þ

where W corresponds to the multi-class weighted condi-

tioning factors.

Performance validation and factor effect analysis

Validation is the most important step in a modeling effort,

and without validation the model results lack scientific

significance (Chung and Fabbri 2003; Jaafari et al.

2017b). The receiver operating characteristics (ROC)

curves with the area under curve (AUC) approach are

widely used criteria for evaluating the performance of the

prediction models (Pourghasemi et al. 2013; Jebur et al.

2014; Jaafari et al. 2015a, b, 2017a, b; Hong et al. 2015;

Pham et al. 2016; Nami et al. 2017). ROC curve is a

binary classification metric created by plotting the false-

positive rate and the true-positive rate for every possible

binary classification of a dataset (Zweig and Campbell

1993). The ideal ROC curve passes through the point of

(0, 1) with AUC = 1, indicating that there is no predic-

tion error. An acceptable AUC value for a ROC curve

should be higher than 0.5 (Yesilnacar 2005). Further, to

investigate the reliability of the produced maps, we used

landslide density and spatially agreed area analyses within

different classes of each susceptibility map. Landslide

density indicates the ratio of landslide pixels to the ratio

of total pixels (Pham et al. 2017). The spatially agreed

area, expressed in pixels, km2, and as percentage of the

total area, is calculated as the total area having the same

landslide susceptibility zonation on two susceptibility

maps (Bijukchhen et al. 2013; Kayastha et al. 2013).

These analyses can reveal spatial differences between the

maps and improve predictions in the agreed high sus-

ceptible zones.

In this research, we also performed an analysis of con-

ditioning factors effect to explore the effect of each factor

on the prediction results and to assess their uncertainties.

To this end, we first took the method that achieved the

highest ROC values and excluded each of the 13 factors in

turn during the summation stage of Eq. 10. We next cal-

culated the success and prediction rates for all cases and

compared these cases to the case in which all factors were

included (Jaafari et al. 2017b).

Finally, for visual interpretation of the LSI maps, the

data were classified into categorical susceptibility classes

by examining different classifications methods, including

quantile, natural breaks, standard deviation, equal interval,

and geometrical interval (Ayalew and Yamagishi 2005).

The comparison results indicated that the quantile method

was able to produce better results than the other methods.

Therefore, this method was chosen and the landslide sus-

ceptibility index maps were classified into four suscepti-

bility classes that represent low, moderate, high, and very

high susceptibility to landslide occurrence across the study

area.

Results and discussion

Application of frequency ratio model

Table 4 shows the results of spatial relationship between

landslide locations and landslide conditioning factors using

the FR model. From this table, it is seen that a slope angle

slope [35� has a higher FR value of 3.67, followed by

30–35� (1.17), whereas other slope classes have a very low

value of FR. Given the lower shear stresses associated with

low gradients areas, gentle slopes were frequently reported

to have lower weight values of FR (Yalcin et al. 2011;

Mohammady et al. 2012; Jaafari et al. 2014; Youssef et al.

2016). For slope aspect, the value of FR is higher for the

areas facing the northwest, east, west, and southeast. The

study conducted by Jaafari et al. (2014) in other regions of

northern Iran supports the significance of these directions

of slope angle on landslide occurrence. The relationship

between altitude and landslide probability shows that the

class of 0–1500 m has highest FR value (1.99), indicating

higher landslide susceptibility at this range of elevation.

This finding agrees with the field surveys since the land-

slides were commonly observed on low-elevation ranges

of the study area. In the case of plan curvature, convex and

concave areas have higher FR, with values of 1.59 and

1.37, respectively, whereas the flat class has the lowest FR

value (0.56). Generally, the slope instability in the cur-

vature areas is related to the high level of soil moisture. As

the moisture content of the soil increases, soil stability

generally decreases (Jaafari et al. 2014). According to the

results of the FR model obtained for SPI, the highest FR

value is related to the class of\200 (1.01). Similarly, for

TWI, the areas with lowest value of TWI have higher FR

values (1.44). In the case of the STI, landslide suscepti-

bility is higher in areas where the STI is[15. In the case

of TRI, the class of[12 shows the highest landslide sus-

ceptibility with a FR values of 5.44. Since the lithological
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Table 4 Spatial relationship between each landslide conditioning factor and landslides extracted by using FR, WoE, and SI models

Factor Class Number of pixels

in domain

Number of

landslides

FR SI C S2

(w?)

S2

(w-)

S (C) W

Slope degree 0–15 157,373 6 0.36 -1.029 -1.201 0.167 0.015 0.426 -2.821

15–20 106,389 1 0.09 -2.429 -2.582 1.000 0.014 1.007 -2.564

20–25 115,404 5 0.41 -0.901 -1.013 0.200 0.014 0.463 -2.187

25–30 106,678 4 0.35 -1.045 -1.157 0.250 0.014 0.514 -2.250

30–35 87,897 11 1.17 0.000 0.185 0.091 0.016 0.327 0.567

[35 120,099 47 3.67 0.000 2.119 0.021 0.037 0.242 8.772

Slope aspect F 232 0 0.00 None None None 0.014 None None

N 88,623 9 0.95 -0.049 -0.056 0.111 0.015 0.356 -0.157

NE 94,104 6 0.60 -0.514 -0.576 0.167 0.015 0.426 -1.352

E 72,051 14 1.82 0.600 0.700 0.071 0.017 0.297 2.358

SE 103,913 15 1.35 0.303 0.367 0.067 0.017 0.289 1.269

S 112,382 2 0.17 -1.791 -1.940 0.500 0.014 0.717 -2.706

SW 101,042 3 0.28 -1.279 -1.395 0.333 0.014 0.589 -2.366

W 59,714 10 1.57 0.451 0.506 0.100 0.016 0.340 1.489

NW 61,779 15 2.28 0.823 0.956 0.067 0.017 0.289 3.306

Altitude (m) \1500 28,209 6 1.99 0.690 0.733 0.167 0.015 0.426 1.722

1500–2000 153,463 28 1.71 0.537 0.762 0.036 0.022 0.240 3.181

2000–2500 221,252 31 1.31 0.273 0.432 0.032 0.023 0.236 1.832

2500–3000 207,018 8 0.362 -1.015 -1.255 0.125 0.015 0.374 -3.353

[3000 83,898 1 0.112 0.000 -2.307 1.000 0.014 1.007 -2.291

Plan curvature

(100.m)

Concave 130,212 19 1.37 0.313 0.402 0.053 0.018 0.266 1.512

Flat 368,910 22 0.56 -0.581 -0.987 0.045 0.019 0.254 -3.882

Convex 194,718 33 1.59 0.463 0.724 0.030 0.024 0.234 3.097

SPI \200 685,024 74 1.01 0.013 3.374 0.014 0.007 0.144 23.414

200–400 7751 0 0.00 None None None 0.005 None None

[400 1065 0 0.00 None None None 0.005 None None

TWI \6 339,110 52 1.44 0.363 0.905 0.019 0.045 0.254 3.559

6–12 340,155 21 0.58 -0.547 -0.887 0.048 0.019 0.258 -3.439

12–18 12,891 1 0.73 -0.318 -0.324 1.000 0.014 1.007 -0.321

[18 1684 0 0.00 None None None 0.014 None None

STI \5 158,814 4 0.24 -1.444 -1.647 0.250 0.014 0.514 -3.203

5–10 257,423 11 0.40 -0.915 -1.217 0.091 0.016 0.327 -3.723

10–15 198,621 35 1.65 0.502 0.806 0.029 0.026 0.233 3.460

[15 78,982 24 2.85 1.047 1.319 0.042 0.020 0.248 5.310

TRI \4 171,699 5 0.27 -1.298 -1.513 0.200 0.014 0.463 -3.266

4–8 301,998 11 0.34 -1.074 -1.485 0.091 0.016 0.327 -4.544

8–12 166,760 27 1.52 0.417 0.597 0.037 0.021 0.241 2.470

[12 53,383 31 5.44 1.695 2.158 0.032 0.023 0.236 9.157

Lithology TRe
2 127,963 42 3.08 1.124 1.759 0.024 0.031 0.235 7.495

TRe
1 2898 0 0.00 None None None 0.005 None None

Qs 85,063 0 0.00 None None None 0.005 None None

Pr 7 0 0.00 None None None 0.005 None None

TRb 3973 0 0.00 None None None 0.005 None None

Ku2 5223 0 0.00 None None None 0.005 None None

Js 468,700 32 0.64 -1.005 0.031 0.024 0.235 -4.284 -1.005

Jl 13 0 0.00 None None None 0.005 None None
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units of TRe
2 and Js represent 18.44 and 67.55% of our

study area, the highest FR values were found to be related

to these units. In case of distance from streams, the

landslide occurrence probability is higher in areas where

the distance is 100–200 m, whereas the probability

decreases at a distance of more than 300 m from a stream.

For distance from faults, the distances of 0–200 and

400–600 m show higher correlation with the landslides.

The relationship between the road networks of the study

area, and landslide probability shows that the class of

1000–1500 m has highest FR value, followed by the class

of 500–1000 m. Regarding the land use type, the FR value

was higher for the forested areas (2.02). In our study area,

forests are mainly scattered on steep terrains and unsta-

ble slopes. These results in line with results reported by

Jaafari et al. (2014, 2015a, b) provide a counterexample

for the widely held notion that vegetation coverage always

contributes to decreasing landslides and increasing general

slope stability. Huge hardwood trees in northern forests of

Iran and our study area exposed to wind may transmit the

forces into the slope and cause landslide. Weight of such

trees surcharges the slope, increasing normal and downhill

force components, and may cause failure during the

monsoon (Ghimire 2011; Jaafari et al. 2014). The final

result of FR model was a LSI map, in which the LSI

values vary from 5.122 to 29.6.

Application of weights of evidence model

The WoE model was used to explore the spatial association

between the conditioning factors and landslide distribution

(Table 2). The studentized value of C and the value of

W serve as a guide to the significance of spatial association

and act as a measure of relative certainty of the posterior

probability (Bonham-Carter et al. 1989). Given that higher

values of W indicate a higher level of significance for a

specific factor class (Kayastha et al. 2012; Jaafari et al.

2015a), from Table 4 it can be seen that this value is

highest for slope degree[35, indicating a significant pos-

itive correlation with the landslides. Further, the results

revealed that slope degrees of 0–30 were negatively cor-

related with the landslides, which can further be interpreted

to mean that this range of slope degree has disfavored the

occurrence of landslides events across our study area. In

the case of slope aspect, most of the landslides occurred in

northwest (W = 3.306) and east (W = 2.358) facings.

North, northeast, south, and southwest aspects were nega-

tively correlated with the landslides, which have disfavored

the occurrence of landslides. For altitude, most of the

landslides occurred in 1500–2000 m class with W value of

3.181. The negative values of W for the altitude[2500 m

revealed that this range of altitude disfavored the occur-

rence of landslides in our study area. In the case of plan

Table 4 continued

Factor Class Number of pixels

in domain

Number of

landslides

FR SI C S2

(w?)

S2

(w-)

S (C) W

Distance from

streams (m)

0–100 173,583 20 1.08 0.104 0.050 0.019 0.262 0.399 0.104

100–200 133,385 24 1.69 0.702 0.042 0.020 0.248 2.825 0.702

200–300 109,237 14 1.20 0.222 0.071 0.017 0.297 0.748 0.222

300–400 87,522 5 0.54 -0.689 0.200 0.014 0.463 -1.488 -0.689

[400 190,113 11 0.54 -0.771 0.091 0.016 0.327 -2.359 -0.771

Distance from

faults (m)

0–200 98,731 12 1.14 0.154 0.083 0.016 0.315 0.489 0.154

200–400 97,920 5 0.48 -0.819 0.200 0.014 0.463 -1.768 -0.819

400–600 90,185 11 1.14 0.156 0.091 0.016 0.327 0.477 0.156

600–800 77,959 9 1.08 0.090 0.111 0.015 0.356 0.252 0.090

[800 329,045 37 1.05 0.103 0.027 0.027 0.233 0.444 0.103

Distance from

roads (m)

0–500 195,954 17 0.81 -0.277 0.059 0.018 0.276 -1.004 -0.277

500–1000 131,438 20 1.43 0.460 0.050 0.019 0.262 1.759 0.460

1000–1500 106,328 19 1.68 0.647 0.053 0.018 0.266 2.429 0.647

1500–2000 80,810 6 0.70 -0.401 0.167 0.015 0.426 -0.943 -0.401

2000–2500 61,273 1 0.15 -1.956 1.000 0.014 1.007 -1.943 -1.956

[2500 118,037 11 0.87 -0.160 0.091 0.016 0.327 -0.491 -0.160

Land use type Residential 8245 0 0.00 None None None 0.014 None None

Farmland 178,816 19 0.47 -0.761 -0.005 0.053 0.018 0.266 -0.019

Forest 125,418 27 2.02 0.702 0.957 0.037 0.021 0.242 3.963

Rangeland 381,361 28 1.47 0.384 -0.696 0.036 0.022 0.240 -2.902
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curvature, convex class has W value of 3.097. So, most of

the landslides occurred in this class. In the case of the SPI,

the W is highest (23.414) for \200 class. The relation

between TWI and landslide probability showed that \6

class has highest value ofW (3.559). For STI, the class[15

has most W value (3.460). In the case of TRI, the W is

highest in [12 class (9.157) and lowest in \4 class

(-3.266). In the case of lithology, the W is highest in TRe
2

unit (7.495) since 42 cases out of 74 landslides used in

training dataset were captured by this unit. In the case of

distance from streams, higher W values of 0.702 and 0.222

were found for distances between 100–200 and

200–300 m, respectively. Assessment of distance from

faults showed that distance of 400–600 m is more suit-

able for landslide occurrence with W value of 0.156.

Investigation of distance from roads showed that distances

of 1000–1500 have highest correlation with landslide

occurrence. In the case of land use type, higher W value

was seen for forest areas (3.963). The final result of WoE

model was a LSI map, in which the LSI values vary from

70.2403 to 260.709.

Application of statistical index model

Similarly, LSI was calculated using SI model. The land-

slide distribution for each class of landslide conditioning

factors was used to calculate the SI values (Table 2). As

mentioned earlier, the larger the value, the stronger the

relationship between landslide occurrence and the given

factor’s class. The final result of SI model was a LSI map,

in which the LSI values vary from -13.6014 to 7.93953

(Table 5).

Landslide susceptibility maps

Landslide susceptibility levels across the study area that

ranged from low to very high are shown in Figs. 6, 7, and

8. In these three maps, high and very high susceptibility

Table 5 AUC values for the landslide index maps produced by using

FR model

Excluded factor AUC (%)

Success rate Prediction rate

Slope degree 78.21 77.82

Slope aspect 82.08 80.77

Altitude 80.83 80.06

Plan curvature 82.02 80.83

SPI 81.42 81.08

TWI 78.93 78.02

STI 79.51 78.73

TRI 78.21 76.96

Lithology 80.88 80.6

Distance from streams 83.06 81.91

Distance from faults 83.76 82.17

Distance from roads 81.35 80.18

Land use type 79.37 78.14

All factors used 81.51 80.44

The highest values are shown in bold

Fig. 6 Landslide susceptibility

map produced by frequency

ratio model
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classes cover the northern and southwestern parts of the

study area, whereas low and moderate susceptibility classes

cover central parts. Further, the results showed that the

high and very high susceptibility classes cover approxi-

mately 50% of the study area (Fig. 9). To investigate the

reliability of the produced maps, we used landslide density

analysis and spatially agreed area approach. The results

showed that the value of landslide density varied among

the classes and ranged from 0.04 to 2.88 (Table 6). In each

map, the highest value is for very high susceptibility class

which is followed by high class, moderate class, and low

class, respectively.

The results of the spatially agreed area revealed that the

landslide susceptibility map produced using the FR method

has 79.15 and 70.80% agreed area with the maps produced

by the WoE and SI methods, respectively (Table 7),

Fig. 7 Landslide susceptibility

map produced by weights of

evidence model

Fig. 8 Landslide susceptibility

map produced by statistical

index model
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whereas the WoE and SI susceptibility maps have 76.56%

the same content. These results indicate an average 24.5%

mismatch in these three maps that require the planner to

pay special attention for the construction works using these

maps.

Validation and factor importance

The ability of FR, WoE, and SI model in LSM was

examined using the ROC-AUC method with success and

prediction rate curves. The success rate was produced by

comparing the three susceptibility maps with the training

dataset (Fig. 10). The result demonstrated that FR had the

highest success rate value of 81.51%. It was followed by SI

(81.27%) and WoE (79.43%). Although the success rate

shows how well a model could fit to the training dataset,

the prediction ability of the model cannot be measured by

success rate because it is measured by landslides that have

already been utilized for building the model (Bui et al.

2012). In this context, the prediction rate can be used to

evaluate the prediction ability of the model. The prediction

rates were measured by comparing the landslide suscepti-

bility maps with the testing dataset (Fig. 11). They explain

how well the models and conditioning factors predict the

landslide. The prediction rate curves showed that the pre-

diction ability of the models is highest for FR (80.44%),

followed by SI (79.55%) and WoE (77.94%).

From these results, it is seen that the models employed

in this study showed reasonably good accuracy in pre-

dicting the landslide susceptibility of the study area. The

map produced by FR model exhibited the best result for the

purpose of LSM in the study area. When the results of this

study are compared with those of reported by other authors

it can be stated that the prediction ability of the models are

within a similar range. For instance, Mohammady et al.

(2012) indicated that the FR model has a success rate of

80.13% and a prediction rate of 75.16%, whereas the WoE

model has a success rate of 74.6% and a prediction rate of

69.98%. Regmi et al. (2014) achieved success rates of 76.8,

75.6, and 75.5%, and prediction rates of 75.4, 74.9, and

74.6%, for FR, WoE, and SI, respectively. In a recent

paper, Youssef et al. (2016) reported that the FR model has

a success rate of 81.3% and a prediction rate of 95%,

whereas the WoE model has a success rate of 81.5% and a

prediction rate of 95.2%.

Given the highest predictive capability of the FR model

compared to the others, this model was used to perform the

sensitivity analysis (Table 5). The analysis showed that

some factors (i.e., distance from faults and streams, and

SPI) were possible source of bias as the AUC values

increased when they were omitted from the modeling

process. Similarly, excluding slope aspect, plan curvature,

and lithology slightly improved the prediction rate

Fig. 9 Landslide susceptibility classes delimited by the five ANFIS

models

Table 6 Landslide density within the landslide susceptibility maps

Map Susceptibility

class

Number of pixels

in class

Number of landslides

in class

% of pixels

in class

% of landslides

in class

Landslides

density

FR Low 161,697 1 23.43 0.95 0.04

Moderate 182,678 7 26.47 6.67 0.25

High 176,766 25 25.61 23.81 0.93

Very high 169,106 72 24.50 68.57 2.80

WoE Low 168,952 4 24.48 3.81 0.16

Moderate 175,095 4 25.37 3.81 0.15

High 178,199 25 25.82 23.81 0.92

Very high 168,001 72 24.34 68.57 2.82

SI Low 170,239 2 24.66 1.90 0.08

Moderate 177,020 7 25.65 6.67 0.26

High 173,881 22 25.19 20.95 0.83

Very high 169,107 74 24.50 70.48 2.88
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compared to the full FR model. Conversely, the exclusion

of slope degree, TWI, STI, TRI, and land use type

decreased the AUC values, presumably because they have

the most information that was not present in the other

factors.

Although we performed a multi-collinearity analysis

before model building, the results of the sensitivity

analysis revealed that a single multi-collinearity analysis

may fail to fully protect a landslide modeling process

from including slightly useful conditioning factors.

Therefore, an integrated framework of model building

and sensitivity analysis is desirable to identify those

landslide conditioning factors that either introduce null

usefulness to the model performance or decrease the

reliability of the produced susceptibility maps (Jaafari

et al. 2017a).

Table 7 Agreed area between FR method, and WoE and SI methods

Susceptibility zones

based on the FR method

Susceptibility zones based

on the WoE and SI methods

WoE method SI method

Pixel Percentage Area (km2) Pixel Percentage Area (km2)

Low Low 3,018,536 89.53 3018.54 2,857,734 95.42 2857.73

Moderate 352,986 10.47 352.99 132,455 4.43 132.45

High 0 0 0 4289 0.14 4.29

Very high 0 0 0 340 0.01 0.34

Moderate Low 96,511 7.89 96.511 507,944 37.24 507.94

Moderate 873,828 71.48 873.83 744,403 54.55 744.403

High 251,610 20.58 251.61 85,560 6.22 58.560

Very high 657 0.05 657 25,897 1.99 25.89

High Low 3112 0.64 3.112 5844 0.71 5.84

Moderate 66,327 13.6 66.33 339,315 41.47 339.31

High 293,270 60.12 293.27 298,826 36.52 298.83

Very high 125,050 25.64 125.05 174,196 21.30 174.20

Very high Low 0 0 0 0 0 0

Moderate 17,819 0.54 17.82 6433 0.19 6.43

High 131,862 3.97 131.86 99,084 3.08 99.08

Very high 3,171,132 95.49 3171.13 3,120,380 96.73 3120.38

Average agreed area 1,839,166 79.15 1839.2 1,755,336 70.80 1755.33

Fig. 10 Success rate curves for the susceptibility maps produced in

this study

Fig. 11 Prediction rate curves for the susceptibility maps produced in

this study
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Conclusion

The field of LSM is one of the most popular areas of

research. Various methods have been examined for this

field of research by numerous researchers. In this study we

applied widely accepted models, i.e., FR, WoE, and SI, for

the purpose of production of a reliable map of landslide

susceptibility. Using these models with the integration of a

GIS provides a relatively flexible and easy-to-use frame-

work to spatial prediction of landslides.

The validation results showed that the susceptibility map

produced by the FR model has the highest prediction

accuracy (80.44%), followed by the SI model (79.55%) and

the WoE model (77.94%). Success rate curve also gives

similar result, with FR model the highest AUC value

(81.51%), followed by the SI model (81.27%) and the WoE

model (79.43%). Further, the sensitivity analysis using the

FR model revealed that the modeling process was sensitive

to input conditioning factors as the exclusion of each of

these factors changed the model performance. Overall, this

comparative study showed that three models used have

performed reasonably well in predicting the landslide

susceptibility. These results can indeed greatly help plan-

ners and policy makers to adopt appropriate land use

planning policies to guide the future developments of

infrastructures in the area.
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