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Abstract Evidence for climate change impacts on the hydro-

climatology of Japan is plentiful. The objective of the present

study was to evaluate the impacts of possible future climate

change scenarios on the hydro-climatology of the upper Ish-

ikari River basin, Hokkaido, Japan. The Soil and Water

Assessment Tool was set up, calibrated, and validated for the

hydrological modeling of the study area. The Statistical

DownScaling Model version 4.2 was used to downscale the

large-scale Hadley Centre Climate Model 3 Global Circula-

tion Model A2 and B2 scenarios data into finer scale resolu-

tion. After model calibration and testing of the downscaling

procedure, the SDSM-downscaled climate outputs were used

as an input to run the calibrated SWAT model for the three

future periods: 2030s (2020–2039), 2060s (2050–2069), and

2090s (2080–2099). The period 1981–2000 was taken as the

baseline period against which comparison was made. Results

showed that the average annual maximum temperature might

increase by 1.80 and 2.01, 3.41 and 3.12, and 5.69 and

3.76 �C, the average annual minimum temperature might

increase by 1.41 and 1.49, 2.60 and 2.34, and 4.20 and

2.93 �C, and the average annual precipitation might decrease

by 5.78 and 8.08, 10.18 and 12.89, and 17.92 and 11.23% in

2030s, 2060s, and 2090s for A2a and B2a emission scenarios,

respectively. The annual mean streamflow may increase for

the all three future periods except the 2090s under the A2a

scenario. Among them, the largest increase is possibly

observed in the 2030s for A2a scenario, up to approximately

7.56%. Uncertainties were found within the GCM, the

downscalingmethod, and the hydrologicalmodel itself,which

were probably enlarged because only one single GCM

(HaDCM3) was used in this study.

Keywords Climate change � Hydro-climatology � SWAT

model � SDSM � HadCM3

Introduction

The ongoing climate change has significantly affected the

spatial and temporal distribution of water resources as well as

the intensities and frequencies of extreme hydrological events

(Coumou and Rahmstorf 2012). For example, distributions of

precipitation in space and time are very uneven, leading to

tremendous temporal variability inwater resourcesworldwide

(Oki and Kanae 2006). Increases in precipitation in the

Northern Hemisphere midlatitudes, drying in the Northern

Hemisphere subtropics and tropics, and moistening in the

Southern Hemisphere subtropics and deep tropics were found

(Zhanget al. 2007).The rate of evaporation,whichdepends on

factors such as cloudiness, air temperature, and wind speed,

varies a great deal, significantly affecting the amount of water
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available to replenish groundwater supplies. The combination

of shorter duration but more intense rainfall (meaning more

runoff and less infiltration) combined with increased evapo-

transpiration (the sum of evaporation and plant transpiration

from the earth’s land surface to atmosphere) and increased

irrigation is expected to lead to groundwater depletion

(Konikow and Kendy 2005; Wada et al. 2010). It is therefore

necessary to explore andunderstand the hydrological response

of watersheds to climate change for improving the water

resource planning and management.

In recent years, outputs (e.g., precipitation, temperature,

humidity, and mean sea level pressure) at a global scale

from general climate models (GCMs) are popularly

downscaled to local-scale hydrological variables to com-

pute and evaluate hydrological components for water

resources variability and risk of hydrological extremes in

the future (Taye et al. 2011; Tatsumi et al. 2013). Meenu

et al. (2013) evaluated the impacts of possible future cli-

mate change scenarios on the hydrology of the catchment

area of the Tungabhadra River, upstream of the Tungab-

hadra dam using the GCM HadCM3 outputs. Babel et al.

(2013) characterized potential hydrological impact of

future climate in the Bagmati River Basin, Nepal, and

found annual basin precipitation will increase under both

A2 and B2 scenarios. Based on outputs from six GCMs

(CNRM-CM3, GFDL-CM2.1, INM-CM3.0, IPSL-CM4,

MIROC3.2_M, and NCAR-PCM) under three emission

scenarios (A1B, A2, and B1), Li et al. (2012) indicated

extreme precipitation events will tend to occur in the

southeast and northwest regions, while extreme tempera-

ture events happen in the north and southeast regions on the

Loess Plateau of China during the twenty-first century.

Evidence for climate change impacts on the hydro-cli-

matology of Japan is plentiful (Solomon 2007). The Japan

MeteorologicalAgency (JMA) shows that annual average air

temperatures nationwide rose by a rate equivalent to 1.15 �C
per century between 1898 and 2010, which is considerably

higher than the global average temperature rise of 0.74 �C
over the last century (according to the Intergovernmental

Panel on Climate Change’s ‘‘Climate Change 2007: Syn-

thesis Report Summary for Policymakers’’); moreover,

although no clear trends have been observed, the annual

precipitation in Japan varies largely from year to year. All

these changes in precipitation and temperature have greatly

influenced water supply in Japan. For instance, concerning

precipitation, years of low rainfall have become frequent

since around 1970, and the amount of precipitationwasmuch

below average in 1973, 1978, 1984, 1994, and 1996, when

water shortages caused damage. It tremendously affected

drinking water supply because approximately 78% of it

(actual record in the fiscal year 2004) is taken from rivers,

lakes, marshes, and so forth. The possibility of frequent

occurrence of extremely low rainfall, decrease in snowfall,

and earlier thaw will tend to increase the vulnerability of

water resources. Meanwhile, extreme rainfall and tempera-

ture induced many hydrological disasters including floods,

water quality incidents, and so on (Duan et al. 2015).

Therefore, to predict and evaluate the temperature, precipi-

tation, and surface water in japan is also necessary and

important in the future.

Based on the GCMs output, lots of efforts at evaluation

of hydro-climatology of Japan under climate change have

been made. For example, Sato et al. (2013) investigated the

impact of climate change on river discharge in several

major river basins in Japan through a distributed hydro-

logical simulation using the MRI-AGCM and found winter

river discharge is projected to increase more than 200% in

February, but decrease approximately 50–60% in May in

the Tohoku and Hokuriku regions. In Agano River basin,

the monthly mean discharge for the 2070s was projected to

increase by approximately 43% in January and 55% in

February, but to decrease by approximately 38% in April

and 32% in May (Ma et al. 2010). However, there is less

done on small river basins in Hokkaido about the hydro-

climatology variations under climate change.

The objective of this study is to investigate the possible

effects of climate change on water resources in the upper

Ishikari River basin, Hokkaido, Japan, on the basis of outputs

from GCM HadCM3. The paper is organized as follows: the

study area, GCM output data, and methodology including

SWAT model and downscaling techniques briefly described

in the next section; the comparison results of temperature,

precipitation, andwaterflow in ‘‘Results’’ section, followedby

discussions (‘‘Discussion’’ section) and conclusions (‘‘Con-

clusions and future work’’ section). The results of this study

offer insights into hydrological response under climate change

and provide tools for forecasting future climate conditions.

Study area, datasets, and methods

Study area

The upper Ishikari River basin (UIRB) is a headwater basin

of the Ishikari River, which originates fromMt. Ishikaridake

(elev. 1967 m) in the Taisetsu Mountains of central Hok-

kaido and flows southward into the broad Ishikari Plain and

finally into the Sea of Japan, and is the third longest river in

Japan (Fig. 1). The UIRB extends from the source of the

Ishikari River in the Taisetsu Mountains and to an area of

Asahikawa city. The geology of the UIRB is shown in Fig-

ure S1, suggesting there mainly has Jurassic-Cretaceous

rocks, serpentinite and Cretaceous forearc sediment. This

study focused on the watershed area above Ino discharge

monitoring station (by the side of the Ishikari River, elev.

90.8 m), which is about 3, 450 km2, approximately a quarter
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of the Ishikari River basin, and the hydrograph of the Ishikari

River from 1996 to 2005 is shown in Fig. 2. Runoff is mainly

from snowmelt, especially from April to May. At the Asa-

hikawa weather station (elev. 120 m) from 1981 to 2010, the

mean annual, monthly air temperature in the warmest month

(August) and the coldest month (January) are 6.9, 21.3 and

-7.5 �C, respectively; the mean annual precipitation is

1042.00 mm. The UIRB area is covered in snow for as long

as 5 months a year, from early December to late April.

SWAT model

The Soil and Water Assessment Tool (SWAT) model is a

semi-distributed model that can be applied at the river

basin scale to simulate the quality and quantity of surface

and ground water and predict the environmental impact of

land use, land management practices, and climate change

(Arnold et al. 1998; Narsimlu et al. 2013). SWAT model

uses hydrological response units (HRUs) to describe spatial

heterogeneity in terms of land cover, soil type, and slope of

land surface within a watershed. For each HRU, the model

can estimate relevant hydrological components such as

evapotranspiration, surface runoff, and peak rate of runoff,

groundwater flow, and sediments yield. Currently, SWAT

is embedded in an ArcGIS interface called ArcSWAT. The

SWAT model simulates the hydrological cycle based on

the water balance equation

SWt ¼ SW0 þ
Xt

i¼1

ðRday � Qsurf � Ea � wseep � QgwÞ ð1Þ

Asahikawa
Ino

(a)

(b)

(c)

Fig. 1 Upper Ishikari River basin with stream gauge station (Ino station), rainfall stations and weather stations
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Fig. 2 Hydrograph of the

Upper Ishikawa River (averages

from 1996 to 2005)
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in which SWt is the final soil water content (mm water),

SW0 is the initial soil water content in day i (mm water), t

is the time (days), Rday is the amount of precipitation in day

i (mm water), Qsurf is the amount of surface runoff in day i

(mm water), Ea is the amount of evapotranspiration in day i

(mm water), wseep is the amount of water entering the

vadose zone from the soil profile in day i (mm water), and

Qgw is the amount of return flow in day i (mm water). More

detailed descriptions of the SWAT model principles are

given by Neitsch et al. (2005).

SWAT model input datasets

Generally, the SWAT model requires the resolution digital

elevation model (DEM) data, land use data, soil data, and

climate data for calibrating the model. A 50-m grid reso-

lution (DEM) data downloaded from National and Regio-

nal Policy Bureau, Japan, was used to delineate the UIRB

and to analyze the drainage patterns of the land surface

terrain in the ArcSWAT 2012 interface. The stream net-

work characteristics such as channel slope, length, and

width and the associated sub-basin parameters such as

slope gradient and slope length of the terrain were derived

from the DEM. Land use is a very important factor that

affects runoff, evapotranspiration, and surface erosion in a

watershed. Soil type is one of the most important factors

that significantly affect water transport in the soil because

different soil types have different soil textural and

physicochemical properties such as soil texture, available

water content, hydraulic conductivity, bulk density, and

organic carbon content. The land use and soil data were

used for the definition of the HRUs. Land use data were

developed using data derived from the Policy Bureau of the

Ministry of Land, Infrastructure, Transport and Tourism,

Japan, 2006, which mainly contains 11 types of land use.

Here, the UIRB has nine types of land use (Fig. 3). Soil

data were extracted from a 1:50,000 soil map of the Fun-

damental Land Classification Survey developed by the

Hokkaido Regional Development Bureau (www.agri.hro.

or.jp/chuo/kankyou/soilmap/html/map_index.htm). The

daily weather data for precipitation, maximum and mini-

mum temperature, wind speed, solar radiation, and relative

humidity were obtained from the records of the rainfall and

weather stations (Fig. 1) from 1981 to 2005. The daily

river discharge data from 1995 to 2005 at the Inou station

Fig. 3 SWAT input datasets:

slope (a), soil (b), and land use

(c)
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were downloaded from the Web site of the Japanese

Ministry of Land, Infrastructure, and Transport (www1.

river.go.jp), which were used for model calibration and

validation.

Model setup and calibration

The model application involved six steps: (1) data prepa-

ration, (2) watershed and sub-basins discretization, (3)

HRU definition, (4) parameter sensitivity analysis, (5)

calibration and validation, and (6) uncertainty analysis. The

steps for the delineation of watershed and sub-basins

include DEM setup, stream definition, outlet and inlet

definition, watershed outlets selection, and definition and

calculation of sub-basin parameters. Here, the Ino river

discharge monitoring station was chosen to be the outlet of

the UIRB. Then, the resulting sub-basins were divided into

HRUs based on the land use, soil, and slope combinations.

Sensitivity analysis was performed to delimit the num-

ber of parameters which affected the fit between simulated

and observed data in the study area. The data for the period

1996–2000 were used for calibration, and data for the

period 2001–2005 were used for validation of the model.

Five years (1991–1995) were chosen as a warm-up period

in which the model was allowed to initialize and then

approach reasonable starting values for model state vari-

ables. The calibration and uncertainty analysis were done

using the sequential uncertainty fitting algorithm (SUFI-2)

in SWAT-CUP (Abbaspour et al. 2007).

To assess the performance of model calibration, the

coefficient of the determination (R2) and Nash–Sutcliffe

efficiency (NSE) between the observations and the final

best simulations are calculated. The former is usually used

to evaluate how accurately the model tracks the variation

of the observed values. The latter measures the goodness of

fit and would approach unity if the simulation is satisfac-

torily representing the observed data, which describes the

explained variance for the observed data over time that is

accounted for by the SWAT model (Green and Van

Griensven 2008). R2 ranges between 0.0 and 1.0 and higher

values mean better performance. NSE indicates how well

the plot of observed values versus simulated values fits the

1:1 line and ranges from -? to 1 (Nash and Sutcliffe

1970). Larger NSE values are equivalent with better model

performance. Therefore, a few standards were adopted

currently for evaluating model performance. For example,

Santhi et al. (2001) used the standards of R2[ 0.6 and

NSE[ 0.5 to determine how well the model performed.

Chung et al. (2002) used the criteria of R2[ 0.5 and

NSE[ 0.3 to determine if the model result is satisfactory.

In this study, R2[ 0.5 and NSE[ 0.5 were chosen as

criteria for acceptable SWAT simulation.

GCM data and NCEP predicators

GCMs are the most advanced tools and currently available

for simulating the response of the global climate system to

increasing greenhouse gas concentrations, which can pro-

vide global climatic variables under different emission

scenarios. Because some researches (He et al. 2011; Tat-

sumi et al. 2014) indicated that the HadCM3 (Hadley

Centre Coupled Model, version 3) GCM was chosen as

representative for Japan area, the HadCM3 GCM output

was considered suitable for the study watershed.

Large-scale predictor variables information including

the National Centers for Environmental Prediction

(NCEP_1961–2001) reanalysis data for the calibration and

validation, and HadCM3 (Hadley Centre Coupled Model,

version 3)GCM(H3A2a_1961–2099 andH3B2a_1961–2099)

data for the baseline and climate scenario periods, was

downloaded from the Canadian Climate Change Scenarios

Network (http://www.cccsn.ec.gc.ca/). The NCEP reanal-

ysis predictor contains 41 years of daily observed predictor

data, derived from the NCEP reanalyzes, normalized over

the complete 1961–1990 period. These data were interpo-

lated to the same grid as HadCM3 (2.5 latitude 9 3.75

longitude) before the normalization was implemented. The

HadCM3 GCM predictor contains 139 years of daily GCM

predictor data, derived from the HadCM3 A2 (a) and B2

(a) experiments, normalized over the 1961–1990 period.

The predictors of the NCEP and HadCM3 GCM experi-

ments with descriptions are presented in Table 1.

Downscaling techniques

Because the GCM output data are too coarse in resolution

to apply directly for impact assessment in a certain area, it

is necessary to downscale the GCM output data for

bridging the spatial and temporal resolution gaps. Gener-

ally, downscaling techniques are divided into two main

forms. One form is statistical downscaling, where a sta-

tistical relationship is established from observations

between large-scale variables, like atmospheric surface

pressure, and a local variable, like the wind speed at a

particular site. Then, the relationship is subsequently used

on the GCM data to obtain the local variables from the

GCM output. The other form is dynamical downscaling,

which can simulate local conditions in greater detail

because the GCM output is used to drive a regional,

numerical model in higher spatial resolution. Here, the

statistical downscaling method was applied because of its

simplicity and less computational time compared to

dynamically downscaling (Wilby et al. 2000).

The statistical downscaling contains many methods such

as regression methods, weather pattern-based approaches,

stochastic weather generators. The Statistical DownScaling
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Model (SDSM), which is a hybrid of a stochastic weather

generator and a multivariate regression method for gener-

ating local meteorological variables at a location of interest

(Wilby et al. 2002), was applied to assess the impacts of

climate change under future climate scenarios in this study.

Based on a combination of multi-linear regressions and a

weather generator, the SDSM simulates daily climate data

for current and future time periods by calculating the sta-

tistical relationships between predictand and predictor data

series. As shown in Fig. 4, the procedures of the SDSM

downscaling mainly contain six steps. The quality control

was used to identify gross data errors and specify missing

data codes and outliers prior to model calibration. The

main purpose of the screen variable option is to choose the

appropriate downscaling predictor variables. The calibrate

model operation constructs downscaling models based on

multiple regression equations, given daily weather data (the

predictand) and regional-scale, atmospheric (predictor)

variables. In this study, the ordinary least squares opti-

mization was selected to evaluate the SDSM optimizes.

The calibrated model was used to generate synthetic daily

weather series using the observed (or NCEP reanalysis)

atmospheric predictor variables and regression model

weights. Then, the generated weather series was compared

with observed station data to validate the model.

The SDSM bias correction was applied to compensate

for any tendency to over- or underestimate the mean of

conditional processes by the downscaling model (e.g.,

mean daily rainfall totals). The variance inflation

scheme was also used to increase the variance of precipi-

tation and temperatures to agree better with observations.

When using bias correction and variance inflation, SDSM

essentially becomes a weather generator, where a

stochastic component is superimposed on top of the

downscaled variable. This is especially true for precipita-

tion, where the explained variance is generally less than

30% (Wilby et al. 1999).

Results

SWAT calibration and validation

In the discretization procedure, each available waterflow

gauging station was imposed as a sub-basin outlet, and a

threshold area of 10,000 ha (minimum area drained

through a cell for the latter to be defined as a stream cell)

was selected to discretize the watershed into sub-catch-

ments of homogeneous size. In this study, the Inou station

was the only waterflow gauging station that was used to

calibrate the model. The UIRB was divided into 22 sub-

basins with a total watershed area of 3,335 km2, and the

minimum, maximum, and mean elevation in the watershed

were 91, 2290, and 608.2 m above mean sea level (amsl),

respectively. The overlay of land use and soil grid maps

resulted into 100 HRUs. The discretization was done trying

to respect the original distribution of land use and soil,

while keeping the number of HRUs down to a reasonable

number.

Based on the sensitive SWAT-input parameters of

Table 2, the SWAT model was calibrated on the observed

monthly streamflow at the Inou gauging station. Figure 5

shows the simulated and observed monthly streamflows for

both the calibration and validation periods. A more quan-

titive picture of the performance of the calibrated model for

the calibration and validation period is gained from the two

regression line plots of the simulated versus observed

monthly streamflow of Fig. 6. For both periods, the

regression lines have a slope close to 1, indicting a good

agreement between the monthly observed and simulated

streamflows. The values of the statistical parameters NSE

for both the calibration and validation periods were 0.87

and 0.86, respectively, exhibiting that calibration results

were in a reasonable agreement between monthly observed

and simulated streamflows.

From the calibration and validation results, it may be

deduced that the model represents the hydrological

Table 1 Daily predictor variable held in the grid box data archive

Variable Description

temp Mean temperature at 2 m

mslp Mean sea level pressure

p500 500 hPa geopotential height

p850 850 hPa geopotentail height

rhum Near surface relative humidity

r500 Reative humidity at 500 hPa height

r850 Relative humidity at 850 hPa height

shum Near surface specific humidity

s500 Specific humidity at 500 hPa height

s850 Specific humidity at 850 hPa height

Derived variable: the following variables have been derived using the

geostrophic approximation

**_f Geostrophic air flow velocity

**_z Vorticity

**_u Zonal velocity component

**_v Meridional velocity component

**zh Divergence

**th Wind direction

The derived variables have been derived using the geostrophic

approximation

** Refers to different atmospheric levels: the surface (p_), 850 hPa

height (p8), and 500 hPa height (p5)
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characteristics of the watershed and can be used for further

analysis.

Climate projects

SDSM validation

Changes in precipitation, maximum temperature and mini-

mum temperature at the Asahikawa stationwere downscaled

using the SDSM 4.2. The Asahikawa station can be taken to

be representative of all stations in the UIRB area since the

UIRB area is relatively small compared to the GCM’s res-

olution. The calibration was carried out from 1961 to 1981

for 21 years, and the withheld data from 1982 to 2001 were

used to validate the model. Figures 7, 8, 9 and 10 show the

performance of the simulated versus observed daily maxi-

mum temperature, minimum temperature, and precipitation

during calibration and validation periods, respectively,

Select 
predictand

Quality 
control

Select 
predictors

Screen 
variables

Set model 
structure

Calibrate 
model

Sta�on
data

NCEP
data

Downscale
predictand

Weather 
generator

Scenario 
generator

Model output 
and analysis

Sta�on and 
NCEP data

(Un)condi�onal 
process

NCEP
predictors

GCM
predictors

Sca�er plot 

Fig. 4 SDSM downscaling

procedures (modified from

Wilby and Dawson 2007)

Table 2 Parameter global sensitivity ranking and final auto-calibration results

Rank Parameter Description Optimal value Lower bound Upper bound

1 SFTMP Snowfall temperature (�C) 4.358 -5 5

2 ESCO Soil evaporation compensation factor 0.307 0 1

3 GW_REVAP Groundwater ‘‘revap’’ coefficient 0.694 0 1

4 SOL_K Saturated hydraulic conductivity -0.666 -0.8 0.8

5 SOL_AWC Available water capacity of the soil layer (mm H2O mm-1 soil) 0.184 -0.5 1

6 GWQMN Shallow aquifer required for the return flow to occur (mm) 0.112 0 2

7 GW_DELAY Groundwater delay (days) 68.25 0 1000

8 ALPHA_BF Baseflow alpha factor (days) 0.059 0 1

9 CH_N2 Manning’s ‘‘n’’ value for the tributary channels 0.164 0 0.3

10 SMFMN Minimum melt rate for snow during years (mm �C-1day-1) 4.03 0 8

11 SMFMX Maximum melt rate for snow during years (mm �C-1day-1) 4.402 0 8

12 CN2 Initial SCS runoff curve number for moisture condition II -0.163 -0.2 0.8
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which indicate good agreement between the simulated and

observed values of daily maximum and minimum tempera-

ture, but bad in daily precipitation. Maybe it is because

rainfall predictions have a larger degree of uncertainty than

those for temperature since precipitation is highly variable in

space and the relatively coarse GCM models cannot ade-

quately capture this variability (Wilby and Dawson 2007;

Bader et al. 2008). As shown in Figs. 10 and 11, however, the

comparison between observed average long-term mean

monthly precipitation, and maximum and minimum tem-

perature with corresponding simulations indicated that the

results of the SDSM generally replicated the basic pattern of

observations.

The climate scenario for the future periods in the UIRB

area was developed from statistical downscaling using the

HadCM GCM predictor variables for the two Emissions

Scenarios (SRES) including A2a and B2a based on the 20

ensembles, and the analysis was done based on 20-year

periods centered on the 2030s (2020–2039), 2060s

(2050–2069), and 2090s (2080–2099). A2a describes a

highly heterogeneous future world with regionally oriented

economies, the main driving forces of which are a high rate

of population growth, increased energy use, land use

changes, and slow technological change. The B2a is also

regionally oriented but with a general evolution toward

environmental protection and social equity.

Future temperature

As shown in Figs. 12 and 13, the mean monthly, seasonal,

and annual changes in daily temperature from the baseline

period data exhibited an increasing trend for both scenarios

(A2a and B2a) in 2030s, 2060s, and 2090s, and increases in

the A2a scenario are much bigger than in the B2a scenario.

The average annual maximum temperature might

increase by 1.80 and 2.01, 3.41 and 3.12, and 5.69 and

3.76 �C in 2030s, 2060s, and 2090s for A2a and B2a

emission scenarios, respectively. Results from the seasonal

scale reveal that summer has the highest increases under

both A2a and B2a emission scenarios in 2090s, up to 6.27

and 3.96 �C, respectively, while autumn has the lowest

increases with approximately 5.24 and 3.59 �C, respec-

tively. Monthly, the largest increase in mean maximum

temperature is indicated during the August for both A2a
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(approximately 7.40 �C) and B2a (approximately 4.59 �C)
emission scenarios in 2090s.

Results for minimum temperature indicated that the

average annual minimum temperature might increase by

1.41 and 1.49, 2.60 and 2.34, and 4.20 �C and 2.93 in

2030s, 2060s, and 2090s for the A2a and B2a emission

scenarios, respectively. Seasonally, winter has the largest

increase for both scenarios in each period, followed by
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summer, autumn, and spring. For the 2090s, the average

minimum temperature in winter possibly increases by

5.17 and 2.66 �C for A2a and B2a scenarios, respectively.

As in the case of monthly simulation, the minimum

temperature tends to increase during all twelve months for

both scenarios in all future periods (Fig. 13). August has

the largest increase (around 6.74 �C) under the A2a sce-

nario in 2090s, followed by January (around 6.05 �C) and
July (around 5.73 �C); January has the largest increase

(around 4.40 �C) under the B2a scenario in 2090s,
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followed by August (around 4.24 �C) and July (around

3.82 �C).

Future precipitation

Figure 14 shows that the average annual precipitation

might decrease by 5.78 and 8.08, 10.18 and 12.89, and

17.92 and 11.23% in the future 2030s, 2060s, and 2090s for

A2a and B2a emission scenarios, respectively, suggesting

that a remarkable decreasing trend in precipitation is likely

to appear in the UIRB area in the future. On a seasonal

timescale, there may be a decrease in mean precipitation

for all seasons under both scenarios except for winter in

2030s and 2060s and spring in 2030s under A2a scenario.

Among them, autumn has the largest decrease, up to 9.52,

20.12, and 25.22 for the 2030s, 2060s, and 2090s, respec-

tively, for A2a scenario, and 12.49, 14.66, and 20.49% for

B2a scenario, followed by summer, spring, and winter.

Simulation results for the average monthly precipitation

indicate that there is a mixed trend. As shown in Fig. 13, in

the 2030s there may be a decrease in mean monthly pre-

cipitation for all months except for February, April, May,

and December under A2a scenario, and February and May

under B2a scenario. In addition, there may be an increasing

trend in both February and December for all three future

periods for A2a scenario as compared to the base period.

More decreases are observed in September for the 2090s

for both A2a (approximately 35.47%) and B2a (approxi-

mately 27.05%) scenarios compared to other months, and

the largest decrease is also found in September for the

2060s for the A2a scenario, up to 38.90%.

Climate change impact

The impact of climate change on waterflow was predicted

and analyzed taking the waterflow from 1981 to 2000 as

the baseline flow against which the future flows for the

2030s, 2060s, and 2090s compared. Precipitation and

maximum and minimum temperatures are the climate

change drivers, which were inputted into the calibrated

SWAT model to fulfill the climate impact assessment.

Figure 15 shows the percentage changes in mean monthly,

seasonal, and annual flow volume for the future 2030s,

2060s, and 2090s periods compared to the baseline period

(1981–2000) at the Inou gauging station, suggesting that

there may be the same trend in A2a and B2a emission

scenarios.

Results indicate an increase in annual mean streamflow

for the all three future periods except the 2090s under the

A2a scenario. Among them, the largest increase is

observed in the 2030s for A2a scenario, up to approxi-

mately 7.56%.
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As in the case of seasonal prediction, a pronounced

increase is exhibited in winter for the all future periods for

both scenarios, while a decrease is found in summer except

the 2030s for A2a scenario. The highest increase is up to

72.17% in the 2060s under A2a scenario, followed by

70.89% in the 2090s under A2a scenario and 62.61% in the

2090s under B2a scenario, and the largest decrease is about

22.09%, which is predicted in the 2090s under A2a sce-

nario. Spring and autumn have a mixed and slight trend for

future periods for both scenarios.

On a monthly scale, an increasing trend is found in

January, February, March, July, and December for all

future periods for both scenarios, while a decrease may

happen in April and June. For the 2030s, the mean monthly

flow shows an increase for all months except April and

June in both scenarios. In this period, the highest increase

is up to 135.86% for the B2a scenario, followed by 110.19

and 81.99% for the A2a scenario; on the other hand, the

largest decrease is up to 40.07% for the B2a scenario,

followed by 32.46% for the A2a scenario and 19.21% for

the B2a scenario. There are more months in which mean

precipitation is likely to decrease in the 2060s and 2090s

compared to the 2030s.

Discussion

Using the outputs from HadCM3 GCM A2a and B2a cli-

matic scenarios, the changes in temperature, precipitation,

and the waterflow were evaluated on the Upper Ishikari

River Basin for the 2030s, 2060s, and 2090s periods. The

SDSM statistical downscaling tool was applied to compute

the future temperature and precipitation. All these data

were inputted into the calibrated SWAT model for calcu-

lating the waterflow for all three periods under both sce-

narios. All the results obtained from this study are

representative for a majority of GCM output, and therefore

our results are plausible estimates of future effects of cli-

mate change in the UIRB area. These findings also gen-

erate several interesting questions despite clearly indicating

significant changes in hydro-climatology in the UIRB area

in the future.

First, performance of the downscaling results in daily

maximum temperature and minimum temperature is very

good, but relatively bad in daily precipitation. Some other

researches got the similar results in the downscaled daily

precipitation (Dile et al. 2013). Bader et al. (2008) pointed

out the prediction of rainfall by GCMs is often poor as the
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variables that force rainfall patterns are dominated by

topography and to a lesser extent vegetation. Prudhomme

et al. (2002) also indicated that the current generation of

GCMs still does not provide reliable estimates of rainfall

variance, and it is currently difficult to develop appropriate

downscaling methodologies. For example, the rainfall

patterns predicted by ensembles of GCMs for India com-

pletely miss the higher rainfall areas of the sub-Himalaya

and the Western Ghats, although they slightly overestimate

the current average rainfall, while modeled peak daily

rainfall intensity was only two-thirds of that recorded. All

these may be the reasons for getting the relative bad per-

formance for the daily precipitation prediction.

In addition, the annual precipitation exhibits a decreas-

ing trend in the future, but the waterflow shows no trends or

even increasing trend. Also, this situation appears in the

some months (e.g., January, March). The waterflow is

expected to change according to temperature and precipi-

tation changes. Obviously, remarkable decreasing trend

(i.e., the average annual precipitation may decrease by

5.78% and 8.08, 10.18 and 12.89%, and 17.92 and 11.23%

in the future 2030s, 2060s, and 2090 for A2a and B2a

emission scenarios, respectively) in precipitation will be

likely to reduce the runoff in the UIRB area. Temperature,

however, will tend to increase, which contributes to the

snow melting. The UIRB area is located in Hokkaido,

which is covered in snow for as long as 4 months a year.

From the results of calibrated SWAT model, the temper-

ature was sensitive to streamflow in the UIRB area; that is,

snowfall temperature (STFMP), minimum melt rate for

snow during years (SMFMN), and maximum melt rate for

snow during years (SMFMX) will significantly affect the

river flow. The average annual maximum temperature

possibly increases by 1.80 and 2.01, 3.41 and 3.12, and

5.69 and 3.76 �C in 2030s, 2060s, and 2090s for A2a and

B2a emission scenarios, respectively, which will extremely

increase snowmelt. As a result, the annual mean stream-

flow will be likely to increase for the all three future
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periods except the 2090s under the A2a scenario, and the

largest increase will be observed in the 2030s for A2a

scenario, up to approximately 7.56%. These variations are

also in line with the results of (Sato et al. 2013). Consid-

ering these impacts, it is worth emphasizing the importance

of mitigation and adaptation to climate change and we

suggest the following actions: (1) Identify relevant risk and

vulnerable to weather-related events and snowmelt haz-

ards; (2) change national standards, such as building stream

channels, levees, and dams, to address increase in stream

flow; and (3) develop community by-laws to regulate

building construction to minimize pressure on flooding.

Finally, although the results from the cascade of models

in this study indicated a satisfactory and acceptable per-

formance, there is much uncertainty in all used models. It is

a combination of uncertainties in catchment discretization

in SWAT model, the hydrological parameter university

(Maurer and Duffy 2005), GCM outputs as a result of the

downscaling (Chen et al. 2011), and neglect of land use

changes or potential changes in soil properties (Setegn

et al. 2011). As shown in Table 2, not all the SWAT

parameters were discussed except for some main parame-

ters that greatly affect the water balance, and therefore it is

not sufficient to elaborate hydrological changes because of

the snow to rainfall shift in precipitation regime and the

associated seasonal shift (earlier snowmelt and/or more

summer drought). Only 22 sub-basins and 100 HRUs were

divided for the whole basin, which may weaken the

impacts on water cycle from topographical and land use

variability. It is also extremely risky to calibrate a catch-

ment that as large as the Upper Ishikari ([3000 km2) with

only one single gauging station in this study, which cannot

perfectly simulate the water resource balance. Moreover,

HaDCM3 GCM outputs have kind of uncertainty, which

cannot perfectly simulate the future (Buytaert et al. 2009).

So, each GCM output will give different results. In this

study, we focused on the UIRB area by downscaling

HaDCM3 outputs, and there are probably some different

results if some other GCMs would be used. Downscaling

techniques also bring some uncertainties (Khan et al. 2006;

Fowler et al. 2007). For example, Prudhomme and Davies

(2009) found some times bias is not visible with SDSM-

downscaled scenarios although there is a tendency toward

underestimation, but this is within natural variability.

Thirdly, we neglected land use changes or potential chan-

ges in soil properties; however, land cover will change due
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the baseline period (1981–2000) at the Inou gauging station. a A2a scenario and b B2a scenario

490 Page 14 of 16 Environ Earth Sci (2017) 76:490

123



to natural and anthropogenic influences and corresponding

features should be changed in the model.

Conclusions and future work

SWAT model was successfully applied to simulate the

possible effects of climate change on water resources in the

UIRB on the basis of projected climate conditions by using

GCM out puts of HadCM3 SRES A2a and B2a emissions

scenarios with Statistical Downscaling (SDSM) modeling

approach. Major conclusions can be summarized as fol-

lows: (1) The values of the statistical parameters NSE for

both the calibration and validation periods were 0.87 and

0.86, respectively, exhibiting calibration results were in a

reasonable agreement between monthly observed and

simulated streamflows, and therefore it could be used to

evaluate the hydrological response under the climate

change in the UIRB area; (2) the downscaling results

indicated that the average annual maximum temperature

might increase by 1.80 and 2.01, 3.41 and 3.12, and 5.69

and 3.76 �C, the average annual minimum temperature

might increase by 1.41 and 1.49, 2.60 and 2.34, and 4.20

and 2.93 �C, and the average annual precipitation might

possibly decrease by 5.78 and 8.08, 10.18 and 12.89, and

17.92 and 11.23% in 2030s, 2060s and 2090s for A2a and

B2a emission scenarios, respectively; (3) the annual mean

streamflow will be likely to increase for the all three future

periods except the 2090s under the A2a scenario. Among

them, the largest increase is observed in the 2030s for A2a

scenario, up to approximately 7.56%. Also, a pronounced

increase is exhibited in winter for the all future periods for

both scenarios, while a decrease is found in summer except

the 2030s for A2a scenario.

This study also has a few shortcomings and suggests

several areas for future work. Firstly, more GCMs with

high resolution will be downscaled to evaluate the future

temperature and precipitation using more downscaling

methods. If possible, the research place should be enlarged

to a bigger area because it could be more conducive to the

application of a variety of GCMs. In addition, the time

scales of simulation, sub-basins discretization, and HRU

definition will be improved. For example, a monthly time

step will change into a weekly time step and more HRUs

will represent the immense topographical and land use

variability. Finally, more complicated hydrological cycle

will be considered for fully assess water resources, espe-

cially in society-relevant extreme events such as sudden

floods, rain on snow events, or drought events.
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