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Abstract Data inadequacy is a common problem in

designing or updating groundwater monitoring systems.

The developed methodologies for the optimal design of

groundwater monitoring systems usually assume that there

is a complete set of data obtained from existing monitoring

wells and provide a revised configuration for the system by

analyzing the current data. These methodologies are not

usually applicable when the current groundwater quantity

and quality data are highly sparse. In this paper, a new

simulation–optimization approach based on Bayesian

maximum entropy theory (BME) is proposed for revising

spatial and temporal monitoring frequencies in a sparsely

monitored aquifer. The BME is used to simulate the spatial

and spatiotemporal variations of groundwater indicators,

incorporating the space/time uncertainties due to insuffi-

cient data. Comparing the obtained estimations with

observations, the best BME model was selected to be

linked with an optimization model. The main goal of

optimization was to find out the spatial and temporal

sampling characteristics of the monitoring stations using

the concepts of Entropy theory and a groundwater vul-

nerability index. The results show the BME estimations are

less biased and more accurate than Ordinary Kriging in

both spatial and spatiotemporal analysis. The improve-

ments in the BME estimates are mostly related to incor-

porating hard (accurate) and soft (uncertain) data in the

estimation process. The applicability and efficiency of the

proposed methodology have been evaluated by applying it

to the Tehran aquifer in Iran which is suffering from high

groundwater table fluctuations and nitrate pollution. Based

on the results, in addition to the existing monitoring wells,

seven new monitoring stations have been proposed. Few

stations which potentially can be removed or combined

with other stations have been identified and a monthly

sampling frequency has been suggested.

Keywords Bayesian maximum entropy (BME) �
Geostatistics � Kriging � Updating groundwater monitoring

network � Optimization

Introduction

A monitoring network can provide data and information to

achieve or improve understanding of the state of ground-

water quantity and quality and its changes over time, which

provides data and information required for aquifer man-

agement along with operating or updating an existing

monitoring system.

Geostatistical approaches, especially the Kriging

method, are among the most widely used approaches to

interpolate spatiotemporal data required for optimization of

groundwater monitoring networks. Kriging is mostly used

for regionalizing or interpolating variables in different

points of an area where no measurement exist. Several

interesting applications of Kriging in the area of evaluation

and optimization of groundwater monitoring systems can

be found in the literature. For example, Dhar (2013)

developed a methodology based on the Kriging as an

external model for spatial estimation of piezometric head

and the concentration of water quality indicators for opti-

mal design of groundwater monitoring network. To
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determine the number and location of monitoring stations,

an optimization model with objectives of minimizing the

estimation error of the values of piezometric head and

water quality indicators was developed. Bhat et al. (2015)

applied a geostatistical method to determine the optimum

number and locations of monitoring wells which provide

more useful groundwater data compared to an existing

monitoring network. The redesigned network reduced the

mean prediction standard error compared to the former

network.

Several other successful applications of Kriging method

have shown the efficiency of this method in optimal design

or evaluation of groundwater monitoring networks (Theo-

dossiou and Latinopoulos 2006; Triki et al. 2012; Datta and

Singh 2014; Ran et al. 2015), especially when not dealing

with highly sparse data.

Varouchakis and Hristopulos (2013) compared the per-

formance of some deterministic interpolation methods,

such as inverse distance weight (IDW) and minimum

curvature (MC) with stochastic methods of Ordinary

Kriging (OK) and Universal Kriging (UK) and showed

better performance of the stochastic methods comparing to

the deterministic methods especially when dealing with

uncertainties.

To incorporate the uncertainties resulting from sparse

monitoring data or errors inherent in the models, one can

either use additional monitoring wells and more frequent

samplings, which can be budgetary inefficient, or a more

suitable method for interpolating scattered data to map the

groundwater quantity and quality variability. The Bayesian

maximum entropy (BME) of modern geostatistics combi-

nes various types of information for more accurate esti-

mation of groundwater quantity and quality variables at

desired locations and times. These estimations can be

expressed with some degree of uncertainty reflecting the

uncertainty inherent in the underlying information (LoBu-

glio et al. 2007).

The Bayesian maximum entropy, as a non-linear geo-

statistical approach, balances two requirements. The first

requirement incorporates the prior information and

knowledge related to the spatial variability of the estimated

variables which involves the maximization of an entropy

function. The second requirement which leads to a poste-

rior probability with minimum uncertainty involves the

maximization of a Bayesian function (Christakos 1990).

Coulliette et al. (2009) integrated a hydrologic-driven

mean trend model in a BME framework to obtain infor-

mative space/time maps of fecal contamination. Money

et al. (2009) used BME for integrating monitored and

predicted water quality data to produce maps of estimated

concentration along a river basin. They showed that by

adding soft data, as secondary information in the BME

structure, the estimation error decreased by about 30%. Yu

and Chu (2010) used BME for estimating and analyzing

changes of groundwater level using monthly spatiotempo-

ral piezometric heads from 66 wells.

Bayat et al. (2012) modeled spatial and spatiotemporal

variations of annual precipitation with and without incor-

porating elevation variations using the BME and Ordinary

Kriging (OK) methods. They showed that more detailed

and reliable results were achieved using the BME estima-

tion. In another research, Bayat et al. (2014) used OK and

BME spatiotemporal analysis for producing meteorological

drought occurrence probability maps and illustrated the

superiority of BME over OK in their work.

Studying previous works shows that the BME concept

has not been widely used in water resources management

problems. In this paper, a BME spatiotemporal simulation–

optimization model is developed for revising and updating

groundwater monitoring networks. The uncertainties

resulted from sparse data are incorporated through the use

of interval information which is referred to as soft data in

the BME. Finally, an optimal set of number and locations

of the monitoring wells is proposed through the use of the

concepts of marginal entropy, transient information and a

vulnerability index. Details of the proposed methodology

will be discussed in the following section.

Methodology

A framework of the proposed methodology is given in

Fig. 1. The structure of the presented framework is dis-

cussed in the following sections.

Selecting the water quantity and quality indicators

Usually, different pollution sources are responsible for

degrading groundwater quality and increasing the concen-

tration of many water quality variables (Mahab Ghods

Consulting Engineers 2008). It is not cost-effective to

choose several water quality variables for designing or

updating a groundwater monitoring system (Asadollahifard

2015). Therefore, it seems reasonable to consider only few

water quality indicators which can serve as representatives

of water quality condition of the aquifer.

Preparing data and information

After collecting the required data and information from the

existing monitoring stations, they should be prepared to be

used in models. Usually, it is necessary to normalize

probability density function of data. To do this, different

transform functions such as Box-Cox, logarithm and square

root transformations can be utilized. Also, terms of trend

and seasonality are eliminated from time series of data.
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Data clustering using K-means algorithm

The value of groundwater quantity and quality indicators

can highly vary throughout the aquifer due to the spatial

distribution of pollution sources and aquifer heterogeneity.

Therefore, to improve the estimation accuracy of ground-

water indicators, it is suggested to categorize the existing

stations into clusters. In this paper, existing monitoring

wells are clustered based on their locations and values of

the observed water quantity and quality data using the k-

means clustering method (Zalik 2008). In the k-means

clustering, n observations are segmented into k clusters in a

way that each observation goes to the cluster with the mean

to which it is closest. Details of this method can be found in

Zalik (2008).

Analysis of groundwater quantity and quality

variations using the Bayesian maximum entropy

(BME)

Geostatistics is a specialized branch of statistical analysis

which concerns spatial or spatiotemporal correlations

among data in a two- or three-dimensional coordinate

space. In this paper, the geostatistical method of BME,

which incorporates the uncertainties resulting from sparse

monitoring data, is used for estimation of the values of

water quantity and quality indicators throughout the aqui-

fer. Different knowledge bases and shapes of physical

knowledge are considered and combined in the BME

(Christakos et al. 2002). In the BME, two requirements are

balanced: first, high prior information, through maximiza-

tion of an entropy function and second, high posterior

probability about the estimated data, which results in

minimum uncertainty attached, through maximization of a

Bayes function (Christakos 1990). One of the major

advantages of the BME over most of the other geo-statistic-

based methods is that it addresses uncertainties by con-

sidering two types of data, namely soft and hard data.

These types of data will be discussed in the following

section.

Selecting hard and soft data

To incorporate the uncertainties in the existing ground-

water quantity and quality data, the data are divided into

two categories of soft and hard. Hard data represent

accurate measurements or values calculated using numer-

ical simulations. They are mainly considered accurate with

negligible measurement errors. Soft data, representing

uncertainties of estimation, usually contain qualitative

Preparing data and information

Start

Selecting water quantity and quality indicators

Zoning study area using K-Means algorithm

Identifying and determining 

hard and soft data

Determining spatial and spatiotemporal 

correlation in each cluster

Determining correlations between 

indicators in each cluster

Fitting spatial and spatiotemporal 

geostatistical models

Cross validation of the models

Bayesian Maximum Entropy 

(BME) analysis

Calculating the marginal 

entropy index in each cluster

Drawing the marginal entropy 

contour map in each cluster 

Marginal entropy analysis

Calculating spatial information 

transfer index (ITI) between 

stations in each cluster

Selecting an optimum 

distance between using ITI 

versus distance diagrams

Spatial entropy analysis

Entropy analysis

Developing a BME-based simulation-optimization model with the 

objectives of minimizing estimation error variances , maximizing 

marginal entropies and minimizing vulnerability index

Proposing the optimal spatial and temporal characteristics of the monitoring 

network, i.e. the location of stations and sampling frequencies

Selecting the best model for

each cluster based on different 

performance criteria

End

Selecting the effective 

variables for 

estimating aquifer 

vulnerability 

Calculating the 

vulnerability index 

throughout the aquifer

Calculating temporal information 

transfer index (ITI) between 

observations in each station

Selecting a minimum time lapse 

between sampling using ITI 

versus time diagrams

Temporal entropy analysis

Vulnerability analysis

Fig. 1 A framework of the proposed methodology
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statements and/or incomplete and uncertain observations

which can be expressed in the form of interval values,

probability statements and empirical charts (Christakos

et al. 2002). For example, if soft data are represented in

interval numbers, with the lower and higher bounds of data,

a uniform distribution is fitted to them. For probabilistic

presentation, Gaussian or Normal distribution can usually

be a useful choice (Kotulski and Szczepinski 2010), since

this distribution is a good representative of the probability

distribution of many types of data. In this paper, to classify

hard and soft data, all observations in any station are

considered as hard data, while observations with gaps or

insufficient measurements are addressed as soft data. In

bivariate estimations, the soft data were defined in interval

form and their lower and upper bounds were selected based

on the recorded data.

Determining spatial and spatiotemporal correlations

The geostatistical methods are based on relations between

observations in time or space. Measurements made at dif-

ferent locations mostly are spatially dependent. For

example, observations from nearby locations may be closer

in value compared to those from locations farther apart.

This fact is also applied to temporal data. In the geosta-

tistical analysis, spatial and spatiotemporal dependence

among monitoring stations can be taken into account.

In addition to spatial and spatiotemporal correlation

within observations of the same variable, correlations

usually exist between different groundwater variables. To

increase the accuracy of the estimations, in addition to

correlations within observations, one can take advantage of

dependence between different groundwater quantity and

quality variables through multivariate analysis. In a mul-

tivariate geostatistical interpolation, a secondary or auxil-

iary variable can be used to improve the estimation

accuracy of the main or primary variable. The secondary

variable usually has less variability and a relatively high

correlation with the main variable. This can sometimes

improve estimation accuracy of a less densely sampled

primary variable.

Fitting spatial and spatiotemporal univariate and bivariate

models

The analysis of spatial and spatiotemporal variations of

groundwater quantity and quality indicators is done using

the BME. Hard data are used to obtain variogram/covari-

ance models. These models illustrate the variation of cor-

relations between data and distance. The optimum structure

of covariance models is used for estimating the values of

water quantity and quality indicators in the aquifer.

Spatiotemporal covariance (Cst) and variogram (cst) are

defined as Eqs. (1) and (2) (De Cesare et al. 2001):

Cst hð Þ ¼ Cov Z~ s~þ hs; t þ htð Þ; Z s~; tð Þ
� �

ð1Þ

cst hð Þ ¼ Var Z s~þ hs; t þ htð Þ; Z s~; tð Þð Þ
2

ð2Þ

where hs and ht are spatial and temporal lags, respectively.

In this paper, Z represents groundwater quantity and

quality indicators, s~¼ s1; s2ð Þ and t represent spatial (two-

dimensional) and temporal coordinates, respectively. The

general mathematical structure of covariance and vari-

ogram models has been described by De Cesare et al.

(2001) as Eq. (3):

Cst hs; htð Þ ¼ Cs hsð Þ � Ct htð Þ ð3Þ

where Cs and Ct are spatial and temporal covariances,

correspondingly. To evaluate the estimated vari-

ograms/covariances, leave-one-out cross-validation analy-

sis is used. The statistics of the coefficient of determination

(R2) and Nash–Sutcliffe efficiency (NSE) are used to

evaluate the estimated variograms (James et al. 2013).

Entropy analysis

Entropy is a measure of uncertainty in the information

content. Monitoring stations with higher information

content would generally provide more valuable data.

Therefore, when selecting an optimum set of stations

among a number of candidates, stations with higher

information content may be given a higher priority over

stations with lower information content (Yang and Burn

1994).

In this paper, the concept of marginal entropy is used to

measure the information content of observations through-

out the aquifer (Mahjouri and Kerachian 2011). Also, the

concept of information transient index (ITI) is used to

measure mutual information or information transferred

among the stations. Shannon and Weaver (1949) defined

the marginal entropy of a discrete random variable x as

Eq. (4):

E I xð Þð Þ ¼ H xð Þ ¼
XN

i¼1

p xið Þlog p xið Þ ð4Þ

where, N represents the number of events xi with proba-

bilities p xið Þ i ¼ 1; . . .;Nð Þ. Marginal entropy contour

maps can be used to evaluate the existing groundwater

monitoring network and selecting the optimum monitoring

locations for the revised network.

Transinformation (T X; Yð Þ) which measures the redun-

dant or mutual information between X and Y , can be cal-

culated as follows (Mogheir et al. 2004a, b):
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T X; Yð Þ ¼
Xn

i¼1

Xm

j¼1

p xi; yj
� �

ln
p xi; yj
� �

p xið Þp yj
� �

" #

ð5Þ

where p xið Þ and p yj
� �

are probabilities of occurring X and

Y , respectively. Also, p xi; yj
� �

is the probability of occur-

ring random variables X and Y both at the same time. The

standardized information transferred from one monitoring

station to another is called Information transfer index (ITI)

which is computed as Eq. (6):

ITI ¼ T X; Yð Þ
H X;Yð Þ ð6Þ

In Eq. (6), H X; Yð Þ is total entropy of two independent

random variables X and Y :

H X; Yð Þ ¼ H Xð Þ þ H Yð Þ ð7Þ

In this paper, to find out the optimum time laps between

samplings, temporal information transfer index (ITI)

between observations in each monitoring station is calcu-

lated. In the temporal entropy analysis, the transferred

information between observations in different time steps

are computed and a graph of the calculated temporal ITIs

versus time laps is obtained.

Assessment of the aquifer vulnerability

Infiltration of domestic wastewater into groundwater,

which increases the nitrate concentration may cause the

allowed standards for water quality variables to be excee-

ded. To determine the spatial variability of the potential of

aquifer for being polluted, a vulnerability index can be

used. The vulnerability index is calculated based on the

topographical and climatological factors including

groundwater depth and slope, groundwater flow parameters

such as hydraulic conductivity and rainfall depth and dis-

tribution. This index will be used in the optimization model

for taking account of areas with higher risk of contami-

nation when choosing monitoring locations. The vulnera-

bility index is computed using four weighted variables of

groundwater depth, rainfall depth, aquifer hydraulic con-

ductivity and slope and is calculated as follows:

Di ¼
X4

j¼1

wj � Qj

� �
ð8Þ

where Di the value of the vulnerability index; wj the jth

variable weight; Qj the jth variable value.

Developing a simulation–optimization model based

on the BME and entropy analyses

A simulation–optimization model is developed to identify

the optimal locations of groundwater monitoring wells

among a number of potential locations. The objective is to

minimize the sum of estimation error variances corre-

sponding to the values of groundwater quality indicators at

potential locations, which are calculated using the BME,

the values of marginal entropy, and the amount of trans-

ferred information, the values of vulnerability index cal-

culated at stations. The objective function is defined as

follows:

OF ¼ Min
Xn

j¼1

Xm

j¼1

wvar
j :ðEEVij þ

Xm

j¼1

went
j �ðEntijÞ

" 

þ ðwvul�VuliÞ þ 0:5
Xn

k¼1

rik � ropt
�� ��= rmax � ropt

� �
#!

=n

ð9Þ

where n number of candidate locations; m number of

groundwater quality indicators; EEV estimation error

variance; Ent marginal entropy values; Vul vulnerability

index values; rik distance between two candidate locations;

ropt optimum distance between two stations; rmax maximum

distance among candidate locations; wvar weight of esti-

mation error variance; went weight of marginal entropy

weight; ropt denotes the maximum required distance

between the stations at which ITI values become negligi-

ble. Also, Eq. (9) illustrates a minimum required distance

between stations at which ITI values are considerable.

The result of the optimization model is a trade-off curve

between values of the objective function and the number of

stations. Based on the available budget and the desired

accuracy, the number of monitoring stations along with

their corresponding optimum layout can be chosen by the

decision maker. Usually, after a certain number of potential

monitoring stations, no significant improvement of the

objective functions is observed. This point can potentially

be selected as an upper bound for the number of required

stations, for which the best arrangement of the monitoring

wells are to be found.

The study area

The proposed methodology is applied for the optimal

redesign of the groundwater quality monitoring system in

the Tehran aquifer, Iran. Tehran aquifer is bounded by the

Kan River in the West and the Sorkhehesar River in the

East. About one billion cubic meters of water is annually

provided for domestic consumption of 12 million people in

the Tehran metropolitan area. More than 60% of consumed

water in this city returns to the Tehran aquifer via tradi-

tional absorption wells. Figure 2 shows a Google Earth

image of the Tehran region. Tehran aquifer is mainly

recharged by inflow at the boundaries, precipitation, local

Environ Earth Sci (2017) 76:436 Page 5 of 15 436
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rivers and return flows from domestic, industrial and

agricultural sectors. The main characteristics of the Tehran

aquifer are presented in Table 1.

Wastewater disposal in Tehran is carried out through

more than three million absorption wells, which are often

15–20 m deep. The use of absorption wells has caused

groundwater pollution and a significant rise of the water

table in the southern part of Tehran (Bazargan-Lari et al.

2009; Kerachian et al. 2010). According to the existing

groundwater quality data, some water quality variables

such as total dissolved solids, nitrate, and coliform bacteria

are violating the standards (Masoumi and Kerachian 2008;

Rafipour-Langeroudi et al. 2014).

Results and discussion

In this paper, groundwater quality indicators are selected

considering the locations of the pollution sources and

concentration of the water quality variables. The main

pollution source in the study area is municipal wastewater

which is discharged into the groundwater through absorp-

tion wells. The concentration of water quality variables

such as nitrate (NO3) and total dissolved solids (TDS)

violate water quality standards in many regions of the

aquifer. Therefore, these two water quality variables along

with groundwater depth are considered as the main

indicators.

The observed data are normalized and prepared for

using in the BME simulation model. In order to increase

the estimation accuracy, the k-means method is used to

spatially cluster data into two groups based on the obser-

vations of the water quality indicators. The resulted clusters

are mostly in accordance with the spatial variations of the

observed data (Fig. 3); that is, the higher pollution con-

centrations mostly occur in the southern part of the aquifer

and pollution density in the north of the aquifer is generally

lower.

For evaluating the performance of spatial and spa-

tiotemporal models, leave-one-out cross-validation proce-

dure is used. The performance criteria calculated for the

spatial and spatiotemporal Kriging and BME models are

shown in Tables 2 and 3. The best covariance model

Fig. 2 Boundaries of the study area and location of existingmonitoring

wells Coordinates are in UTM (Universal Transverse Mercator)

Table 1 Main characteristics of

the Tehran aquifer
Properties Units Value

UTM coordinates

X Meters 5,23,800–5,55,800

Y Meters 3,905,000–3,968,000

Period of observations Year 2002–2012

Interval of monthly observed NO3 mg/L 6.4–152

Interval of monthly observed total dissolved solids (TDS) mg/L 420–1380

Range of variations of monthly observed piezometric head Meters 10–147

Average/standard deviation (NO3 observations)

Cluster 1 mg/L 15.8/8.5

Cluster 2 mg/L 26.5/19.1

Average/standard deviation (TDS observations)

Cluster 1 mg/L 1311.5/201.1

Cluster 2 mg/L 594.8/154.6

Average/standard deviation (piezometric head observations)

Cluster 1 Meters 21.3/8.1

Cluster 2 Meters 69.7/21.5
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corresponding to each indicator in every cluster is selected

based on the values of the performance criteria. The spatial

variation of the nitrate concentration in the study area is

very high due to numerous wastewater absorption wells.

This problem has affected the fitted variograms, and the

performance criteria in fitting variograms for estimating

nitrate concentration are not very high.

According to Tables 2 and 3, the spatiotemporal models

have not performed as suitably as spatial models which can

be due to temporal data insufficiency. Also, estimation

error variance for BME results is less than that of the OK in

both spatial and spatiotemporal analyses. Thus, the spatial

BME and estimation error variances calculated for the

simulation results are used in the simulation–optimization

Fig. 3 Spatial variations of the average concentration of TDS (mg/L) (2002–2012)

Table 2 Performance criteria calculated for the spatial Kriging and BME univariate and bivariate models

Variables Method Cluster number The best fitted curve Cross-validation performance criteria

R2a NSEb

TDS (univariate) Kriging 1 Spherical 0.61 0.59

2 Gaussian 0.74 0.68

BME 1 Spherical 0.9 0.81

2 Gaussian 0.9 0.81

Depth (univariate) Kriging 1 Spherical 0.81 0.76

2 Gaussian 0.8 0.73

BME 1 Spherical 0.82 0.77

2 Gaussian 0.86 0.85

NO3 (univariate) Kriging 1 Spherical 0.56 0.49

2 Spherical 0.43 0.38

BME 1 Spherical 0.57 0.51

2 Spherical 0.44 0.39

TDS (bivariate) Kriging 1 Spherical 0.78 0.71

2 Gaussian 0.83 0.77

BME 1 Spherical 0.98 0.9

2 Gaussian 0.95 0.83

a Coefficient of determination (Cameron and Windmeijer 1997)
b Nash–Sutcliffe efficiency (Nash and Sutcliffe 1970)
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model. As an example, Fig. 4 shows the variation of the

observed values with the calculated ones for nitrate and

TDS in some representative locations. These stations are

selected as representatives in a way that they spatially

cover the whole study area. Also, the maps of estimated

nitrate and TDS and corresponding maps of variances of

estimation error obtained using the best BME model are

presented in Figs. 5 and 6, respectively.

The values of marginal entropy are calculated through-

out the aquifer considering the existing information from

the 43 groundwater quality monitoring stations and 60

water level monitoring stations in the Tehran aquifer. For

example, Fig. 7a, b and c illustrates the marginal entropy

maps for nitrate, TDS and depth of ground water, respec-

tively. As seen in these figures, the values of the marginal

entropy in some regions are considerably higher than oth-

ers. This can illustrate more important information in these

areas which also shows higher uncertainty resulted from

high temporal variability.

The region with the highest marginal entropy has pre-

sumably the highest temporal variations in water quantity

and quality, and stations in such region have the greatest

potential for providing more information (Memarzadeh et al.

2013). Figure 8a shows the values of ITI versus distance

between the stations for the nitrate (NO3) variable. The

values of ITI versus distance between the stations for TDS

are represented in Fig. 8b. As shown in these figures, the

transferred information between the stations is not consid-

erable and no meaningful relationship can be seen between

the values of ITI and distance for water quality variables.

Also, the ITI values for groundwater depth have larger

values compared to those of nitrate and TDS (Fig. 8c). This

can be due to higher correlations among the data of

groundwater depth in the monitoring wells. It can be inferred

that the current stations are not excessive, though, in further

analysis, their locations may be improved.

The sampling interval of water quality variables in the

existing monitoring system is sometimes up to several
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Fig. 4 Observed and calculated concentration of nitrate and TDS using the spatial BME in some representative locations

Table 3 Performance criteria

calculated for the

spatiotemporal Kriging and

BME models

Variables Method Cluster The best fitted surface Cross-validation performance criteria

R2a NSEb

TDS (univariate) Kriging 1 Spherical–Spherical \0.5 \0.5

2 Spherical–Spherical \0.5 \0.5

BME 1 Spherical–Spherical \0.5 \0.5

2 Spherical–Spherical \0.5 \0.5

Depth (univariate) Kriging 1 Spherical–Spherical 0.81 0.78

2 Spherical–Exponential 0.91 0.85

BME 1 Spherical–Spherical 0.81 0.79

2 Spherical–Exponential 0.92 0.88

NO3 (univariate) Kriging 1 Exponential–Spherical \0.5 \0.5

2 Exponential–Exponential \0.5 \0.5

BME 1 Exponential–Spherical \0.5 \0.5

2 Exponential–Exponential \0.5 \0.5

a Coefficient of determination (Cameron and Windmeijer 1997)
b Nash–Sutcliffe efficiency (Nash and Sutcliffe 1970)
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Fig. 5 Maps of variations of estimated nitrate and TDS using spatial univariate BME model, a TDS-cluster 1, b depth-cluster 1, c NO3-cluster 1,

d TDS-cluster 2, e depth-cluster 2, f NO3-cluster 2

Fig. 6 Maps of variances of estimation error using spatial univariate BME model, a TDS-cluster 1, b depth-cluster 1, c NO3-cluster 1, d TDS-

cluster 2, e depth-cluster 2, f NO3-cluster 2
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months. Using the time series of depth data, the values of

the temporal ITI for 1–4 time lags are obtained. Figure 9,

for instance, shows the variations of the temporal ITIs

versus monthly time steps for some representative stations.

This figure illustrates no meaningful pattern in ITI varia-

tion with time lags and no correlation between the ITIs and

the number of time lags. As seen in this figure, even for

1 month time lag, ITI values are not significant. It can be

inferred that temporal sampling interval of 1 month results

in very low redundant information in the data.

The contour maps of standardized variables of ground-

water depth, rainfall and the vulnerability index are

displayed in Fig. 10. Average values of groundwater depth

observed in the monitoring wells from 2002–2012 are

applied for groundwater depth mapping. Also, the rainfall

mapping is done by using average values of rainfall

obtained from synoptic stations.

To find out the optimum locations of the monitoring

wells, the selected BME model is linked with an opti-

mization model with the objectives of minimizing the total

marginal entropy of the system, the variances of the esti-

mation error and the vulnerability of the system.

The particle swarm optimization (PSO) algorithm

(Parsopoulos and Vrahatis 2002) is used to solve the

Fig. 7 The spatial distribution of marginal entropy in the study area for a NO3, b TDS and c depth
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optimization problem. The simulation–optimization model

is executed considering a number of potential locations for

monitoring station. As a result, a trade-off curve between

the number of monitoring stations and the corresponding

values of the objective function based on the selected

locations is obtained. Figure 11 shows the resulting

objective function in each cluster. Obviously, as the num-

ber of potential stations increases, the value of the objec-

tive function increases. The optimum configuration of

monitoring wells (the best locations of stations corre-

sponding to a certain number of monitoring stations) can be

chosen based on the values for the objective function and

available budget. The objective function does not signifi-

cantly vary after a certain number of stations (25, here).

Also, increasing the number of stations mostly leads to an

increase in the operational costs; therefore, the number of

required stations has been chosen to be 25.

The spatial distribution of the proposed and the current

monitoring stations for each cluster is depicted in Fig. 12a,

b. According to these figures, some of the current

monitoring

Stations are in the immediate vicinity of the proposed

stations obtained from the simulation–optimization model.

Therefore, for efficiency purposes, these proposed stations

are replaced by the monitoring wells already in the current

monitoring network.

Also, since a number of current monitoring wells are

very closely located to each other, to reduce monitoring

cost, stations with more transient data with the nearby

stations can be omitted. The updated monitoring network in

each cluster is displayed in Fig. 13. The final monitoring

network in the Tehran aquifer can be seen in Fig. 14.

Summary and conclusions

In this paper, a new approach was proposed for revising

and updating monitoring locations and sampling frequen-

cies of an existing groundwater monitoring system which is

highly suffering from data inadequacy. The variations of

groundwater depth and quality indicators were simulated

using the BME model. This BME was especially used to

deal with sparse data and incorporate uncertainties caused

by insufficient information. The influence of soft data on

spatial and spatiotemporal estimations has been evaluated

by comparing the results with those of the Ordinary
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Fig. 8 Variation of information transient index (ITI) versus distance for the indicators a NO3, b TDS and c groundwater depth
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Fig. 9 Variation of temporal ITIs versus monthly lags in some

representative stations
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Kriging. The cross-validation analysis confirms that

incorporating the concept of soft data results in better

estimations in terms of reliability and accuracy. The results

also showed that using the BME for estimating the con-

centration of the groundwater quality indicators in the

Tehran aquifer, the average variance of estimation error

can be reduced by more than 15% in both spatial and

spatiotemporal analyses, compared to the results of the OK.

The best BME model was selected to be linked with an

optimization model. The optimization model mainly aimed

at finding the spatial and temporal sampling characteristics

of the monitoring stations using both concepts of Entropy

theory and a groundwater vulnerability index. The results

of the temporal entropy analysis showed that there is

almost no temporal redundant information in the data. In

marginal entropy analysis, the areas of higher spatial and

temporal variability, which generally needed stricter

monitoring, got a higher number of monitoring stations and

sampling frequencies. Also, according to information

transient index, to reduce the spatial data redundancy, the

set of stations with minimum common information were

chosen.

Based on the results of the optimization model, in

addition to the existing monitoring wells, seven new

monitoring stations have been proposed. Few stations

which potentially can be removed or combined with other

stations were identified. As expected, more stations were

suggested in areas with more spatial heterogeneity, in terms

of groundwater quality, such as areas close to high

wastewater discharges. By proposing new stations and

sampling frequencies, the variance of estimation error can

decrease by 20%, compared to the existing monitoring

network. On the whole, the results showed that the com-

bined BME-optimization model for revising the existing

groundwater monitoring network had an appropriate per-

formance and BME gave mostly reliable and compara-

tively precise results, when dealing with sparse data.

In future works, to better incorporate the spatiotemporal

variations of groundwater level and quality, the results of

the proposed BME-based methodology can be combined

Fig. 10 Contour maps of standardized average a groundwater depth, b rainfall and c vulnerability index (2002–2012)
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Fig. 11 The objective function

versus the number of potential

stations, a cluster 1 and

b cluster 2

436 Page 12 of 15 Environ Earth Sci (2017) 76:436

123



(b)

5.2 5.25 5.3 5.35 5.4 5.45 5.5 5.55
3.935

3.945

3.94

3.95

3.955

3.96

5.2 5.25 5.3 5.35 5.4 5.45 5.5 5.55

3.938
3.94
3.942

3.944
3.946
3.948

3.95

3.952
3.954

3.956

3.958

(a)
5.2 5.25 5.3 5.35 5.4 5.45 5.5 5.55 5.6

3.905

3.91

3.915

3.92

3.925

3.93

3.935

3.94

5.25 5.3 5.35 5.4 5.45 5.5 5.55 5.6
3.905

3.91

3.915

3.92

3.925

3.93

3.935

Fig. 12 Spatial distribution of the proposed and current monitoring stations for a cluster 1 and b cluster 2

Fig. 13 The updated monitoring network (after omitting very close stations), a cluster 1 and b cluster 2
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with results of a numerical groundwater quantity and

quality simulation model by using a data fusion technique.

The combined data can be used in the proposed opti-

mization model for redesigning monitoring networks.
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