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Abstract Accurate identification of vulnerability areas is

critical for groundwater resources protection and manage-

ment. The present study employed the modified DRASTIC

model to assess the groundwater vulnerability of Jianghan

Plain, a major farming area in central China. DRASTICL

model was developed by incorporating the land use factor to

the original model. The ratings and weightings of the

selected parameters were optimized by analytic hierarchy

process (AHP) method and genetic algorithms (GAs)

method, respectively. A combined AHP–GAs method was

proposed to further develop this methodology. The unity-

based normalization process was employed to categorize the

vulnerabilitymaps into four types, such as very high ([0.75),

high (0.5–0.75), low (0.25–0.5), and very low (\0.25). The

accuracy of vulnerability mapping was validated by Pear-

son’s correlation coefficient between vulnerability index and

the nitrate concentration in groundwater and analysis of

variance F statistic. The results revealed that the modified

DRASTIC model had a large improvement over the con-

ventional model. The correlation coefficient increased sig-

nificantly from 41.07 to 75.31% after modification.

Sensitivity analysis indicated that the depth to groundwater

with 39.28% of mean effective weight was the most critical

factor affecting the groundwater vulnerability. The devel-

oped vulnerability model proposed in this study could pro-

vide important objective information for groundwater and

environmental management at local level and innovation for

international researchers.

Keywords Modified DRASTIC � Vulnerability � AHP �
Genetic algorithms � Jianghan Plain

Introduction

Groundwater is one of the most precious freshwater

resources in many countries, especially in arid and semiarid

regions (Neshat et al. 2014). Groundwater quality espe-

cially in the unconfined aquifer is sensitive to surface

contamination, caused by the agriculture and industrial

activities (Al-Hanbali and Kondoh 2008; Javadi et al.

2011a, b). There is a clear urgent need for treating con-

taminated groundwater, and furthermore, for delineating

potential vulnerability areas and applying effective policies

to prevent groundwater from being polluted. However,

traditional methods such as field investigations at regional

scales are often not effective, time-consuming, and costly.

Consequently, the assessment of groundwater vulnerability

has been subject to intensive research and a variety of

methods have been developed (Neukum and Azzam 2009),

such as DRASTIC model (Aller et al. 1987).

DRASTIC model is widely used to estimate the

groundwater vulnerability (Babiker et al. 2005; Chitsazan

and Akhtari 2008; Huan et al. 2012; Sener et al. 2009; Yin

et al. 2012). This method is gradually becoming a stan-

dardized approach for assessment of groundwater vulner-

ability due to the property of easy application at regional

scales with Geographic Information Systems (GIS). Seven

hydrogeological factors, including depth to groundwater,

net recharge, aquifer media, soil media, topography, impact

of vadose zone, and hydraulic conductivity, are used to

evaluate the vulnerability index. As a relative measure, the

vulnerability index is dimensionless. The higher values

indicate more vulnerable to contamination.
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Generally, the ratings and weightings of the seven fea-

tures used in DRASTIC model are assigned specific values

as shown in Table 1 without considering the regional

hydrogeological conditions, which then makes DRASTIC

model an easy target for criticism. Moreover, this tech-

nique disregards the impact of alternative data on human

activities, such as land use. Thus, many researchers have

modified the traditional model to further develop this

method (Al-Hanbali and Kondoh 2008; Hernández-Espriú

et al. 2014; Neshat et al. 2013, 2014; Secunda et al. 1998;

Sener and Davraz 2012; Thirumalaivasan et al. 2003).

An evolutionary notable modification is applying ana-

lytic hierarchy process (AHP) to determine the weightings

and/or ratings for parameters used in DRASTIC model

(Thirumalaivasan et al. 2003). AHP method is a powerful

approach in dealing with multicriteria decision-making

technique. A set of pairwise comparisons (PCMs) is used to

obtain the weights in regard to the impact of the decision

and subdecision criteria (Yalcin et al. 2011). Accordingly,

by using AHP technique, the ratings and/or weightings of

geodata layers are optimized by transferring acquisition of

knowledge from experts to a model.

While AHP method is practically useful, subjectivity

from experts may distort the results of estimation.

Genetic algorithms (GAs) is recently the most prominent

and widely used adaptive optimization search approach

based on a direct analogy to Darwinian natural selection

and genetics in biological systems (Holland 1975). This

method shows a strong ability in global optimization.

Rahimi et al. (2014) used the GAs method to the flood

spreading site selection of Gareh Bygone plain, Iran.

Giacobbo et al. (2002) presented the feasibility of using

GAs for estimating the parameters of groundwater con-

taminant transport model. Zhang et al. (2014b) employed

GAs method to optimize the initial weights determined

by artificial neural networks (ANN) to assess the

occurrence of earth fissure in Su-Xi-Chang land subsi-

dence area.

Jianghan Plain, located in the middle reaches of Yangtze

River, is a major farming area in central China. Recent

Table 1 Original DRASTIC

weightings and ratings (Aller

et al. 1987)

Depth (m) Recharge (mm/year) Topography (%) Conductivity (m/d)

Weight: 5 Weight: 4 Weight: 1 Weight: 3

Range Rating Range Rating Range Rating Range Rating

0–1.5 10 0–50.8 1 0–2 10 0.04–4.1 1

1.5–4.6 9 50.8–101.6 3 2–6 9 4.1–12.3 2

4.6–9.1 7 101.6–177.8 6 6–12 5 12.3–28.7 4

9.1–15.2 5 177.8–254 8 12–18 3 28.7–41 6

15.2–22.8 3 [254 9 [18 1 41–82 8

22.8–30.4 2 [82 10

[30.4 1

Aquifer media Impact of vadose zone Soil media

Weight: 3 Weight: 5 Weight: 2

Range Rating Range Rating Range Rating

Massive shale 2 Confining layer 1 Thin or absent 10

Metamorphic/igneous 3 Silt/clay 3 Gravel 10

Weathered

metamorphic/igneous

4 Shale 3 Sand 9

Glacial till 5 Limestone 6 Peat 8

Bedded sandstone,

limestone

6 Sandstone 6 Shrinking clay 7

Massive sandstone 6 Bedded limestone, Sandstone, Shale 6 Sandy loam 6

Massive limestone 8 Sand and gravel with significant silt

and clay

6 Loam 5

Sand and gravel 8 Metamorphic/igneous 4 Silty loam 4

Basalt 9 Sand and gravel 8 Clay loam 3

Karst limestone 10 Basalt 9 Muck 2

Karsts limestone 10 No shrinking

clay

1

426 Page 2 of 16 Environ Earth Sci (2017) 76:426

123



studies indicate that groundwater is subjected to pollution

in many areas due to different anthropogenic activities,

such as the extensive fertilizes use and industrialization

(Duan et al. 2015; Zhou et al. 2012). Given the above-

mentioned considerations, this study is to propose a new

methodology to modify DRASTIC model by integrating

land use, AHP and GAs methods and then to evaluate the

groundwater vulnerability in Jianghan Plain.

The study area

Location and climate

Jianghan Plain, situated between latitude 29.4�–31.3�N and

longitude 111.4�–114.5�E, is an alluvial plain deposited by

the Yangtze and Han rivers. It is located in the central and

southern regions of Hubei Province (Fig. 1). It is well

known as ‘‘national base of fish and rice’’ in China, and

agriculture is the main human activity in majority of the

study area. Under a north subtropical monsoonal climate,

the annual average temperature is 15–17 �C. The annual

average precipitation is 1269 mm, increasing from

800 mm in the northwest to 1500 mm in the southeast,

30–50% of which concentrates in summer.

Topography

Jianghan Plain is a semiclosed basin with a higher eleva-

tion in the northwest and a lower elevation in the southeast

(Fig. 1). The middle region is a low alluvial plain with

elevations ranging from 20 m in the southeast to 40 m in

the northwest. The outlying areas mostly consist of two-

level terraces with elevations of 40–80 m and 80–120 m,

respectively. The outer area of the terraces is primarily

composed of craggy terrain and low hills above 120 m. The

slope ranges between 0� and 22� with an average value of

2�–3� in the central flat plain (Zhou et al. 2012).

Geology

The geological map of study area was prepared based on

lithological units, recent sediments, and landform (Fig. 2).

The central plain is composed of Holocene alluvial–la-

custrine and upper Pleistocene sediments. The thickness of

alluvial–lacustrine sediments varies greatly in different

regions with depth of 100–200 m in the center and

20–100 m in the outlying areas. The outlying hills, which

have been suffered from erosion, are formed with porous

and fissured media of mid Pleistocene, lower Pleistocene,

and Pliocene sediments. The lithology of Jianghan Plain is

Fig. 1 Location map and digital elevation model of study area
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mainly Quaternary lacustrine sediments, which are mainly

composed of sandy clay, clayey sand and clay.

Hydrogeology

The hydrogeological characteristics are closely related to

the topography. The hilly areas primarily consist of aqui-

tard, while the central areas consist of unconsolidated

water-bearing sediment layers. These aquitard and uncon-

solidated layers constitute a complete hydrogeological unit.

Based on the geological and hydrogeological settings,

aquifer system can be subdivided into unconfined aquifer

and confined aquifer (Gan et al. 2014). The unconfined

aquifer is mainly composed of clay, clayey silt, and sandy

silt. The depth to groundwater is usually 0.5–3.5 m below

ground surface. There are two types of confined aquifer:

the confined aquifer in Quaternary porous media and the

confined aquifer in porous-fissured media of Pliocene and

lower Pleistocene sediments. The former is mainly dis-

tributed in the lower plain, while the latter occurs in the

hilly areas.

Materials and methods

Data collection

Table 2 presents the data used in this study. The features

are obtained from different sources to establish thematic

layers.

Depth to groundwater (D)

Depth to groundwater represents the depth from the surface

to the groundwater table. It determines the thickness of the

unsaturated zone through which the infiltrating water must

travel before reaching the aquifer. The depth to ground-

water was measured in August 2014 from 786 wells in the

study area. Besides, available data of 43 monitoring wells,

which measured the groundwater level (depth to ground-

water) every five days, were collected in August 2014. The

minimum depth to groundwater occurs near August, and

fertilizers are extensively used in this month (Zhang et al.

2014a). Therefore, this month is selected to consider the

worst possible case scenario. A log-normality distribution

of the depth to groundwater is confirmed by the Kol-

mogorov–Smirnov test performed in SPSS 20.0 software.

Kriging interpolation is then employed to estimate the

distribution of depth to groundwater (Fig. 3a).

Net recharge (R)

Net recharge is the amount of water that penetrates into the

aquifer from the surface. It is the principal vehicle that

transports the contaminants vertically to the groundwater

and horizontally within the aquifer. Net recharge is not

only the results of rainfall and irrigation return flow, but

also the results of river and lakes recharge (Guan et al.

2016). However, the current study focuses on the vulner-

ability potential to pollution from the surface, particularly

by the human activities. Therefore, the river and lakes

Fig. 2 Geological map of study area
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recharge is not considered in this study. The net recharge

map is obtained based on the rainfall and the irrigation

return flow data and calculated by:

Net recharge ¼ rain fall� recharge rate

þ irrigration return flow ð1Þ

The rain fall map is obtained by interpolating a 20-year

mean of annual precipitation (mm/year) from seven rep-

resentative rainfall stations (Wuhan, Jingzhou, Jingmen,

Qianjiang, Tianmen, Xiantao, and Xiaogan). The recharge

rate and irrigation return flow maps are obtained from

Wuhan Center of China Geological Survey. The net

recharge layer is presented in Fig. 3b.

Aquifer media (A)

Aquifer media is an important factor controlling ground-

water flow path. A weakly permeable aquifer with rela-

tively low recharge rates may result in a low vulnerability,

while a highly permeable aquifer with great recharge

potential may lead to a high vulnerability. Classification of

this parameter is based on a report obtained from Hubei

Institute of Hydrogeology and Engineering Geology (Chen

et al. 1985) (Fig. 3c).

Soil media (S)

Soil media is identified as the uppermost part of the vadose

zone, and it influences the infiltrating process of contami-

nation (Baalousha 2010). The soil media map is derived

from the previous studies (Zhao et al. 2007) and presented

in Fig. 3d.

Topography (T)

Topography in DRASTIC model refers to the slope of the

land surface and its variation. It controls the runoff and

determines the residence time of pollutants after precipi-

tation. Besides, the topography has a significant effect on

groundwater flow rate and current direction (Al-Hanbali

and Kondoh 2008). The topography of study area is cate-

gorized into five groups according to the digital elevation

model (DEM) provided by Chinese Academy of Sciences

using ‘‘Slope’’ tool in ArcGIS 10.0 software(Fig. 3e).

Impact of vadose zone (I)

The vadose zone, also refers to the unsaturated zone, is

between the land surface and the top of the phreatic zone. It

controls the length or duration of hydrologic flow path in

controlling the contaminant delivery. Based on 1358

boreholes available information data collected in the study

area, the impact of vadose zone layer is generated as shown

in Fig. 3f. The drilling logs show a large complexity and

variety of the vadose medium which indicated a multilayer

vadose system in Jianghan Plain. The thickest medium

from each drilling logs upper the groundwater level is

expected to be defined as the vadose material. Thiessen

polygons are then constructed so that the centroid of

vadose medium from each well is assigned to an area.

Hydraulic conductivity (C)

The hydraulic conductivity reflects the ability of aquifer

materials to transmit water, which in turn controls the rate

at which contaminants will flow with groundwater under a

given hydraulic gradient (Neshat et al. 2014). The

hydraulic conductivity distribution map is generated using

the pumping test results of the study area. Kriging inter-

polation algorithm is applied to interpolate the hydraulic

conductivity and to create the raster layer as shown in

Fig. 3g.

Land use (L)

Landsat Thematic Mapper (TM) satellite images of August

2014 are used to produce the land use map. TM satellite

images are widely applied for land use classification owing

to their relatively high spatial resolution (Liu et al. 2014).

Supervised classification method with maximum likelihood

Table 2 Data and its sources

used in this study
Data Sources

Depth to groundwater Field measured and monitoring wells

Net recharge Wuhan Center of China Geological Survey

Aquifer media Hubei Institute of Hydrogeology and Engineering Geology (Chen et al. 1985)

Soil media Previous literature (Zhao et al. 2007)

Topography DEM-based from Chinese Academy of Sciences

Impact of vadose zone Drilling logs

Hydraulic conductivity Pumping test results

Land use TM remote sensing images using supervised classification

Nitrate measurements Field sampling
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clustering technique is employed to classify the land use

into six classes: urban, agriculture, water, bare land, grass,

and forest, as illustrated in Fig. 3h.

Nitrate measurements

The nitrate concentration (expressed as mg/L NO3–N)

associated with groundwater was measured in August 2014

from 97 wells distributed in the study area (Fig. 4). Out-

liers are detected using the Z-scores (Haddad et al. 2015).

The Z-scores of the observations could be calculated as:

Zi ¼
xi � �x

s
; with s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1

X

n

i¼1

xi � �xð Þ2
s

ð2Þ

where xi is the observation value, �x is the mean, and s is the

standard deviation. The nitrate concentration values

obtained by the laboratory are considered acceptable for Z-

scores between -2 and 2 (Chakravarty et al. 2013). The

distribution of Z-scores and the corresponding nitrate

concentration for the groundwater samples is shown in

Fig. 5. As can been seen, two samples are rejected due to

the Z-scores felt outside the acceptable limit of ±2.

Description of the proposed methodology

Figure 6 illustrates the methodological flowchart. A com-

bination of land use, AHP and GAs methods is proposed to

modify the DRASTIC model to assess the groundwater

vulnerability. Detailed steps are described as follows:

1. The conventional DRASTIC method is applied

(DRASTIC model).

2. The land use map is overlapped with the resultant

DRASTIC model (DRASTICL model).

3. PCMs are used to develop the decision hierarchy

structures and determine the priorities of ranges for

parameters. New ratings are determined by AHP

method (AHP–DRASTICL model).

4. A GAs program is developed to re-ascertained the

weightings of the eight factors (DRASTICL–GAs

model).

5. AHP and GAs methods are coupled to generate a

new technique (AHP–GAs model).

6. Statistical analyses including Pearson’s correla-

tion coefficient and analysis of variance

(ANOVA) F statistic are adopted to verify the

vulnerability mapping by taking nitrate as the

typical pollutant.

7. The single-parameter sensitivity analysis is per-

formed to analyze the ‘‘effective weights’’ of the

parameters against their theoretical weights.

bFig. 3 Geodata layers involving: a Depth to groundwater. b Net

recharge. c Aquifer media. d Soil media. e Topography. f Impact of

vadose zone. g Hydraulic conductivity. h land use

Fig. 4 Nitrate sampling locations in the study area
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Groundwater vulnerability assessment

DRASTIC model

DRASTIC model involves the following seven hydrogeo-

logical features: D (Depth to groundwater), R (Net

Recharge), A (Aquifer media), S (Soil media), T (Topog-

raphy), I (Impact of vadose zone), and C (Hydraulic con-

ductivity). The model calculates an intrinsic vulnerability

index with different weighting factors based on the fol-

lowing equation:

DRASTIC Index ¼
X

7

i¼1

Wi � Rið Þ ð3Þ

where Wi is the weighting for parameter i with an associ-

ated rating of Ri. Each parameter is rated from 1 to 10, a

rating of 10 indicating a highest potential to the pollution,

and each parameter is weighted from 1 to 5 using a Delphi

(consensus) method to express their relative importance

with respect to each other. The ratings and weightings of

Aller et al. (1987) are shown in Table 1.

Development of DRASTIC model

Incorporating the land use to DRASTIC model Land use

is the primary factor causing habitat degradation and poor

water quality. It can affect the groundwater quality and

increase the pollution risk, especially in agriculture areas.

For this reason, it should be considered and incorporated

into the DRASTIC vulnerability index when evaluating the

groundwater vulnerability. The new model can be named

DRASTICL by acronyms of the eight factors. Then by

Fig. 5 Z-scores and NO3–N

concentration for groundwater

samples

Fig. 6 Flowchart of proposed methodology
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converting the land use map into a raster image to overlay

the DRASTIC index, the results of DRASTICL model are

expressed as the flowing equation:

DRASTICL Index ¼ DRASTIC Indexþ Lw � Lr ð4Þ

where Lw and Lr correspond to the weighting and rating of

land use factor, respectively. The land use factor is given a

weighting of 5, due to the potential impact of this param-

eter on groundwater. Detailed ratings are given in Table 3,

as illustrated in previous studies (Shirazi et al. 2013).

Correcting the ratings using AHP method AHP, devel-

oped by Saaty (1980), is often used to solve strategic

decision problems. This method is based on the construc-

tion of a series of PCMs. By ranking the importance of the

criteria, a set of PCMs is established to calculate the rel-

ative weights. The consequence of each PCMs could be

summarized in a square matrix, in which each element

ranges from 1/9 (absolute unimportance) to 9 (absolute

importance) as described in Table 4. Priorities are then

computed by normalizing each column of the matrix, to

derive the normalized primary right eigenvector, the rela-

tive weight vector, by following equation:

A� w ¼ kmax � w ð5Þ

where A is the PCM; w is the principal eigenvector; kmax is

the largest eigenvalue of matrix A. The consistency index

(CI) is calculated to determine the quality of the result of

the AHP. The formula for the CI is as follows:

CI ¼ kmax � n

n� 1
ð6Þ

where n is the dimension of matrix A. CR could be checked

based on CI, by:

CR ¼ CI

RI
ð7Þ

where RI is the ratio index (Lin and Yang 1996). As a

general rule, the judgment matrix is acceptable if

CR B 0.1. In contrast, if CR is greater than 0.1, the eval-

uation procedures have to be reviewed and reconsidered.

In this study, AHP method is employed to correct the

initial ratings participating in DRASTICL model. To

improve the accuracy and objectivity in decision-making,

three hydrogeologists are invited to fill the PCMs to eval-

uate the ratings of corresponding eight parameters. The

experts are supposed to specify their judgments of the

relative importance of each class by asking questions like

‘‘with respect to parameter x, how much more important is

class a to class b?’’. Not only normal comparison values,

that is, 1,2,…,9 and 1/2,1/3,…,1/9, are used to constructed

the PCMs, but also non-normal comparison values such as

1.1, 2.3,…,9.6 and 1/1.1, 1/2.3,…,1/9.6 are used when

experts have conflict opinions. Table 5 reports an example

of the inputs of the PCMs used to derive the optimized

ratings for the land use parameter. The RI = 1.24 and the

CR = 0.06\ 0.10, which indicates that the judgment

matrix passes the consistency check. The weights produced

from the AHP method ranges from 0.04 to 0.33, where 0.04

denotes the least susceptible and 0.33 denotes the most

susceptible to groundwater vulnerability. The same

assessments are applied to compare alternatives with

respect to the other parameters. The final alternative ratings

derived using AHP method are shown in Table 6.

Optimizing the weightings using GAs method GAs is an

iterative method based on the process of genetic selection

and natural elimination in biological evolution. GAs han-

dles a population of possible solution to optimize problems

using techniques inspired by natural evolution, such as

selection, crossover, and mutation. It is a useful tool for

searching and optimization problems. Candidate solutions

are retained and ranked for the each iteration according to

their eligibility. A fitness function is used to remove the

unqualified solutions. The algorithms are stopped when

the termination condition is met. In GAs, the design vari-

able is a string of numbers, usually called chromosome,

which represents the solution. The most common way of

encoding is a binary string with 1 and 0 s. The length of the

string depends on the accuracy. In this study, Python 2.6

software is utilized to establish the GAs program.

The goal of this procedure is to find the optimal weight-

ings of the eight parameters which maximize, as the objec-

tive function, the Pearson’s correlation coefficient between

the vulnerability index and nitrate concentration. The algo-

rithm is founded on a population size of 100 chromosomes,

each one of which consists of 80 bits string (every 10 bits

Table 3 Description and rating

for each land use class
Land use Rating Description

Urban 8 All residential, commercial, and industrial areas, including village settlement

Agriculture 8 Land used for cultivation, such as paddy fields and corn fields

Water 4 All areas of open water, including rivers, lakes, fishponds, and reservoirs

Bare land 3 Unused land, including barren land, waste land, and alkaline land

Grass 2 Areas for wild grass ground

Forest 1 Rangeland with trees, shrubs, and vines (natural and artificial forest)

Environ Earth Sci (2017) 76:426 Page 9 of 16 426

123



string coding one of the eight weighting values) and 200

generation steps. Table 7 represents theGAs features used in

this study. The GAs would be stopped once the maximum

generation number has evolved or if there is no change to

population’s best fitness for 50 iterations.

Combining AHP and GAs methods AHP method is pro-

posed to correct the ratings of eight parameters, while GAs

method is proposed to produce an optimal weighting

combination. Additionally, AHP and GAs methods are

combined to generate a new technique. The eight factors

are reclassified according to the modified ratings optimized

by AHP method. Then the GAs program is executed again

to find new solutions by using the same features as shown

in Table 7.

Normalization of vulnerability index

Given the different ranges of the vulnerability index

obtained from these models, for example, the DRASTICL

index is absolutely higher than the DRASTIC index for a

result of direct addition, and the relativity of groundwater

vulnerability index, unity-based normalization process is

employed for presenting the vulnerability maps based on:

Normalized Index ¼ V � Vmin

Vmax � Vmin

ð8Þ

where V is the vulnerability index, Vmin is the minimum

vulnerability index, and Vmax is the maximum vulnerability

Table 4 Scale for PCMs used in AHP (Saaty 1980)

Relative importance Definition

1 Equally important

2 Equally to slightly important

3 Slightly important

4 Slightly to fundamentally important

5 Fundamentally important

6 Fundamentally to really important

7 Really important

8 Really to absolutely important

9 Absolutely important

Reciprocals of above

numbers

If criteria i has one of the above numbers

designated to it when compared with

criteria j, then j has the reciprocal value

when compared with i.

Table 5 PCM for land use

parameter
Land use Urban Agriculture Water Bare land Grass Forest Criteria weight

Urban 1 1 4 2 5 9 0.33

Agriculture 1 1 2 4 4 5 0.30

Water 1/4 1/2 1 1/2 2 3 0.11

Bare land 1/2 1/4 2 1 2.5 2 0.15

Grass 1/5 1/4 1/2 1/2.5 1 3 0.07

Forest 1/9 1/5 1/3 1/2 1/3 1 0.04

Table 6 Alternative ratings

optimized by AHP method
Depth (m) Recharge (mm/year) Topography (%) Conductivity (m/d)

Range Rating Range Rating Range Rating Range Rating

\1.5 0.32 50.8–101.6 0.08 0–2 0.32 \1 0.08

1.5–4.6 0.26 101.6–177.8 0.22 2–6 0.30 1–2 0.12

4.6–9.1 0.24 177.8–254 0.34 6–12 0.20 2–3 0.26

9.1–10.0 0.18 [254 0.36 12–18 0.14 3–4 0.54

[18 0.04

Aquifer media Impact of vadose zone Soil media Land use

Range Rating Range Rating Range Rating Range Rating

Clay 0.20 Clay 0.12 Clay 0.08 Urban 0.33

Silt 0.22 Mild clay 0.16 Silty clay 0.10 Agriculture 0.30

Sand and gravel 0.58 Silty clay 0.18 Silt 0.12 Water 0.11

Silt 0.24 Sand 0.70 Bare land 0.15

Sand and gravel 0.30 Grass 0.07

Forest 0.04
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index. The normalized vulnerability index ranging from 0

(lowest potential to contamination) to 1 (highest potential

to contamination) is then divided into four groups with the

equal interval: very low (\0.25), low (0.25–0.50), high

(0.5–0.75), very high (0.75–1). It is helpful in comparing

the vulnerability maps produced by different models.

Model validation

Nitrate, one of the major contaminant from anthropogenic

activities, is not usually found in nature groundwater

(Baalousha 2010). With regard to the fact that this con-

taminant is highly risky to human health and it mainly

comes from the nitrogen fertilizers, which are frequently

used in agricultural areas to enhance the crop production in

the study area, the nitrate concentration is selected as an

indicator of initial contamination. Statistical analyses

including Pearson’s correlation coefficient and ANOVA

F statistic are performed to validate the vulnerability

results of different models.

Pearson’s correlation

Pearson’s correlation analysis is investigated to check the

degree of association between the vulnerability index and

nitrate concentration. The sampling locations map is

overlaid on the vulnerability index maps, and the corre-

sponding value for each point is extracted within GIS

environment. The attribute file of the sampling locations is

updated with the data from vulnerability index map based

on the spatial relationship between the features. Then

Pearson’s correlation coefficient could be calculated by:

q ¼ covðX;YÞ
rXrY

ð9Þ

where q is the correlation coefficient, cov is the covariance,

and r is the standard deviation.

ANOVA F statistic

F statistic is the famous statistic for the ANOVA to com-

pare the means of samples from different levels. Larger

values of F reject the null hypothesis that the means are

equal (Montgomery 2008). The larger analysis of ANOVA

F statistic is, the less overlap there is between the nitrate

values in different vulnerability classes (Huan et al. 2012).

ANOVA F statistic can be calculated by:

F ¼ SST=k � 1

SSE=n� k
ð10Þ

where SST and SSE are, respectively, the sum of squares

for treatment and the sum of squares for error. k - 1 and

n - k are, respectively, the freedom degree for treatment

and freedom degree for error.

Sensitivity analysis

Subjectivity is inevitable in the selection of ratings and

weightings in all parametric techniques, which can strongly

affect the vulnerability assessment. Sensitivity analysis

could provide valuable information on the contribution of

ratings and weightings of input parameters and could help

analyst to judge the significance of subjective elements.

There are two types of sensitivity analysis: the map

removal sensitivity analysis and the single-parameter sen-

sitivity analysis (Gogu and Dassargues 2000). In this study,

single-parameter sensitivity analysis is conducted to eval-

uate ‘‘effective weight’’ of each parameter.

Single-parameter sensitivity analysis checks the spatial

significance of the parameters in the index computation.

The effective weight could be defined as follows:

Wpi ¼ PRi � PWið Þ=Vi � 100% ð11Þ

where Wpi is the effective weight for each unique condition

subarea i, Vi is the vulnerability index, PRi and Pwi are the

rating values and weighting values of parameter P assigned

to subarea i. A ‘‘unique condition subarea’’ is one or more

polygons in the vulnerability map with a unique combi-

nation of rating values of the factors used to compute the

vulnerability index (Napolitano and Fabbri 1996).

Results and discussion

Application of DRASTIC model

The assigned layers for the seven DRASTIC parameters are

constructed in raster format with a pixel size of 30 m,

which are briefly discussed.

The maximum depth to groundwater is found in the

northwest of the study area. Depth generally increases from

southeast to northwest. According to Aller et al. (1987),

ratings of 10, 9, 7, and 5 are assigned to the corresponding

four classes, respectively.

The net recharge, calculated by Eq. (1), varies between

92.8 and 326.8 mm/year. Net recharge in 40% of study

Table 7 GAs features used in this study

Number of chromosomes in the population 100

Number of generations 200

Natural selection rate 50%

Selection Standard roulette

Crossover Single-point crossover

Crossover probability 0.6

Mutation probability 0.01
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area is greater than 254 mm/year. DRASTIC standard

ratings of 3, 6, 8, 9 are assigned to the corresponding four

classes.

As for the aquifer media of study area, most parts are

deposited with clay. Deposits of silt are mainly located in

the middle region of the study area. Deposits of sand and

gravel contribute to a very low percentage of the study

area. The higher permeability of the aquifer, the potential

for pollution is greater. In this study, rating of 8 is assigned

for the aquifer media type of sand and gravel, 5 for silt, and

3 for clay.

Based on the previous studies, types of soil media

mainly consist of clay, silty clay, silt, and sand. Silt and

clay could be found in most part of the study area. Sand

with high permeability is assigned a rate of 9 following the

DRASTIC classification. Rating of 3 is attributed for silt, 2

for silty clay, and 1 for clay.

The topography is divided into five classes according to

Aller et al. (1987), and ratings from 1 to 10 are assigned to

the different classes.

The vadose zone of the study area is subdivided into five

groups: clay, mild clay, silty clay, silt, and sand and gravel,

with ratings of 1, 2, 3, 4, and 5, respectively.

The hydraulic conductivity of the study area is

smaller than 4.1 m/d. According to Aller et al. (1987),

rating of 1 would be assigned to all subareas. However,

it is meaningless because the information of this factor

would not be completely reflected. A simple modifica-

tion is proposed relating to the rating values of hydraulic

conductivity: 1 for conductivity \1 m/d, 3 for conduc-

tivity 1–2 m/d, 5 for conductivity 2–3 m/d, and 7 for

conductivity 3–4 m/d.

Figure 7a and Fig. 8a present the normalized DRASTIC

vulnerability index and the corresponding percentages,

respectively. Obviously, the normalized vulnerability index

ranges from 0 to 1 for the whole plain. The DRASTIC

results illustrate that 3.98% of the total area has ‘‘very

high’’ vulnerability, 45.09% has the ‘‘high’’ vulnerability,

and more than half (50.93%) has the ‘‘low’’ and ‘‘very

low’’ vulnerability.

Development of DRASTIC model

DRASTICL model

Figure 7b shows the normalized vulnerability map for

DRASTICL model. The difference between the DRAS-

TICL and DRASTIC results is obvious. Figure 8b illus-

trates that 8.80% of the area is under a ‘‘very high’’

contamination risk, and 57.73% is covered by ‘‘high’’ class

of vulnerability to pollution. The ‘‘low’’ and ‘‘very low’’

classes are at 27.66 and 5.81%, respectively.

AHP–DRASTICL model

Figure 7c presents the normalized vulnerability map for

AHP–DRASTICL model. Figure 8c indicates that the

percentage for ‘‘very high’’ and ‘‘high’’ classes is at

34.87%, while the percentage for ‘‘low’’ and ‘‘very low’’

classes is at 65.13%.

DRASTICL–GAs model

By taking Pearson’s correlation coefficient between the

vulnerability index and the nitrate concentration as the

objective function and the weightings of the eight param-

eters as the optimal variables, the GAs stopped when the

highest value of fitness function reached 58.17%. After

decoding the corresponding weighting values, the vulner-

ability mapping procedure was carried out. Figure 7d and

Fig. 8d illustrate the vulnerability map and percentages of

the areas for DRASTICL–GAs model, respectively. As

shown in Fig. 8d, the percentages for ‘‘very high’’ and

‘‘high’’ classes are at 24.05 and 55.53%, respectively.

4.76% of the total area is covered with ‘‘very low’’ class of

vulnerability to pollution, and 15.66% is covered with

‘‘low’’ class.

AHP–GAs model

The GAs stopped when the highest value of fitness function

reached 75.31%. The results of AHP–GAs model indicate

that 7.11% of the study area belongs to a ‘‘very high’’ class.

The percentage for the ‘‘high’’ class is 60.16%. The ‘‘low’’

and ‘‘very low’’ classes are 26.81 and 5.92%, respectively

(Fig. 8e). The vulnerability map illustrates the ‘‘high’’ and

‘‘very high’’ vulnerability zones mostly occur in the central

Jianghan Plain, particularly along the Yangtze River

(Fig. 7e). There are mainly farmlands where fertilizers are

extensive used. In addition, the depth to groundwater is

shallower in these areas, therefore, causing a higher

groundwater pollution risk.

Validation of the models

Table 8 reports the validation results of the five models.

The mean nitrate concentration values associated with the

four classes are calculated for different models. As can be

seen, the mean values increase from low vulnerability to

high vulnerability. ANOVA F statistic shows that there is a

markedly significant difference across vulnerability classes

for all models (P\ 0.01). In other words, the null

hypothesis of equal means should be clearly rejected and

there is a significant difference in means between different

classes. High nitrate concentration could be observed in the

high groundwater vulnerability areas and vice versa. The
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results demonstrate that the vulnerability assessment is an

efficient approach to evaluate the groundwater

vulnerability.

In most case, correlation of vulnerability results with

actual pollution occurrence is a technique for validating the

accuracy of groundwater vulnerability mapping (Huan

et al. 2012). It is important to note that a good performance

on only a single contaminant may involve uncertainties.

However, considering the extensive agricultural activities

and the immoderate use of nitrogen fertilizers in the study

area, the nitrate concentration is taken as the primary

indicator to validate the accuracy of the vulnerability

mapping. Pearson’s correlation value is calculated at

41.07% for the original DRASTIC model. This value is

Fig. 7 Vulnerability maps: a DRASTIC. b DRASTICL. c AHP–DRASTICL. d DRASTICL–GAs. e AHP–GAs
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relatively low because the original model does not consider

the regional hydrogeological conditions and land use fac-

tor. The DRASTIC model needs to be improved to reflect

the actual groundwater vulnerability. The correlation

coefficient increases to 55.60% when the land use map is

introduced. The results indicate that the land use factor has

significant effect on the groundwater vulnerability. Fertil-

izers used in agricultural, industrial activities, septic tanks,

and sewer systems within urban areas are important

sources of nitrate contamination. These hazards can abso-

lutely increase the groundwater pollution risk. A correla-

tion value of 58.05% is found for the AHP–DRASTICL

model, and a correlation value of 59.83% is obtained for

the DRASTICL–GAs model. These observations lead to

conclusion that the vulnerability map could be more real-

istic by both optimizing the ratings and weightings. The

Pearson’s correlation value is calculated at 75.31% for the

AHP–GAs model, indicating a strong correlation between

the vulnerability index and the measured nitrate concen-

tration. Generally, there is a considerable increase in the

correlation coefficient after each modification and the

accuracy improves over 30% compared to the original

model. Furthermore, it is noticed that the ANOVA

F statistic increases to 12.47, which is twice larger than that

obtained by the original DRASTIC model, when the land

use factor is incorporated. AHP–GAs model shows the

largest ANOVA F statistic of 13.10, which indicates that

the least overlap exists between the nitrate concentration

values in different vulnerability classes. Statistically, it can

be argued that the modifications proposed in this study are

effectiveness and the AHP–GAs model may be the most

suitable model for study area.

Single-parameter sensitivity analysis

A total of 9892 unique condition subareas are used to

calculate the ‘‘effective weight’’ that each parameter has

according to Eq. (11). Statistical analysis is performed to

analyze and display the results as shown in Table 9. In

particular, in Jianghan Plain, the results reveal that the

depth to groundwater mostly influences the vulnerability

when comparing both theoretical and effective weights.

The results confirm that land use with 19.86% of mean

effective weight is a parameter that strongly affects the

Fig. 8 Percentage of

vulnerability areas:

a DRASTIC. b DRASTICL.

c AHP–DRASTICL.

d DRASTICL–GAs. e AHP–

GAs

Table 8 Validation of groundwater vulnerability mapping

Model Mean NO3–N concentration

(mg/L) across vulnerability

classes (from low to high)

Pearson’s correlation

coefficient (%)

ANOVA

F statistic

DRASTIC 7.84, 9.19, 11.76, 17.30 41.07 4.07*

DRASTICL 4.29, 8.34, 10.92, 18.91 55.60 12.47*

AHP–DRASTICL 4.30, 9.10, 13.14, 19.84 58.05 8.79*

DRASTICL–GAs 4.29, 5.99, 9.83, 14.03 59.83 10.60*

AHP–GAs 4.30, 7.22, 11.66, 18.22 75.31 13.10*

* P\ 0.01
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vulnerability index. The most unexpected result, shown in

Table 9, is that the net recharge has a much higher effec-

tive weight with an average value of 23.87% against the

theoretical weight that is 17.60%. The topography seems to

be of low importance in groundwater vulnerability since it

has the lowest effective weight. The significance of depth

to groundwater and net recharge as well as the land use

highlights the importance of obtaining accurate, detailed,

and representative information about these factors.

Conclusion

DRASTIC model has been widely applied to evaluate the

contamination risk of an aquifer. However, it may be not

appropriate for accurate assessment of groundwater vul-

nerability due to the obvious drawbacks of ignoring the

effect of local hydrogeological conditions. The present

study resulted in a new DRASTIC-based model, new

techniques to optimize the ratings and weightings of

selected parameters. And then it was used to assess the

groundwater vulnerability in Jianghan Plain, China. The

results showed that the modified model had a large

improvement over the conventional DRASTIC method.

7.11% of the study area has ‘‘very high’’ pollution poten-

tial, 60.16% has ‘‘high’’ pollution potential, 26.81% has

‘‘low’’ pollution potential, and the remainder of the study

area (5.92%) has ‘‘very low’’ risk for groundwater pollu-

tion. The depth to groundwater was detected as the most

significant factor affecting the groundwater vulnerability

with 39.28% of mean effective weight, followed by net

recharge (23.81%) and land use (19.86%). It highlights the

importance of obtaining accurate, detailed, and represen-

tative information for a more efficient interpretation of the

vulnerability index about these factors. Detailed and fre-

quent monitoring should be carried out for observing the

changing level of pollutants in groundwater. Further

investigations are also required in order to understand the

relationship between the groundwater vulnerability and

some other contaminants.

In conclusion, the proposed method could be considered

as a promising tool in coordination with the original

DRASTIC method for groundwater vulnerability assess-

ment in other study areas globally.
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