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Abstract Rapid urbanization has changed land use and

urban structure in China and therefore greatly modified

land surface properties and land–atmosphere interactions,

causing further local and regional climate change. Climate

model simulation and urbanization process analysis are

usually limited by poor accuracy of coarse-resolution land

use/cover products employed in regional climate models.

This study sought to identify better urban representation

from Landsat images and monitor urban expansion by

change detection of spatial patterns and urban fractions in

southeastern coastal region of China. We used the

improved normalized indices-based method to classify

urban and built-up areas from Landsat images in Jiading

District, Shanghai. Classification results were evaluated at

both the pixel scale and the model grid scale, with overall

accuracy of 88% and k coefficient of 0.76. Moreover,

urbanization process over the Guangzhou–Foshan–Dong-

guan area was examined from 2000 to 2009. We aggre-

gated the original results of urban classification data from

Landsat images as fractional cover information in 1-km

grids. The total fractional urban change in 2000–2005

(10.65%) was approximately three times greater than in

2005–2009 (3.38%). We also compared the fractional

cover of urban expansion with the corresponding period of

MODIS land cover products. It showed that existing land

cover products in models had deviations and could not

capture well the underlying conditions and urbanization

process. Different fractional covers of urban scenarios were

expected to provide better inputs for accurate modeling of

critical environmental feedbacks over expanding urban

clusters.

Keywords Urban � Satellite � Normalized index �
Fractional cover � Regional climate models

Introduction

Urban areas facilitate intensified human activities, although

they currently cover less than 1% of the Earth’s surface

(Gong et al. 2013). In the wake of rapid economic devel-

opment, urbanization has been attributed to the accelerat-

ing integration of developing areas in East Asia into the

world economy, which has involved dramatic changes in

land use and urban structure in China (Dick and Rimmer

1998). Urbanization rate of China has increased from 19.4

to 55.74% during 1980–2014 as revealed by the census

data from the National Bureau of Statistics of China (http://

www.stats.gov.cn).

Urbanization has permanently converted large areas of

cropland and natural vegetation to impervious urban land,

resulting in the changes to land surface properties including

land use/cover, surface albedo, and surface roughness et al.

(Kalnay and Cai 2003; Foley et al. 2005; Normile 2008; Hu

et al. 2015b). This transformation in urban areas has greatly

altered energy and water exchange in land–atmosphere

interactions and boundary layer processes over urban

canopies and downstream areas, causing further local and

regional climate change (Crawford et al. 2001; Ren et al.
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2008; Fernando et al. 2012; Fischer et al. 2012; Peng et al.

2012). Global temperatures have increased since pre-in-

dustrial times; however, the trends and magnitudes of cli-

mate warming induced by urbanization on different spatial

scales are still controversial (Stocker et al. 2013).

To investigate the accurate impacts of urbanization on

climate change, more and more regional climate models

have been implemented by employing different land use

change scenarios. However, recent studies indicate that

accurate representation of urban land use is important but

poorly captured in current climate models (Oleson et al.

2008; Gao and Jia 2013; Jia et al. 2015). The default land

cover data sets used in regional climate models, e.g.,

Weather Research and Forecasting (WRF) model, are at a

coarse resolution of 1 km. The urban and built-up areas

within those data sets are not very accurate in capturing

surface properties due to limits in spatial resolution and

classification algorithm, which would result in deviations

in model simulation (Ge et al. 2007; Friedl et al. 2010;

Sertel et al. 2010). These urban data are not up-to-date and

have low Cohen’s kappa values for regions in experiencing

rapid urbanization process such as Southeast and East Asia

(Potere et al. 2009). Meanwhile, researches showed that the

better representations of urban features can directly

improve model outputs. For example, Sertel et al. (2010)

found that simulations with the new land cover data from

Landsat led to more reasonable temperature than with the

default land cover data employed in WRF model. Root-

mean-square errors for the Landsat-derived data were

between 2.1 and 3 �C, whereas for the existing land cover

data are between 2.9 and 7.1 �C. Therefore, the deviation

of urban land use/cover data declines the results of climate

modeling and probably results in the uncertainty of climate

warming trends and magnitude by urbanization.

Integration of human and earth system models for cli-

mate change impact assessment requires consistent pro-

jections of urban extent and accurate representation of

urban intensity. The nature of urban built-up areas, such as

the size, shape, intensity, and spatial context, is a key

parameter of climate models (Jackson et al. 2010). Many

researchers have made use of remote sensing imagery to

distinguish urban lands from non-urban lands. To interpret

remotely sensed data for urban derivations, methods range

from pure interpretation, semiautomated and fully auto-

mated have been proposed (Sun et al. 2013). Pure inter-

pretation started with conventional multispectral visual

classification, which normally has less than 80% accuracy

(Xu 2007). Semiautomated methods, such as supervised

classification by the maximum likelihood classifier, have

accuracy depending on subjective training samples. Due to

spectral confusion of the heterogeneous urban built-up land

class, classification of a multidate, multiband image would

be difficult for the most common classification algorithm

(Schneider et al. 2005; Hu et al. 2015a). Many studies

combined different methods to improve the urban extrac-

tion. Fully automated approaches, e.g., combination of

different indices without manual thresholding, have the

advantages of quickly and more objectively processing

data and thus are easy replicated (He et al. 2010). On the

one hand, urban landscapes are typically composed of

features, such as buildings, concrete pavements, which are

much smaller than the grid resolution of regional climate

models. Moreover, urban mapping accuracies increase with

increasing spectral sensor resolution (Herold and Roberts

2010). Thus, we used Landsat data to map urban extent,

because of their long-term digital archives as well as the

fine spatial resolution for capturing urban characteristics in

models (Bagan and Yamagata 2012; Weng 2012; He et al.

2013). On the other hand, urban intensity can be repre-

sented by fractional urban signals aggregated by the orig-

inal results of urban classification data from Landsat

images. This fractional urban land cover may capture well

the urbanization process and provide detailed dynamic

information.

Therefore, the purpose of this paper is to identify better

urban representation than the existing urban data in

regional climate models and consequently to provide better

inputs for accurate modeling of critical environmental

feedbacks over expanding urban clusters. We classified

urban and built-up areas from Landsat images based on

normalized indices and aggregated the original results of

urban classification data from Landsat images as fractional

cover information in 1-km grids. Moreover, the urbaniza-

tion process over the Guangzhou–Foshan–Dongguan area

was examined from 2000 to 2009 by change detection of

spatial patterns and urban fractions. We also evaluated the

accuracy or deviations of existing urban land cover prod-

ucts to examine their limitations in climate model simu-

lation and urbanization process analysis.

Study area

Southeastern coastal region of China has been experiencing

rapid urbanization and economic growth by government

directives (Seto et al. 2002). Fringe area and satellite towns

caused by rapid urbanization process made more mosaic

land surface characterization in this region. We chose two

representative areas around Shanghai and Guangdong over

southeastern coastal region of China (Fig. 1). One was

focused on the center of Jiading District (31�230N,
121�150E), northwest of Shanghai (Fig. 1a). It was con-

fined to a 9 km 9 9 km test site with a round moat and a

ring road in the center. The other was located in the

Guangzhou–Foshan–Dongguan area (GFD), confined to a

79 km 9 93 km window (columns and rows) (Fig. 1b).
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Data and methods

Data sets for urban land cover derivation

Landsat images

Cloud-free and high-quality Landsat TM/ETM ? data

(Table 1) covering the above areas were collected from the

USGS government website (http://earthexplorer.usgs.gov/).

The Landsat data were geometrically rectified according to

the Universal Transverse Mercator projection at

30 m 9 30 m resolution, using second-order polynomial

and bilinear interpolation. Ground control points were

selected from intersections of river channels and roads, and

RMSEs for geo-correction were less than 1.5 pixels. In

addition, some auxiliary data were also collected to

Fig. 1 Location of this study in southeastern coastal region of China: a the red rectangle is the test site located in the Jiading District, Shanghai;

b the case study area for urban fractional change detection, located in the Guangzhou–Foshan–Dongguan area

Table 1 MODIS land cover product and Landsat TM/ETM ? images used in this study

Satellite Landsat TM/ETM Terra MODIS

Location and time P118/R38, April 27, 2000

P122/R44 November 1, 2000, November 23, 2005,

December 4, 2009

H28V06 2001 2005 2009

Spatial resolution 30 m 500 m

Method for urban land

identification

Normalized indices-based classification (original urban land

fractions)

Decision tree classification (fractional urban

land[50%)

Definitions of urban area Urban area or urban-related instructions Buildings and other man-made structures
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validate classification results, including a 1:50,000 scale

topographic map, historical images from Google Earth, and

field investigations.

Existing land cover products employed by climate models

The 500-m C5 MODIS land cover product (MCD12Q1,

Friedl et al. 2010) in 2001, 2005, and 2009 (Table 1) was

collected from the MODIS land team (http://modis-land.

gsfc.nasa.gov/). For comparison with Landsat-derived

urban land cover data, MODIS tiles over study areas of

these products were resampled by the nearest neighbor

method and reprojected under the datum of WGS84 by the

MODIS Reprojection Tool (MRT, http://lpdaac.usgs.gov/

tool/modis_reprojection_tool). The International Geo-

sphere-Biosphere Programme (IGBP) classification

scheme was chosen for urban-class derivation and the

analysis of the reprocessed data. The urban and built-up

category (class 13) was defined as the area covered by

buildings and other man-made structures (Friedl et al.

2002). The MODIS products were reclassified into urban

(class 13) and non-urban (other classes) categories to

facilitate the subsequent process.

Normalized Indices-based Urban Built-up Areas

Mapping

The normalized difference vegetation index (NDVI) and

other normalized indices are widely used in environmental

and climatic related studies. With respect to urban area

classification, Zha et al. (2003) proposed the normalized

difference built-up index (NDBI) to map urban built-up

areas. First, continuous (c) NDVI and NDBI images were

obtained by spectral responses of pixels in the following

equations.

NDVIc ¼ NIR� REDð Þ= NIRþ REDð Þ ð1Þ
NDBIc ¼ MIR� NIRð Þ= MIRþ NIRð Þ ð2Þ

Second, the derived NDVIc and NDBIc were recoded to

create binary NDVI and NDBI image with 1 for all pixels

having positive value and 0 for all remaining pixels of

negative value. Finally, the urban and built-up areas were

extracted by taking only positive difference values of

binary (b) NDBI and NDVI images.

Ub ¼ NDBIb�NDVIb[ 0 ð3Þ

However, the binary NDBI and NDVI images were

recoded under the assumption that all positive values of

continuous NDBI and NDVI images should indicate built-up

areas and vegetated areas, respectively. Thus, this mapping

method is unable to separate urban areas from patches with

low fractions of natural vegetation and bare lands.

Xu (2007) proposed an urban mapping method by a

logic calculation, which involved three indices including

NDBI, modified normalized difference water index

(MNDWI), and soil adjusted vegetation index (SAVI). The

continuous images of MNDWI and SAVI can be calculated

by the following equations.

MNDWIc ¼ GREEN �MIRð Þ= GREEN þMIRð Þ ð4Þ
SAVIc ¼ 1þ Lð Þ NIR� REDð Þ=ðNIRþ REDþ LÞ ð5Þ

where L is the correction factor for soil background bril-

liance, and the value of L is from 0 to 1 and set to 0.5 for

urban areas.

The logic calculation stated that if the values of pixels in

continuous NDBI images were greater than both values in

continuous MNDWI and SAVI images, then the pixels

were considered as built-up category.

Uc ¼ ðNDBIc[ SAVIcÞANDðNDBIc[MNDWIcÞ ð6Þ

Here, we improved urban areas mapping method based

on Uc. By examining the spectral reflectance of 100 rep-

resentative pixels of urban built-up and non-built-up areas

(e.g., vegetation and water), it has been found that built-up

areas have an increase in reflectance from green band to red

band (band 2 and band 3 in Fig. 2). The red band is used

for detection of chlorophyll (i.e., vegetation), which

absorbs high in the red wavelengths, as well as for the

observation of roads and bare lands, which reflect highly in

the red band. The green band is mainly used to distinguish

vegetation from background categories, as vegetation

reflects highly in the green band. Taking advantage of a

normalized calculation, an urban index can be expressed by

the standard difference between these two bands.

UIc ¼ ðRED�GREENÞ= REDþ GREENð Þ ð7Þ

Based on the above spectral characteristic, the improved

method involved four indices including NDBIc, MNDWIc,

SAVIc, and UIc. The four indices were used as four bands

of a new image. For the new image, in addition to the band

characteristics described by Uc, the positive value of UIc

could help to further capture weak urban signals, especially

in those areas of low fractional vegetation. The Integrated

Urban Index (IUI) approach was proposed to segment

urban built-up areas from other land types using an

improved logic calculation.

IUI ¼ NDBIc [ SAVIcð ÞAND NDBIc [MNDWIcð Þ
AND UIc[ 0ð Þ

ð8Þ

The IUI approach and existing mapping methods (Ub

and Uc) were applied and evaluated in Jiading District by

logic tree operation to identify urban built-up and non-

urban classes.
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Assessment methods

Accuracies of the IUI against existing methods (Ub and

Uc) were performed at both the pixel scale and the model

grid scale of 1 km. At the pixel scale, based on historical

images from Google Earth and field investigation, 100

random samples for built-up areas and 100 for non-built-up

areas for each method were created by Python code to

validate our results. Four commonly used measures,

namely the overall accuracy, the kappa (j) coefficient,

omission error, and commission error, were calculated

from the confusion matrix to reveal the accuracies of the

IUI against existing methods. The overall accuracy is

computed by dividing the total number of correctly clas-

sified pixels by the total number of reference pixels. The j
is calculated by multiplying the total number of pixels in

all the ground truth classes (N) by the sum of the confusion

matrix diagonals (xkk), subtracting the sum of the ground

truth pixels in a class times the sum of the classified pixels

in that class summed over all classes (xkRxRk), and dividing

by the total number of pixels squared minus the sum of the

ground truth pixels in that class times the sum of the

classified pixels in that class summed over all classes by

the following equation.

j ¼
N
P

k

xkk �
P

k

xkRxRk

N2 �
P

k

xkRxRk
ð9Þ

The omission error represents pixels that belong to the

ground truth class, but the classification technique has

failed to classify them into the proper category. The

commission error represents pixels that belong to another

class that are labeled as belonging to the class of interest.

At the model grid scale, urban fractions were calculated

by the algebraic proportions of urban and built-up areas

within the given landscape unit. Firstly, we aggregated the

original results of urban classification data from Landsat

images as fractional cover information in 1-km grids. Then,

we chose three grids as exemplars with 990 m 9 990 m

window to represent urban fractions at the model grid scale

for different development levels, i.e., from rural, to urban–

rural fringe, and to urban. The 990 m is chosen because it

can be divided by 30 m (the resolution of Landsat data) and

comparable to 1 km. Next, the urban and built-up areas for

corresponding locations of grids from QuickBird imagery

were delineated by manual interpretation and on-screen

digitization. The proportions of these outlined urban areas

within grids were computed as urban fractions for evalu-

ation of reference. Thus, urban fractions aggregated from

Landsat and QuickBird images were compared and

examined.

Detection of urban expansion

A framework for change detection of urban expansion at

the model grid resolution of 1 km based on IUI was cre-

ated. Firstly, the IUI approach was applied to Guangzhou–

Foshan–Dongguan area to map urban areas based on

Landsat images in 2000, 2005, and 2009, respectively. The

30-m IUI-based urban areas were derived for the three

periods. Second, square grids at 1-km spatial resolution

were created to cover the boundaries of the study area.

Next, urban land classification results were aggregated to a

1-km resolution by calculating proportions of urban areas

within grids. Thus, fractional covers of urban land in 1-km

grids were derived for these years. We examined urban

expansion by change detection of spatial pattern and urban

fractions. The interval of 0.2 was taken as an example to

analyze development of urban intensity from 2000 to 2009.

At last, we overlaid and compared with MODIS urban land

Fig. 2 a Spectral reflectance of urban built-up, vegetation, and water in different bands, taking the Jiading Landsat ETM ? image as an

example, b spectral features of different normalized indices represented by urban built-up, vegetation, and water
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cover to examine accuracy of existing land cover data in

climate models.

Results

Comparison of urban and built-up areas

classifications

Urban areas were derived by Ub, Uc, and IUI approaches

from Landsat ETM ? image taken on April 27, 2000,

located in Jiading District, Shanghai (Fig. 3). The IUI

result for the test site was in high agreement with the

expected urban morphology in the original Landsat ima-

gery. The Ub result only delineated the outline of urban

and built-up area, neglecting details within the city. The Uc

result represented some information of interior urban, but it

described little in area of low vegetation density within the

city. Thus, the IUI approach is a better alternative than

existing methods for patchy urban area detection, because

it not only delineated the urban outline but also classified

urban land from the inner mosaic land surface.

Accuracy

Pixel scale

The overall accuracy of IUI approach was 88% (Table 2),

greater than Ub (70.5%) and Uc (83.5%). The values of the

j coefficient for Ub, Uc, and IUI were 0.41, 0.67, and 0.76,

respectively. Moreover, Ub and Uc methods had higher

commission errors than the IUI approach, incorrectly

assigning some non-urban areas to urban class (see the area

in the red rectangle in Fig. 3). The results demonstrated

that the IUI was able to capture detailed urban land use

with higher accuracy than existing methods when applied

simultaneously in the same context.

Model grid scale

Grids at around 1 km were chosen to evaluate the ability of

IUI method to capture urban signals in various cases. Grid I,

II, and III, located in the northwest of the Jiading District,

were taken as exemplars to represent urban fractions of dif-

ferent development levels in this region (Fig. 4), i.e., from

rural, to urban–rural fringe, and to urban. Results showed that

urban extent delineated byUbwas in the least agreement with

the expected urban morphology from high-resolution

QuickBird and pan-sharpened images. Urban fractions of

each grid using Ub, Uc, and IUI methods, as well as corre-

sponding locations from the QuickBird image, are compared

(Table 2). The values of urban fractions calculated from the

IUI approach were more comparable to those from the

QuickBird image thanUb and Ucmethods. For grid III, urban

fraction using Ub was 100%; however, there were obviously

non-urban areas in both the QuickBird and pan-sharpened

images. The results indicated that the urban fractions from the

IUI had a higher accuracy than existing methods when

compared at the 1-km scale. IUI can effectively capture

accurate fractional urban signals for different development

levels of urbanization and therefore better estimate urban

fractions at coarse resolution for climate models.

Changes in fractional urban lands

under urbanization in the GFD area

Spatial pattern

The spatiotemporal patterns of urban fractions over the

Guangzhou–Foshan–Dongguan area at the 1-km scale in

2000, 2005, and 2009 are shown in Fig. 5. From 2000 to

2005, the development of satellite towns was prevalent in

the north and southeast, such as Qingyuan and Huadu.

From 2005 to 2009, apart from satellite towns in Zeng-

cheng, the main change in urban fraction resulted from

increasing intensity of core areas, i.e., Guangzhou, Foshan,

and Dongguan. Results showed that urban development in

this region has been directed out of the core areas to nearby

towns, leading to a poly-nucleated urban form. Multidi-

rectional satellite towns emerged and located in the

periphery from the core city. The connections between the

core area and satellite towns are covered by low intensity

of urban fractions.

Urban fractions

Change detection of urban fractions at the model grid

resolution was applied by IUI for detailed urban expansion

in GFD area. Urban fractions were analyzed and summa-

rized at intensity of 0.2 (Table 3). Urban fractions in the

intensity of 0.6–1 increased from 2000 to 2009. The

0.6–0.8 intensity increased twice more in 2000–2005

(5.10%) than in 2005–2009 (1.71%), whereas the 0.8–1

intensity increased comparatively in 2005–2009 (1.67%)

and in 2000–2005 (1.92%). In contrast, urban fractions in

the intensity of 0–0.4 decreased from 2000 to 2009, indi-

cating denser urban canopy and reduced gaps among urban

clusters in past decade. The 0–0.2 intensity decreased much

more in 2000–2005 (7.73%) than in 2005–2009 (1.27%). It

is noteworthy that urban fractions in the intensity of

0.4–0.6 increased 3.63% in 2000–2005 and then decreased

0.41% in 2005–2009. From 2000 to 2005, we found that

the maximum increase in urban fractions in this region was

in the intensity of 0.6–0.8, whereas the maximum decrease

was in 0–0.2. From 2005 to 2009, results showed that the

maximum decrease in urban fractions was in the intensity
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of 0.2–0.4. Overall, the total fractional urban change in

2000–2005 (10.65%) was approximately three times

greater than that in 2005–2009 (3.38%).

Comparison of urban expansion using MODIS

and Landsat data sets

Urban land spatial patterns in GFD from MODIS land

cover product were compared with IUI classification results

from Landsat imagery (Fig. 6). All these data were repro-

cessed to 1-km resolution and the same projection. We

aggregated the original results of urban classification data

from Landsat images as fractional cover information in

1-km grids. The results from Landsat images and socioe-

conomic data sets revealed rapid urbanization during

2000–2009, with dramatic changes in urban fringe areas.

By contrast, minor fractional urban signals were detected

from MODIS land cover data sets, in which the core urban

Fig. 3 Comparison of results

by IUI and existing methods:

a the false color composition

(red:NIR, green:red and

blue:green) of the Landsat

ETM ? image taken on April

27, 2000, located in Jiading

District, Shanghai; b–
d classification images of urban

and built-up areas by methods

of Ub, Uc, and IUI,

respectively; the red rectangle

in each panel shows where

existing methods of Ub and Uc

produced obvious commission

error, incorrectly assigning

some non-built-up areas as

urban class

Table 2 Accuracy assessments of IUI and existing methods at both the pixel scale and the model grid scale of 1 km

Methods Stratified random sampling at the pixel scale

Overall accuracy (%) j Coefficient Omission error (%) Commission error (%)

Ub 70.50 0.41 6.38 56

Uc 83.50 0.67 7.59 27

IUI 88.00 0.76 5.81 19

Grids Urban fractions at the model grid scale

Ub (%) Uc (%) IUI (%) Quick bird (%)

I 38.84 26.45 18.18 20.56

II 77.96 63.54 47.75 48.35

III 100 90.91 84.21 87.45
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areas were overestimated and rapid changes in the urban

fringe were largely ignored.

To examine whether land cover products effectively

captured urban expansion process, urban area derived from

Landsat, MODIS land cover data sets, and census data

were used to retrieve the urbanization rate, respectively

(Table 4). Urbanization rate was defined as the rate of

urban area growth per year. The rate was 0% from the

MODIS data sets for GFD area, which showed that MODIS

failed to capture recent urban expansion in the region. The

rate for 2000–2005 was approximately three times as much

as the rate for 2005–2009 from both Landsat data and

census data. Census results were larger than Landsat

results. It is possibly because census data were from the

whole administrative divisions of Guangzhou, Foshan, and

Dongguan cities. However, the rectangular grid of GFD

area is not exactly the administrative boundary of census

data.

Discussion

First, in commonly used climate models, the dominant

category and urban fractions in a given pixel are used to

characterize urban land cover. For dominant category, a

coverage of built-up environment greater than 50% of a

given landscape unit is defined as the threshold for an

urban grid cell (Schneider et al. 2009). That is, those

developing urban patches that cover 50% of the grid were

taken as dominant underlying composition. For urban

fractions, the proportions of urban areas within model

grids are calculated to capture the detailed urban density

and inner connections. Thus, both the dominant category

and urban fractions need the information of fractional

urban at the model grid resolution. In the accurate

assessment at the 1-km scale, the grid II has a moderate

level of development, with urban fractions approximately

50%. Urban fractions using the IUI and the QuickBird

Fig. 4 Grids for accuracy

assessments of IUI and existing

methods at 1-km scale. a The

false color composition

(red:NIR, green:red and

blue:green) of the Landsat

ETM ? image taken on April

27, 2000, located in Jiading

District, Shanghai. Grid I, II,

and III were chosen as

exemplars in a to represent

different level of urban

development. Urban extents in

column b, c, e were identified

by methods of Ub, Uc, and IUI

separately. Red outlines in

column d were visual

interpretation of urban areas in

QuickBird image. Column f was
false color composition of pan-

sharpened imagery
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Fig. 5 Spatiotemporal change patterns of urban fractions in GFD area from 2000 to 2009. Urban fractions were calculated at an interval of 0.2

Table 3 Percentage of

fractional urban change in the

GFD area from 2000 to 2009

Interval Urban fractions Fractional urban change

2000 (%) 2005 (%) 2009 (%) 2000–2005 (%) 2005–2009 (%)

0–0.2 60.20 52.47 51.20 -7.73 -1.27

0.2–0.4 23.34 20.42 18.72 -2.92 -1.70

0.4–0.6 11.64 15.27 14.86 3.63 -0.41

0.6–0.8 4.45 9.55 11.26 5.10 1.71

0.8–1 0.37 2.29 3.96 1.92 1.67

Total 100 100 100 10.65 3.38

Fig. 6 Comparison of the urban land pattern in GFD area from MODIS land cover a, Landsat images b in 2009 at 1-km resolution
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image were both\50%, whereas urban fractions using Ub

and Uc were much higher (Table 2). Therefore, both

dominant category and urban fractions calculated by Ub

and Uc had caused biases in urban underlying properties

when applied in modeling. Moreover, in the comparison

of urban expansion from MODIS and Landsat data sets,

MODIS ignored fractional urban signals in the urban

fringe and overestimated urban patches that cover 50% of

the modeling grid.

Second, the total fractional urban change in 2000–2005

was almost three times greater than that in 2005–2009

(Table 3), suggesting that this area experienced high rates

of urban expansion in 2000–2005, but the rates deceler-

ated in 2005–2009. This indicates that the area has

reached a mature stage of urbanization during the later

five years. These urban dynamics are influenced by policy

shifts, economic development, and demographic patterns

(Seto et al. 2002). During the decade, China was imple-

menting the 10th and 11th Five-Year Plans. The former

plan gave China the first blueprint for the new century

with main targets for economics and urbanization levels.

The GFD area was developed during this period, with

rapidly emerging satellite towns and expansion of core

areas. These towns were not well connected to existing

central urban areas (Zhang and Seto 2011). The latter

plan, started from 2006, had a goal to enable disadvan-

taged groups and less developed regions in sharing the

fruits of economic growth (Fan 2006). The government

highlighted the role of urban clusters in fostering urban-

ization for the first time. These policy shifts might have

contributed to the slowing down of urban development in

this area, with extension in the core areas to satellite

towns for developing an urban cluster. The high density

(0.8–1) of fractional urban change indicates that the GFD

area has become denser and packed with more continuous

urban canopy in the decade. Such changing patterns of

urban density and inner connections may potentially alter

interactions between urban canopy and atmosphere and

urban climate effects.

Conclusions

Reliable information on urban areas and change detection

plays an important role in urban studies. The IUI can

effectively capture better urban signals for different levels

of urban fractions. The case study area in GFD experienced

urban expansion during the decade, with fractional urban

growth three times greater in 2000–2005 than in

2005–2009. The spatiotemporal patterns of urban expan-

sion were presented with remarkable growth of satellite

towns and core areas. We expect that better estimates of

changing patterns of urban density and inner connections

will help improve performance of models in capturing

critical environmental feedbacks over expanding urban

clusters.
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