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Abstract Landslide susceptibility assessment using GIS has

been done for part of Uttarakhand region of Himalaya (India)

with the objective of comparing the predictive capability of

three different machine learning methods, namely sequential

minimal optimization-based support vector machines

(SMOSVM), vote feature intervals (VFI), and logistic

regression (LR) for spatial prediction of landslide occurrence.

Out of these three methods, the SMOSVM and VFI are state-

of-the-art methods for binary classification problems but have

not been applied for landslide prediction, whereas the LR is

known as a popular method for landslide susceptibility

assessment. In the study, a total of 430 historical landslide

polygons and 11 landslide affecting factors such as slope

angle, slope aspect, elevation, curvature, lithology, soil, land

cover, distance to roads, distance to rivers, distance to linea-

ments, and rainfall were selected for landslide analysis. For

validation and comparison, statistical index-based methods

and the receiver operating characteristic curve havebeenused.

Analysis results show that all these models have good per-

formance for landslide spatial prediction but the SMOSVM

model has the highest predictive capability, followed by the

VFI model, and the LRmodel, respectively. Thus, SMOSVM

is a better model for landslide prediction and can be used for

landslide susceptibility mapping of landslide-prone areas.

Keywords Landslides � GIS � Sequential minimal

optimization (SMO) � Support vector machines (SVM) �
Vote feature intervals (VFI) � India

Introduction

A landslide is one of the most widespread and devastating

natural hazards causing heavy loss to property, infrastruc-

ture, and a lot of casualties annually all over the world

(Cevik and Topal 2003; Liu et al. 2009; Yin et al. 2010).

According to the Centre for Research on the Epidemiology

of Disasters, landslides are responsible for at least 17%

casualties among the deadly natural hazards throughout the

world (Lacasse and Nadim 2009). India is one of the top

Asian countries affected by landslides (Pham et al. 2015).

Landslides in India mainly occur in the Himalayan range

(Onagh et al. 2012). The Defense Terrain Research Labo-

ratory reported that Himalayan landslides kill at least one

person per 100 km2 with over 220 fatalities every year

(Mukane 2014). Many efforts have been made to minimize

the damages caused by landslides in this Himalayan area

during recent decades (Das et al. 2010). One of the
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effective solutions is to produce landslide susceptibility

maps of landslide-prone areas (Mathew et al. 2009).

Landslide susceptibility map can be used to minimize

human loss and property through proper land use planning

by decision makers (Dai et al. 2002). Landslide suscepti-

bility can be expressed as the spatial probability of land-

slide occurrences (Varnes 1984). Assessment of landslide

susceptibility is based on the assumption that future land-

slides would be more likely to occur under similar condi-

tions to those of the previous landslides (Varnes 1984).

Therefore, the spatial relationship between past landslide

occurrences and a set of affecting factors is usually carried

out using different statistical methods.

More recently, many statistical methods have been

developed and applied successfully to produce landslide

susceptibility maps for many regions in the world. Common

methods are frequency ratio (Poudyal et al. 2010; Yalcin

et al. 2011), weight of evidence (Dahal et al. 2008; Neu-

häuser and Terhorst 2007), evidential belief function

(Althuwaynee et al. 2012; Lee et al. 2013), artificial neural

networks (Ermini et al. 2005; Yilmaz 2009), decision trees

(Hwang et al. 2009; Yeon et al. 2010), and support vector

machines (Yao et al. 2008; Yilmaz 2010). Even though these

methods have performed relatively well, their performance

is different in different areas due to local geo-environment

factors. Thus, making comparisons between various mod-

eling techniques is felt necessary to select a suitable method

to produce a reliable landslide susceptibility map which may

be applicable in wider areas (Akgun 2012). Therefore, the

main objective of the present study is to apply and compare

the predictive capability of three different machine learning

methods, namely sequential minimal optimization-based

support vector machines (SMOSVM), vote feature intervals

(VFI), and logistic regression (LR) for spatial prediction of

landslide occurrences. Out of these methods, the SMOSVM

and VFI are the state-of-the-art methods for binary classifi-

cation problems but have not been applied so far for landslide

prediction, whereas another method of the LR is known as a

popular method for landslide susceptibility assessment.

As a case study, a part of Uttarakhand State (India), which

is one of the landslide-prone areas of Himalaya, has been

selected for landslide susceptibility assessment. For valida-

tion and comparison of results, statistical index-based

methods and the receiver operating characteristic (ROC)

curve have been used. Data processing and modeling have

been done using Weka 3.7.12 and ArcMap 10.2 software.

Description of study area

The study area is located in the middle of the Tehri

Garhwal and Pauri Garhwal districts in the Uttarakhand

State (India) which is a landslide-prone area of Himalaya,

between latitudes 29�5603800N to 30�0903700N and longi-

tudes 78�2900100E to 78�3700600E, covering an area of

323.815 km2 (Fig. 1). Elevation in the area varies from

380 m to 2180 m above sea level, with mean elevation of

1081 m. Slope angles in this area are very steep up to 70�.
About 85.45% of the hill slopes are having average slope

(15�–45�).
Broadly, four types of land covers have been classified

in the area which are non-forest (39.02%), dense forest

(31.96%), open forest (22.36%), and scrub land (6.67%).

Soil in this area is mainly of two types: silty and loamy.

Silty soil is classified as fine and occupies 26.27% of the

study area. Loamy soil is classified into four categories,

namely skeletal loamy, coarse loamy, fine loamy, and

mixed loamy. Skeletal loamy occupies major area

(42.02%), followed by coarse loamy (20.1%), fine loamy

(8.02%), and mixed loamy (3.6%), respectively.

The study area is situated in a subtropical monsoon

region having three separate seasons: summer (March to

June), monsoon (June to September), and winter (October

to February). Heavy rainfall usually occurs in the monsoon

season. The annual precipitation varies from 770 to

1684 mm. Temperature in the study area varies from

1.3 �C in winter to 45 �C in summer. General relative

humidity varies between 54 and 63%, and the highest is

about 85% (http://pauri.nic.in/pages/display/55-the-land).

Methodology

The methodology in the present study involves five steps:

(1) data collection and interpretation, (2) dataset prepara-

tion, (3) building landslide models using different methods

(SMOSVM, VFI, and LR), (4) validation and comparison

of the predictive capability of these landslide models, and

(5) delineation of landslide susceptibility maps.

Data collection and interpretation

A landslide inventory map was constructed with 430

landslide locations which were identified by interpretation

of Google Earth images using Google Earth pro 7.0 soft-

ware, and LANDSAT-8 satellite images. Out of these

landslides, a total of 236 landslides with area larger than

400 m2 (equal to a pixel size of DEM 20 m) were repre-

sented as polygons, and 194 landslides with areas smaller

than 400 m2 were represented as points (Fig. 1). The lar-

gest landslide area is about 199,574 m2. Newspaper

records, historical landslide reports, and extensive field

investigation were then employed to validate these land-

slide locations. Most of these landslides are translation type

(325 locations), and the remaining landslides are rotational

type (105 locations). It is shown in Fig. 1 that landslides in
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the study area usually occur along roads and highways.

Islam et al. (2014) stated that landslides in this study area

annually occur mainly during monsoon season. Examples

of landslide photographs in the study area are shown in

Fig. 2.

In addition, the selection of landslide affecting factors in

the modeling is very important (Tsangaratos and Ilia 2016).

In the present study, a total of 11 landslide conditioning

factors (slope angle, slope aspect, elevation, curvature,

lithology, soil, land cover, distance to roads, distance to

rivers, distance to lineaments, and rainfall) were selected

based on the analysis of the geo-environmental character-

istics and mechanism of landslide occurrences in the study

area. Thematic maps considering these conditioning factors

were generated and constructed as the raster data with grid

size of 20 9 20 m for analysis.

A digital elevation model (DEM) in the study area with

a spatial resolution of 20 9 20 m was generated from the

state topographic map available on the published literature

(http://www.ahec.org.in/wfw/maps.htm). Using the DEM

data, four geomorphologic factors were extracted including

slope angle, slope aspect, elevation, and curvature. Slope

angle map (Fig. 3a) was constructed with six classes (0�–
8�, 8�–15�, 15�–25�, 25�–35�, 35�–45�, and[45�). These
classes are based on the analysis of frequency and the

natural mechanism of landslide occurrences in the study

area as landslide is more susceptible in the average slopes

(15�–45�), less susceptible in very gentle slopes (smaller

than 8�), and very high slopes (larger than 45�) (Pham et al.

2015; Varnes 1984). A slope aspect map (Fig. 3b) was

generated with nine classes, namely flat (-1), north

(0–22.5 and 337.5–360), northeast (22.5–67.5), east

(67.5–112.5), southeast (112.5–157.5), south (157.5–

202.5), southwest (202.5–247.5), west (247.5–292.5), and

northwest (292.5–337.5). The classification of these aspect

classes is based on the fact that different slope facing

directions have different impaction of solar radiation and

rainfall on the slopes which controls the moisture of terrain

affecting landslide occurrences (Varnes 1984). Different

classes have been selected for the elevation map (Fig. 3c)

including \600, 600–750, 750–900, 900–1050, 1050–

1200, 1200–1350, 1350–1500, 1500–1650, 1650–1800, and

[1800 m which is based on the analysis of topographic

characteristics in conjunction with frequency analysis of

landslide occurrences in the study area (Pham et al. 2015).

A curvature map (Fig. 3d) was constructed with three

classes as concave (\-0.05), flat (-0.05 to 0.05), and

convex ([0.05) which is based on the fact that frequency of

landslide is more in concave and convex areas than flat

areas (Varnes 1984).

Fig. 1 Location of landslides in

the study area
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A lithological map of the study area (Fig. 3e) was

extracted from the state geological map. Lithology has

been classified into six groups, namely Amri group

(quartzite, phyllite), Blaini and Krol group (boulder bed

and limestone), Jaunsar group (phyllite and quartzite),

Bijni group (quartzite, phyllite), Tal group (sandstone,

shale, quartzite, phyllite, and limestone), and Manikot shell

limestone (limestone). A land cover map (Fig. 3f) was

extracted from the state land cover map with four classes

including non-forest, dense forest, open forest, and scrub

land. A soil map (Fig. 3g) was also extracted from the state

soil map, and it includes five classes: coarse loamy, fine

loamy, fine silt, skeletal loamy, and mixed loamy. Rainfall

data were extracted from meteorological data which were

compiled for 30 years from 1984 to 2014 from the climate

forecast system reanalysis (CFSR) in global weather data

for SWAT (NCEP 2014). A rainfall map (Fig. 3h) was then

constructed based on spline interpolation method (Kawa-

mura et al. 1992) with different classes (\900, 900–1000,

1000–1100, 1100–1200, 1200–1300, 1300–1400,

1400–1500, and [1500 mm) based on the frequency

analysis in the study and adjacent area (Pham et al. 2016f).

Road and river networks were obtained from Google

Earth images and drainage analysis in GIS. A distance to

roads map (Fig. 3i) was constructed by buffering the road

sections on slope angles larger than 15� in the study area,

and six classes of distance to roads (0–40, 40–80, 80–120,

120–160, 160–200, and[200 m) were selected based on

the frequency analysis in the study area and adjacent area

(Pham et al. 2016f). The distance to rivers map (Fig. 3j)

was also constructed by buffering rivers sections on slope

angles larger than 15� in the study area, and the distance

classes were classified into six intervals (0–40, 40–80,

80–120, 120–160, 160–200, and [200 m) based on the

frequency analysis in the study area and adjacent area

(Pham et al. 2016f). Lineaments were extracted from

LANDSAT-8 satellite images using Geomatica 2015 soft-

ware. A distance to lineaments map (Fig. 3k) was built by

buffering the lineaments in the study area. Distance to

lineaments map shows various classes (0–50, 50–100,

100–150, 150–200, 200–250, 250–300, 300–350, 350–400,

400–450, 450–500, and [500 m) which is based on the

frequency analysis in the study area and adjacent area

(Pham et al. 2016f).

Fig. 2 Examples of landslides in study area
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Fig. 3 Landslide affecting

factor maps: a slope angle map,

b slope aspect map, c elevation

map, d curvature map,

e lithological map, f land cover

map, g soil map, h rainfall map,

i distance to roads map,

j distance to rivers map,

k distance to faults map
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Fig. 3 continued
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Dataset preparation

According to Tien Bui et al. (2016b), landslide suscepti-

bility maps are viewed as a binary classification. Therefore,

both landslides and non-landslides have been considered to

construct classification inputs for landslide models. For

landslide susceptibility modeling, the dataset is to be split

into two subsets including a training dataset and a testing

dataset (Chung and Fabbri 2003).

In the present study, for generating the training dataset,

70% of the landslide locations (301 landslides) were

selected randomly from landslide inventory map. These

landslides were then converted into pixels of 20 9 20 m

size. A total number of landslide pixels in the training

dataset are 6133. These landslide pixels were then com-

bined with 6133 non-landslide pixels which were randomly

extracted from non-landslide areas. Finally, the training

dataset was obtained by sampling these landslide and non-

landslide pixels with the 11 landslide conditioning factors.

For generating the testing dataset, 30% of the remaining

landslide locations (129 landslides) were also converted into

pixelswith a size of 20 9 20 mwith 1614 landslide pixels. A

total of 1614 non-landslide pixels were also extracted ran-

domly from non-landslide areas. These landslide and non-

landslide pixels were sampled with the 11 landslide condi-

tioning factors to generate the testing dataset.

The training dataset was then used for building the

landslide models, while the testing dataset was employed

for validating and comparing the performance of the

landslide models.

Landslide susceptibility classifiers

Sequential minimal optimization-based support vector

machines

Sequential minimal optimization-based support vector

machines (SMOSVM) is a hybrid approach of support vector

machines (SVM) and sequential minimal optimization

(SMO). The SVM is one of the most effective methods for

classificationwith high accuracy (Kavzoglu et al. 2014; Peng

et al. 2014; Pourghasemi et al. 2013; Yilmaz 2010). Despite

the merits, the SVM also has a limitation in sophisticated

studies with large input data (Lai et al. 2006) because the

SVM uses inequality constraints in solving large-scale

quadratic programming problems leading to great compu-

tational complexity (Lai et al. 2006). Therefore, the

SMOSVM was introduced by Platt (1999) to handle this

problem of the SVM (Platt 1999). The SMOSVM has been

utilized successfully for brain tumor classification (Deepa

and Aruna 2011), involving designing of very large-scale

integration systems (Kuan et al. 2012). So far, the SMOSVM

has not been explored for landslide spatial prediction.

The SMOSVM method is based on the theorem that the

large quadratic programming problem generated in the SVM

(Vapnik 2000) can be broken into a series of the smallest

possible quadratic programming problems (Platt 1999).

These small quadratic programming problems are tackled

analytically using two Lagrangian multipliers per step

instead of using a time-consuming numerical quadratic

programming optimization with an inner loop (Flake and

Lawrence 2002). Therefore, the SMOSVM is faster than the

SVM. Different kernel functions define the feature space for

classifying the training set examples (Luo and Cheng 2012)

used in the SMOSVM. It is very important to select a suit-

able kernel function for classification in the SMOSVM

because different kernel functions will give different results

(Luo and Cheng 2012). In this study, the SMOSVM was

evaluated for the predictive capability in landslide suscep-

tibility assessment and the radial basis function (RBF) kernel

was chosen as it is the most suitable kernel function for

landslide model (Pham et al. 2016c).

Giving a training dataset (x, y) in which x = xi, i = 1, 2,

…, 11 is the vector of the 11 landslide conditioning factors,

and y = (y1, y2) is the vector of classified variables including

landslide and non-landslide classes. The SMO is utilized to

optimize the quadratic programming problem through two

main steps: (1) identifying and solving analytically the two

Lagrange multipliers (Platt 1999) and (2) choosing suit-

able Lagrange multipliers to optimize the quadratic pro-

gramming problem using heuristics (Platt 1999).

The quadratic programming problem arisen during

training process of the SVM is shown as following

expression:

Maxi min e : RðbiÞ ¼
X11

i¼1

bi �
1

2

X11

i¼1

X11

j¼1

bibjyiyjkðxi; xjÞ

Subject to:
X11

i¼1

biyi ¼ 0 vs 0� bi � a; i ¼ 1; 2; . . .; 11

ð1Þ

where bi are positive real constants, a is the complexity

parameter (Vapnik 2000), and k(xi, xj) is the RBF kernel

that is defined as an infinite dimensional feature space

(Vapnik and Vapnik 1998). The RBF kernel function is

given by Eq. (2) as follows:

k xi; xj
� �

¼ exp � xi � xj
�� ��2

2
=r2

n o
; r2 is the squared bandwidth

ð2Þ

Vote feature intervals

Vote feature intervals (VFI) is a classification algorithm

which is based on attribute discretization (Demiröz and

Güvenir 1997). The VFI is a non-incremental approach

Environ Earth Sci (2017) 76:371 Page 7 of 15 371

123



using a set of feature intervals in representing a range of

feature values (Demiröz and Güvenir 1997). Features in the

VFI method are considered as independent variables rather

than dependent ones (Marsolo et al. 2007). The VFI

method has been employed successfully in classification

such as in computer sciences for coping with highly

imbalanced datasets (Del Gaudio et al. 2014) and in

medical sciences for diagnosis of erythema-to-squamous

diseases (Nanni 2006). This method has been utilized for

the first time in landslide susceptibility assessment in the

present study.

The VFI is carried out in two main phases: (1) training

phase and (2) classification phase. In training phase, feature

intervals are first constructed by calculating the lowest and

highest feature value around each class for each feature.

Next, in the classification phase, a feature vote is calculated

for each class based on each interval of each feature, and

then the vote of each feature interval is integrated to pro-

duce outputs (Malviya and Umrao 2014). The advantage of

the VFI is that it ignores the missing feature values

occurring in both training and classification phases; there-

fore, it provides classification accuracy (Demiröz and

Güvenir 1997).

Let an instance t = (t1, t2, …, t11, kj) where t1, t2, …, t11
is the feature values of the 11 landslide conditioning fac-

tors, kj, j = 1, 2, is the classified classes which represent

landslide or non-landslide, tf is the feature value of the test

sample t. The VFI algorithm is presented below.

If tf is unknown (missing), the factors with missing

values are simply ignored.

If tf is known, the feature interval of each factor is

calculated, and then for each class, the vote of each factor

is calculated as below:

factor vote t; k½ � ¼ interval class vote t; i; k½ �
interval class vote t; i; k½ � is the vote of factor t given to class k

ð3Þ

These vote vectors are summed up to obtain a total vote

vector (vote[k1], vote[k2]). Finally, the class corresponding

to the highest total vote is selected as the predicted class

(Demiröz and Güvenir 1997).

Logistic regression

Logistic regression (LR) is a multivariate analysis method

which was proposed in late 1960s and early 1970s (Cabrera

1994; Lee 2005). The LR is well known as an efficient

method for binary classification problems including land-

slide spatial prediction (Lee 2005; Ohlmacher and Davis

2003). The LR has been proven more efficient than other

methods such as certainty factor, likelihood ratio, artificial

neural networks, and multi-criteria decision analysis for

landslide susceptibility assessment (Akgun 2012; Devkota

et al. 2013; Lee et al. 2007). In general, the LR is known as

a promising method which should be used for landslide

prediction and assessment (Das et al. 2010).

For landslide spatial prediction, the main principle of the

LR is to use the mathematical concept of the logit–natural

logarithm to analyze the spatial relationship between a set

of landslide affecting factors and the obscene and presence

of a landslide event (Akgun 2012). In the present study, the

LR is used as a benchmark model to compare with the

SMOSVM and VFI models which have been applied first

time in the landslide assessment.

Suppose z ¼ zi; i ¼ 1; 2; . . .; 11 represents the vector of

11 landslide affecting factors, and f ¼ ðf1; f2Þ represents

outcome variables of landslide or non-landslide. The LR is

trained using the logit–natural logarithm as following

equation:

f ¼ f Pð Þ ¼ ln
P

1� P

� �
¼ a0 þ a1z1 þ a2z2 þ � � � þ anzn

ð4Þ

Based on the above logit–natural logarithm, the proba-

bility of a landslide event can be obtained as following

equation:

P ¼ Pðf jzÞ ¼ ea0þa1z1þa2z2þ���þanzn

1þ ea0þa1z1þa2z2þ���þanzn
ð5Þ

where a0 is the intercept condition, a1; a2; . . .; an are the

regression coefficients (Cabrera 1994).

Delineation of landslide susceptibility classes

Landslide susceptibility classes were classified by reclas-

sification of landslide susceptibility indexes (LSI) which

were generated from training process of three landslide

models. The LSI indicates how susceptible an area is to

landslide occurrences. The LSI was first calculated for all

the pixels in the study area. Thereafter, it was sorted in

descending order. The reclassification of the LSI can be

done using mathematical methods such as quantiles, nat-

ural breaks, standard deviation, (equal intervals (Ayalew

et al. 2004), and equal area percentage (Pradhan and Lee

2010). These methods are described briefly below.

The quantiles-based technique takes into account dif-

ferent values in the same susceptible class. The natural

breaks method builds the boundaries in big jumps existing

in the LSI values. The equal intervals method considers the

relative relationship among susceptible classes. The stan-

dard deviation technique uses the average value of the LSI

to create the susceptible class breaks (Akgun et al. 2008).

The equal area percentage technique is carried out on the

base dividing the LSI values according to area percentage

from small LSI values to high ones (Pradhan and Lee

2010).
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Among the above methods, the equal area percentage

technique is the most widely used (Pradhan and Lee 2010;

Tien Bui et al. 2016b). Therefore, in this study, the equal

area percentage technique was selected to classify the LSI

values. Landslide susceptibility maps were then con-

structed into five classes: very low (40%), low (20%),

moderate (20%), high (10%), and very high (10%).

Model performance validation

The performance of three landslide models (SMOSVM,

VFI, and LR) was validated using statistical index-based

methods and receiver operating characteristic curve.

Statistical index-based methods

In the present study, statistical indexes (sensitivity, speci-

ficity, and accuracy) were selected to evaluate the perfor-

mance of landslide models. These indexes were calculated

based on the values from the confusion matrix which is a

table indicating a visualization of the performance of an

algorithm (Alizadehsani et al. 2013). For two classes of

landslide and non-landslide, the confusion matrix has two

rows and two columns that show four values such as true

positive (TP), false positive (FP), true negative (TN), and

false negative (FN) (Table 1). The TP infers the number of

pixels that were correctly predicted as landslide; the FP is

the number of pixels that were incorrectly predicted as

landslides; the TN means the number of pixels that were

correctly predicted as non-landslide; the FN is the number

of pixels that were incorrectly predicted as non-landslide

(Bennett et al. 2013).

Sensitivity is defined as the proportion of landslide

pixels which are correctly classified as landslide. Sensitivity

can only be calculated from the pixel being defined as

landslide (Pham et al. 2016b). This means that sensitivity

indicates how good the prediction of the model is for

identifying landslide pixels when only looking at the pixels

being defined as landslide.

Sensitivity ¼ TP

TPþ FN
ð6Þ

Specificity is defined as the proportion of non-landslide

pixels which are correctly classified as non-landslide. It

means that specificity can only be calculated from the

pixels being defined as non-landslide (Pham et al. 2016d).

Specificity indicates how good the prediction of the model

is for identifying non-landslide pixels when only looking at

the pixels being defined as non-landslide.

Specificity ¼ TN

FPþ TN
ð7Þ

Accuracy is defined as the proportion of landslide and

non-landslide pixels that are correctly classified. The ac-

curacy is equal to 1 (100%) indicating the optimal model.

Higher accuracy value indicates better predictive models.

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð8Þ

Receiver operating characteristic curve

Receiver operating characteristic (ROC) curve is a useful

method to determine the quality of the probabilistic model

by characterizing its ability to reliably predict the occur-

rence or non-occurrence of landslide events (Feizizadeh

et al. 2014). The ROC curve shows the trade-off between

the two values including ‘‘sensitivity’’ on the X-axis and

‘‘100-specificity’’ on the Y-axis (Dou et al. 2014). Area

under the curve (AUC) indicates how good landslide model

is (Pham et al. 2016e). The AUC value obtained using the

training dataset indicates how good the relationship

between the inputs and the outputs, and the AUC value

using the testing dataset shows how good is the model

predictive capability (Pham et al. 2017). The model has a

perfect performance if the AUC value equals to 1 (Pradhan

2013; Pradhan and Lee 2010). Higher AUC value indicates

better performance of landslide model (Pham et al. 2016a).

Results and analysis

Landslide susceptibility maps using the SMOSVM,

VFI and LR models

The landslide susceptibility maps constructed using the

SMOSVM, VFI and LR models are shown in Figs. 4, 5, and

6, respectively. To evaluate the performance of these maps,

the landslide inventory map has been used in conjunction

with these susceptibility maps. Landslide density (LD) is

then calculated for each susceptible class and is shown in

Table 2. The LD is a ratio between the percentage of land-

slide pixels and the percentage of class pixels in each class on

landslide susceptibility map (Pham et al. 2016f).

Table 1 Confusion matrix
Actual landslide class Actual non-landslide class

Predicted landslide class True positive (TP) False positive (FP)

Predicted non-landslide class False negative (FN) True negative (TN)
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Landslide density analysis results (Table 2) show that

landslide pixels were observed mainly in the very high

class (LD = 5.42 for the SMOSVM model, LD = 4.68 for

the VFI model, and LD = 4.01 for the LR model) and high

class (LD = 2.4 for the SMO model, LD = 2.29 for the

VFI model, and LD = 2.34 for the LR model). Landslide

pixels were observed very few in moderate class

(LD = 0.7 for the SMOSVM model, LD = 0.98 for the

VFI model, and LD = 1.07 for the LR model), low class

(LD = 0.22 for the SMOSVM model, LD = 0.2 for the

VFI model, and LD = 0.44 for the LR model), and very

low class (LD = 0.05 for the SMOSVM model,

LD = 0.13 for the VFI model, and LD = 0.16 for the LR

model). Result analysis shows that three susceptibility

maps produced from three landslide models have a good

performance but the susceptibility map produced by the

SMOSVM model is better than those produced from other

models (VFI and LR) as LD in very high class of the

SMOSVM model (5.42) is higher than those of the VFI

model (4.68) and the LR model (4.01).

Performance of models and their comparison

Predictive capability of three landslide models (SMOSVM,

VFI, and LR) has been validated using statistical index-

based methods. The values of the confusion matrix were

first extracted (Table 3), and then the values of statistical

indexes were calculated as shown in Table 4.

For the training dataset, the SMOSVM model has the

highest value of sensitivity (82.14%), followed by the VFI

model (76.74%), and the LR model (73.66%), respectively.

As for the specificity, the VFI model has the highest value

(86.63%), followed by the SMOSVM model (82.26%), and

the LR model (74.48%), respectively. As per the accuracy,

the SMOSVM model has the highest value (82.20%), fol-

lowed by the VFI model (80.91%), and the LR model

(74.06%), respectively.

For the testing dataset, the SMOSVM model has the

highest value of sensitivity (81.19%), followed by the VFI

model (75.27%), and the LR model (73.11%), respectively.

Regarding the specificity, the VFI model has the highest

value (81.02%), followed by the SMOSVM model

(76.87%), and the LR model (74.19%), respectively. As for

the accuracy, the SMOSVM model has the highest value

(78.87%), followed by the VFI model (77.85%), and the

LR model (73.64%), respectively.

Furthermore, the performance of three landslide models

(SMOSVM, VFI, and LR) has been validated using the

ROC curve, as shown in Figs. 7 and 8. As for the training

dataset, the analysis of ROC curve shows that the

SMOSVM model has the highest value of AUC (0.891),

followed by the VFI model (0.862), and the LR model

Fig. 4 Landslide susceptibility

map using the SMOSVM model

371 Page 10 of 15 Environ Earth Sci (2017) 76:371

123



Fig. 5 Landslide susceptibility

map using the VFI model

Fig. 6 Landslide susceptibility

map using the LR model
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(0.806), respectively. Similarly, the analysis of ROC curve

for the testing dataset also shows that the SMOSVM model

has the highest value of AUC (0.856), followed by the VFI

model (0.826), and the LR model (0.806), respectively.

Discussion and conclusions

Landslide susceptibility assessment has been done for

producing the landslide susceptibility maps of part of

landslide-prone area of Uttarakhand region of Himalaya

using three different machine learning methods, namely

SMOSVM, VFI and LR. Out of these methods, the

SMOSVM and VFI are state-of-the-art methods for binary

classification problems but have not been applied for

landslide prediction, whereas the LR is another known

popular method for landslide susceptibility assessment.

Regarding validation and comparison of landslide

models, the ROC curve is well known as a standard

method; however, the ROC curve only validates the gen-

eral performance of models and it does not show the

classification accuracy of landslide and non-landslide

classes. Moreover, the ROC curve used for landslide pre-

diction is affected by some factors such as (i) geo-envi-

ronmental characteristics of the study area, (ii) landslide

affecting factors and landslide inventory map, (iii) the

analyzing methods used. In addition, Bennett et al. (2013)

have also suggested to use multiple evaluation criteria for

the validation of models. Therefore, in the present study,

statistical index-based methods, which can fill the gap of

the ROC curve method, have been also used for validation

of landslide models.

Analysis of the results shows that all three landslide

models (SMOSVM, VFI, and LR) have good performance

Table 2 Landslide density on

landslide susceptibility maps of

different landslide models

No Class % Class pixels % Landslide pixels LD

SMOSVM VFI LR SMOSVM VFI LR

1 Very low 40 1.83 5.23 6.35 0.05 0.13 0.16

2 Low 20 4.45 4.05 8.86 0.22 0.2 0.44

3 Moderate 20 13.97 19.67 21.32 0.7 0.98 1.07

4 High 10 24.51 23.33 23.36 2.4 2.29 2.34

5 Very high 10 55.23 47.72 40.11 5.42 4.68 4.01

Table 3 Confusion matrix for

different landslide models
Models Dataset True landslide True non-landslide

SMOSVM Training Predictive landslide 5046 1086

Predictive non-landslide 1097 5036

Testing Predictive landslide 1213 401

Predictive non-landslide 281 1333

VFI Training Predictive landslide 5440 692

Predictive non-landslide 1649 4484

Testing Predictive landslide 1339 275

Predictive non-landslide 440 1174

LR Training Predictive landslide 4593 1539

Predictive non-landslide 1642 4491

Testing Predictive landslide 1207 407

Predictive non-landslide 444 1170

Table 4 Performance of

landslide models
Models Dataset Sensitivity (%) Specificity (%) Accuracy (%)

SMOSVM Training 82.14 82.26 82.20

Testing 81.19 76.87 78.87

VFI Training 76.74 86.63 80.91

Testing 75.27 81.02 77.85

LR Training 73.66 74.48 74.06

Testing 73.11 74.19 73.64
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for landslide susceptibility assessment in the present study

but the SMOSVM model (AUC = 0.856) has the highest

predictive capability, followed by the VFI model

(AUC = 0.826), and the LR model (AUC = 0.806),

respectively. Analysis results are reasonable because the

SMOSVM used the SMO technique which might improve

not only the processing speed but also improve the per-

formance of the SVM classifier. The optimization tech-

niques can also generally improve the performance of a

single landslide model (Tien Bui et al. 2016a). Moreover,

the SVM classifier used in the SMOSVM is considered as

one of the best methods for spatial prediction of landslides

(Pham et al. 2016c).

As for the VFI, it is known as an efficient classifier for

binary classification problems. The VFI uses a set of fea-

ture intervals for representing a range of affecting factor

values which can enhance its predictive capability of

landslide occurrences. However, its performance might be

affected by the independent assumption of variables

(Demiröz and Güvenir 1997). Thus, the performance of

VFI model observed in the present study is better than the

LR model, but it is lower than the SMOSVM model.

The LR model is already well-known good landslide

model (Marsolo et al. 2007) as it uses a sequence of con-

vergence criterions to maximize the likelihood function for

predicting landslide occurrences (Pham et al. 2016c). In the

present study though the predictive capability of the LR

model is relatively good (AUC 0.806), its performance is

not better than the SMOSVM and VFI models which have

been applied first time in the landslide study.

In conclusion, the SMOSVM has the highest predictive

capability compared to other two methods of the VFI and

LR even though all the three models have performed well

in the present study for landslide susceptibility assessment.

Thus, the SMOSVM is a more promising method which

can be used as a better alternative for landslide spatial

prediction and development of landslide susceptibility

maps for land use planning and hazard management.
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Neuhäuser B, Terhorst B (2007) Landslide susceptibility assessment

using ‘‘weights-of-evidence’’ applied to a study area at the

Jurassic escarpment (SW-Germany). Geomorphology 86:12–24

Ohlmacher GC, Davis JC (2003) Using multiple logistic regression

and GIS technology to predict landslide hazard in northeast

Kansas, USA. Eng Geol 69:331–343

Onagh M, Kumra V, Rai PK (2012) Landslide susceptibility mapping

in a part of Uttarkashi district (India) by multiple linear

regression method. Int J Geol Earth Environ Sci 2:102–120

Peng L, Niu R, Huang B, Wu X, Zhao Y, Ye R (2014) Landslide

susceptibility mapping based on rough set theory and support

vector machines: a case of the Three Gorges area, China.

Geomorphology 204:287–301

Pham BT, Tien Bui D, Pourghasemi HR, Indra P, Dholakia MB

(2015) Landslide susceptibility assesssment in the Uttarakhand

area (India) using GIS: a comparison study of prediction

capability of naı̈ve bayes, multilayer perceptron neural networks,

and functional trees methods. Theor Appl Climatol 122:1–19.

doi:10.1007/s00704-015-1702-9

Pham BT, Bui DT, Dholakia MB, Prakash I, Pham HV, Mehmood K,

Le HQ (2016a) A novel ensemble classifier of rotation forest and

Naı̈ve Bayer for landslide susceptibility assessment at the Luc

Yen district, Yen Bai Province (Viet Nam) using GIS. Geomat

Nat Hazards Risk. doi:10.1080/19475705.2016.1255667

371 Page 14 of 15 Environ Earth Sci (2017) 76:371

123

http://dx.doi.org/10.1007/s00254-003-0838-6
http://dx.doi.org/10.1007/s00254-003-0838-6
http://www.dnaindia.com/india/
http://globalweather.tamu.edu/home
http://globalweather.tamu.edu/home
http://dx.doi.org/10.1007/s00704-015-1702-9
http://dx.doi.org/10.1080/19475705.2016.1255667


Pham BT, Bui DT, Prakash I, Dholakia M (2016b) Evaluation of

predictive ability of support vector machines and naive Bayes

trees methods for spatial prediction of landslides in Uttarakhand

state (India) using GIS. J Geomat 10:71–79

Pham BT, Pradhan B, Tien Bui D, Prakash I, Dholakia MB (2016c) A

comparative study of different machine learning methods for

landslide susceptibility assessment: a case study of Uttarakhand

area (India). Environ Model Softw 84:240–250

Pham BT, Tien Bui D, Dholakia MB, Prakash I, Pham HV (2016d) A

comparative study of least square support vector machines and

multiclass alternating decision trees for spatial prediction of

rainfall-induced landslides in a tropical cyclones area. Geotech

Geol Eng 34:1–18. doi:10.1007/s10706-016-9990-0

Pham BT, Tien Bui D, Prakash I, Dholakia MB (2016e) Rotation

forest fuzzy rule-based classifier ensemble for spatial prediction

of landslides using GIS. Nat Hazards 83:1–31. doi:10.1007/

s11069-016-2304-2

Pham BT, Tien Bui D, Pham HV, Le HQ, Prakash I, Dholakia MB

(2016f) Landslide hazard assessment using random subspace

fuzzy rules based classifier ensemble and probability analysis of

rainfall data: a case study at Mu Cang Chai District, Yen Bai

Province (Viet Nam). J Indian Soc Remote Sens. doi:10.1007/

s12524-016-0620-3

PhamBT,TienBuiD,Prakash I,DholakiaMB(2017)Hybrid integration

of Multilayer Perceptron Neural Networks and machine learning

ensembles for landslide susceptibility assessment atHimalayan area

(India) using GIS. CATENA 149(1):52–63

Platt JC (1999) Fast training of support vector machines using

sequential minimal optimization. In: Schölkopf B, Burges C,

Smola A (eds) Advances in kernel methods, chap 12. MIT press,

pp 185–208

Poudyal CP, Chang C, Oh H-J, Lee S (2010) Landslide susceptibility

maps comparing frequency ratio and artificial neural networks: a

case study from the Nepal Himalaya. Environ Earth Sci

61:1049–1064

Pourghasemi HR, Jirandeh AG, Pradhan B, Xu C, Gokceoglu C

(2013) Landslide susceptibility mapping using support vector

machine and GIS at the Golestan Province, Iran. J Earth Syst Sci

2:349–369

Pradhan B (2013) A comparative study on the predictive ability of the

decision tree, support vector machine and neuro-fuzzy models in

landslide susceptibility mapping using GIS. Comput Geosci

51:350–365

Pradhan B, Lee S (2010) Delineation of landslide hazard areas on

Penang Island, Malaysia, by using frequency ratio, logistic

regression, and artificial neural network models. Environ Earth

Sci 60:1037–1054

Tien Bui D, Nguyen QP, Hoang N-D, Klempe H (2016a) A novel

fuzzy k-nearest neighbor inference model with differential

evolution for spatial prediction of rainfall-induced shallow

landslides in a tropical hilly area using GIS. Landslides 14:1–17

Tien Bui D, Pham BT, Nguyen QP, Hoang N-D (2016b) Spatial

prediction of rainfall-induced shallow landslides using hybrid

integration approach of least-squares support vector machines

and differential evolution optimization: a case study in Central

Vietnam. Int J Digit Earth 9:1–21. doi:10.1080/17538947.2016.

1169561

Tsangaratos P, Ilia I (2016) Landslide susceptibility mapping using a

modified decision tree classifier in the Xanthi Perfection, Greece.

Landslides 13:305–320

Vapnik VN (2000) The nature of statistical learning theory, ser.

Statistics for engineering and information science, vol 21.

Springer, New York, pp 1003–1008

Vapnik VN, Vapnik V (1998) Statistical learning theory, vol 1.

Wiley, New York

Varnes DJ (1984) Landslide hazard zonation: a review of principles

and practice, vol 3. UNESCO, Paris

Yalcin A, Reis S, Aydinoglu A, Yomralioglu T (2011) A GIS-based

comparative study of frequency ratio, analytical hierarchy

process, bivariate statistics and logistics regression methods for

landslide susceptibility mapping in Trabzon, NE Turkey. Catena

85:274–287

Yao X, Tham L, Dai F (2008) Landslide susceptibility mapping based

on support vector machine: a case study on natural slopes of

Hong Kong, China. Geomorphology 101:572–582

Yeon Y-K, Han J-G, Ryu KH (2010) Landslide susceptibility

mapping in Injae, Korea, using a decision tree. Eng Geol

116:274–283. doi:10.1016/j.enggeo.2010.09.009

Yilmaz I (2009) Landslide susceptibility mapping using frequency

ratio, logistic regression, artificial neural networks and their

comparison: a case study from Kat landslides (Tokat—Turkey).

Comput Geosci 35:1125–1138

Yilmaz I (2010) Comparison of landslide susceptibility mapping

methodologies for Koyulhisar, Turkey: conditional probability,

logistic regression, artificial neural networks, and support vector

machine. Environ Earth Sci 61:821–836

Yin Y, Wang H, Gao Y, Li X (2010) Real-time monitoring and early

warning of landslides at relocated Wushan Town, the Three

Gorges Reservoir, China. Landslides 7:339–349

Environ Earth Sci (2017) 76:371 Page 15 of 15 371

123

http://dx.doi.org/10.1007/s10706-016-9990-0
http://dx.doi.org/10.1007/s11069-016-2304-2
http://dx.doi.org/10.1007/s11069-016-2304-2
http://dx.doi.org/10.1007/s12524-016-0620-3
http://dx.doi.org/10.1007/s12524-016-0620-3
http://dx.doi.org/10.1080/17538947.2016.1169561
http://dx.doi.org/10.1080/17538947.2016.1169561
http://dx.doi.org/10.1016/j.enggeo.2010.09.009

	A comparative study of sequential minimal optimization-based support vector machines, vote feature intervals, and logistic regression in landslide susceptibility assessment using GIS
	Abstract
	Introduction
	Description of study area
	Methodology
	Data collection and interpretation
	Dataset preparation
	Landslide susceptibility classifiers
	Sequential minimal optimization-based support vector machines
	Vote feature intervals
	Logistic regression

	Delineation of landslide susceptibility classes
	Model performance validation
	Statistical index-based methods
	Receiver operating characteristic curve


	Results and analysis
	Landslide susceptibility maps using the SMOSVM, VFI and LR models
	Performance of models and their comparison

	Discussion and conclusions
	Acknowledgements
	References




