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Abstract The determining of landslide-prone areas in

mountainous terrain is essential for land planning and

hazard mitigation. In this paper, a comparative study using

three statistical models including weight of evidence model

(WoE), logistic regression model (LR) and support vector

machine method (SVM) was undertaken in the Zhouqu to

Wudu segment in the Bailong River Basin, Southern

Gansu, China. Six conditionally independent environmen-

tal factors, elevation, slope, aspect, distance from fault,

lithology and settlement density, were selected as the

explanatory variables that may contribute to landslide

occurrence based on principal component analysis (PCA)

and Chi-square test. The relation between landslide distri-

butions and these variables was analyzed using the three

models and the results then used to calculate the landslide

susceptibility (LS). The performance of the models was

then evaluated using both the highly accurate deformation

signals produced by using the Small Baseline Subset

Interferometric Synthetic Aperture Radar technique and

Receiver Operating Characteristic (ROC) curve. Results

show more deformation points in areas with high and very

high LS levels, and also more stable points in areas with

low and very low LS levels for the SVM model. In

addition, the SVM has larger area under the ROC curve. It

indicates that the SVM has better prediction accuracy and

classified ability. For the interpretability, the WoE derives

the class of factors that most contributed to landsliding in

the study area, and the LR reveals that factors including

elevation, settlement density and distance from fault played

major roles in landslide occurrence and distribution,

whereas the SVM cannot provide relative weights for the

variables. The outperformed SVM could be employed to

determine potential landslide zones in the study area.

Outcome of this research would provide preliminary basis

for general land planning such as choosing new urban areas

and infrastructure construction in the future, as well as for

landslide hazard mitigation in Bailong River Basin.

Keywords Landslide susceptibility � Weight of evidence �
Logistic regression � Support vector machine � SBAS-
InSAR

Introduction

Landslides are one of the most destructive natural hazards

and very sensitive to climate change and urban expansion,

particularly in mountainous terrain (Keefer and Larsen

2007). The Zhouqu to Wudu segment along Bailong River

basin is located at the eastern edge of Tibetan Plateau, in

Southern Gansu, China. In response to plateau uplift and

river erosion, high mountains with steep slopes, active

tectonics, weak rock types and intense rainfall, the Zhouqu

to Wudu segment along Bailong River basin is one of the

areas most severely affected by landslide and debris flow

disasters in China (Derbyshire et al. 2000). As the

increased extreme climate events, rapid expansion of

urbanization and enhanced tectonic activity in recent years,
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several large landslide events have occurred in the region.

The most recent destructive example was the Gansu

mudslide, which took place on August 8, 2010. This rain-

fall-triggered fast-moving debris flow thrust through the

urban area, destroying all building along the flow, then

rushed into the Bailong River and formed a barrier lake.

The debris flow destroyed a large area and claimed at least

1287 lives (Yu et al. 2010; Bai et al. 2013; Cui et al. 2013).

Therefore, mapping areas susceptible to landslides is

essential for effective land-use planning, disaster manage-

ment and hazard mitigation in this area.

The landslide susceptibility (LS) mapping technique can

be grouped into four categories: landslide inventories,

heuristic, statistical and deterministic. Overviews of these

categories and their advantages and disadvantages can be

found in many publications (Carrara et al. 1995; Soeters

and van Westen 1996; Guzzetti et al. 1999; Chacón et al.

2006; Bai et al. 2010; Yilmaz 2010). Within these tech-

niques, statistical methods have been widely applied to

determine the landslide susceptibility zones. The statistical

methods relying on the basic assumption that environ-

mental factors led to slope failure in the past are suscep-

tible to landslides in the future (Varnes 1984) and are

considered to be more suitable for LS mapping over large

and complex terrains (Van Westen et al. 2006; Thiery et al.

2007). The bivariate weight of evidence (WoE) was the

most favorable bivariate model that could be used to assess

the relationship between different categories of each factor

and landslide occurrence. This robust and flexible mapping

approach has been adopted by numerous landslide studies

(Van Westen et al. 2003; Süzen and Doyuran 2004; Thiery

et al. 2007; Regmi et al. 2010; Kayastha et al. 2012;

Ozdemir and Altural 2013). Among the most popular and

widely used statistical method is the logistic regression

(LR) as its simple form to solve the complex problem (e.g.,

landslide occurrence), this method has been applied for

many LS zonation at local and regional scale (Dai and Lee

2002; Lee 2004; Ayalew and Yamagishi 2005; Greco et al.

2007; Bai et al. 2010; Kavzoglu et al. 2014). The LR

determines the weight of landslide causal factors based on

the relative contribution of each in the presence or absence

of landslides within a defined land unit. More recent

advances in knowledge-based techniques including fuzzy

logic, artificial neural networks, decision trees, and support

vector machines have been also applied for LS mapping.

Specifically, support vector machine (SVM) was a recently

developed machine learning (non-parametric technique)

tool, which is based on statistical theory and has enhanced

ability to solve the nonlinear problem. It is a particularly

suitable means of solving the highly complicated rela-

tionship between a landslide and its conditioning factors

and was preferred for landslide susceptibility mapping

(Yao et al. 2008; Yilmaz 2010; Xu et al. 2012; Pour-

ghasemi et al. 2013; Pradhan 2013; Peng et al. 2014).

Different statistical models provide various results

because the predictions of the model are largely deter-

mined by the model applied even if the datasets are the

same. In such a case, in order to obtain reliable result (for

example, results with better prediction accuracy and more

realistic which are more suitable for the practical appli-

cation) in a given region, a comparative study of LS

mapping using different methods is necessary and can be

highly significant. In the scientific literature, some studies

compare the prediction and interpretation capabilities of

different methods and techniques for LS assessment

(Yalcin 2008; Nandi and Shakoor 2010; Yalcin et al.

2011; Akgun 2012; Mohammady et al. 2012; Schicker

and Moon 2012; Hong et al. 2016; Paulı́n et al. 2016;

Youssef et al. 2016). However, LS models include

uncertainties and limitations in determining the spatial and

temporal risks inherit in areas sensitive to geohazards; in

addition, the results of the LS models have seldom been

compared with or evaluated by the regional surface

deformation information which can be obtained by remote

sensing technique such as Interferometric Synthetic

Aperture Radar (InSAR) (Kincal et al. 2010). It is nec-

essary to apply more efficient techniques to gain more

accurate results to evaluate the model result; this will

support a more effective management of geohazards and

enable safer land planning.

The main objective of this study is to obtain a reliable

LS map in Zhouqu to Wudu segment along Bailong River

basin, a region that is seriously affected by landslides. For

this purpose, landslide susceptibility maps were prepared

by three different statistical methods including WoE, LR

and SVM. The results of these models will then be eval-

uated by the deformation signals measured by the Small

Baseline Subset InSAR (SBAS-InSAR) and Receiver

Operating Characteristic curve (ROC).

Study area

The Bailong River catchment was the secondary tributary

of the Yangtze River. The reach from Zhouqu to Wudu

with an area of 5739 km2 in southern Gansu (Fig. 1), being

the region most susceptible to landslide, was selected for

analysis. The study area is located in the middle south of

the west wing of Qinling orogeny. The dominant landform

is alpine canyons, with elevation range from 835 to 4577 m

asl. A wide variety of lithological strata with complex

structure are present, including materials from the Silurian,

Devonian, Carboniferous, Permian, Triassic, Mesozoic Era

and Quaternary ages (Fig. 2). In particular, the Silurian
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Fig. 1 Location of the study

area
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phyllite, slate and schist are well known for their high

susceptibility to landslide. The study area was strongly

controlled by Qinghai–Tibet tectonic belt and Wudu arc-

shaped structure and affected by the tectonic uplift of the

Qinghai–Tibet plateau (Derbyshire et al. 2000). This seg-

ment lies within a seismically active belt, in which the

historical Tianshui earthquake in 1654 (Ms = 8.0) and

Wudu earthquake in 1879 (Ms = 8.0) were located and in

addition, the 2008 Wenchuan earthquake that triggered a

great number of landslides and caused movement of

abundant loose debris as well as weakening the stability of

the slopes in the study area (Xu et al. 2013). Study area

receives average annual rainfall ranges from 500 to

900 mm, and 80% of the total rainfall concentrated in the

period from June to September (Bai et al. 2013). Human

activities are mainly concentrated along the banks of the

Bailong River or valley floors, such as Tanchang, Zhouqu

and Wudu (the county town). The main land cover types

consist of cultivated land, grass and forest lands.

Data acquisition

Landslide inventory map

In this research, the landslides were detected in the study

area by interpretation of SPOT 5 images (scanned on 24th

March 2009 with 2.5-m resolution), analysis of available

data and extensive field surveys (Chen et al. 2014). The

locations of the individual landslides were drawn on at a

scale of 1:50,000. Most of the landslides are deep-seated

rotational or translational and are generally large scale

[according to Varnes’ (1984) classification criteria; Fig. 3],

with minimum and maximum areas of 0.12 and 1.75 km2,

Fig. 2 Geological map of the

study area

313 Page 4 of 19 Environ Earth Sci (2017) 76:313

123



respectively. In the study area, 375 landslides were delin-

eated in the inventory map (Fig. 1). The inventory map

shows only deep-seated landslides and does not include

small, shallow landslides, because the former exhibit high

risk in the area and are therefore of major concerns.

Shallow landslides are more frequent compared to the

deep-seated and require high-resolution imagery to acquire

their inventories.

Landslide conditioning factors

Seventeen conditioning factors related to landslide occur-

rence were considered: elevation, slope angle, slope aspect,

slope curvature, roughness, lithology, distance from fault,

fault density, peak ground acceleration—PGA, distance

from drainage, drainage density, topographic wetness

index—TWI, specific catchment area—SCA, rainfall, set-

tlement density, land cover and normalized difference

vegetation index—NDVI. These variables were selected

based on the previous study of LS mapping in Bailong

River Basin (Bai et al. 2012; Chen et al. 2014).

Topography

Topography controls the spatial variation of soil moisture

and the groundwater flow, which plays a significant role in

landslide occurrence. (Dai and Lee 2002).

Topographic factors including elevation, slope, aspect,

slope curvature and roughness were extracted or calculated

based on a digital elevation model (DEM) with

30 m 9 30 m resolution. The DEM was created using

1:50,000 scale topographic maps (Fig. 4a–c).

Fig. 3 Typical large deep-seated landslide with potential risk in the study area: a suoertou landslide, b nanshan landslide, c hongtupo landslide,

d sanjiadi landslide
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Fig. 4 Landslide and PCA selected factors applying zonal statistics in ArcGIS a elevation, b slope, c aspect, d distance from fault, e lithology
group, f precipitation, g distance from drainage, h land-use type, i settlement density
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Geology

Tectonic structure influences the spatial distribution of

landslide in this area (Chen et al. 2014). The distance from

faults was calculated based on the 1:200,000 geological

map, which is the Euclidean distance from the fault

(Fig. 4d). The fault density was also calculated in ArcGIS.

PGA map derived from the National Seismological Bureau

(Lu et al. 2010; Bai et al. 2012) was applied to assess the

correlation between landslide and earthquake acceleration

on the ground.

Lithology plays a significant role in the distribution of

landslides and is associated with the properties of slope-

forming materials such as rock mass strength and structure.

Geological map of scale 1:200,000 has been divided into

five categories (Fig. 4e) according to different lithologies

present in the study area (Chen et al. 2006).

Hydrology

Rainfall data from 224 rainfall gauges surrounding the

study area were available in this research (Fig. 4f). The

rain gauge in the higher elevation are lacked as the stations

are mainly concentrated in the river valley. Multi-temporal

rainfall data at interval of 6 h were interpolated using

spatial Kriging within ArcGIS.

Distance from drainage is the Euclidean distance from

the stream network; drainage line density was calculated

using ArcGIS 9.3 (Fig. 4g). The TWI and SCA were also

calculated based on the topographic data.

Fig. 4 continued
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Human activities

Land cover is widely considered as an important factor for

landslides because it is correlated with their hydrological

and mechanical effects. Land-use-type data were processed

with supervised classification in ENVI software from

Landsat TM5 imagery with a 30-m resolution, which was

then verified by field survey (Fig. 4h).

Human activities concentrated in or nearby the towns such

as excavation and ramp loading can cause slope instability.

Settlement density was considered as another indicator of

human activities. Based on the residential data, the settle-

ment density was then computed using ArcGIS (Fig. 4i).

Ecological

The NDVI is a measure of surface reflectance and gives a

quantitative estimate of the vegetation growth and biomass

and was calculated based on Landsat TM5 image data,

which reflects the relation between the vegetation condition

and landslides.

Modeling strategy

In this study, LS maps were generated using GIS-based

WoE, LR and SVM methods. In order to obtain reliable

results, 80% of the landslides were randomly selected to

train the model, and an equivalent number of slope units

situated outside of the landslides were randomly selected in

the areas without landslides.

Selection of major and independent parameters

In order to select the significant and independent factors,

principal component analysis (PCA) in combination with

Chi-square test was adopted. As a consequence, 17 con-

ditioning factors related to landslide occurrence were

applied for PCA analysis. Before the Chi-square test was

conducted, the major factors contribute to landslide

occurrence had to be classified into different classes, and

the maximum likelihood ratio method proposed by Chung

and Fabbri (2003) and Chung (2006) was used.

LS mapping using three models

Weight of evidence (WoE)

WoE is a bivariate method using the statistical approach,

known as log-linear form of the Bayesian probability

model, to estimate the relative importance of evidence

(Bonham-Carter 1994).

The WoE approach was employed to calculate the

weight of a certain category of a factor map related to the

landslide occurrence, expressed as follows:

Wþ
i ¼ loge

P F Ljf g
P F L

�
�

� �

 !

ð1Þ

W�
i ¼ loge

P F Lj
� �

P F L
�
�

� �

 !

ð2Þ

Wi ¼ Wþ
i � W�

i ð3Þ

where P is the landslide probability, F is the presence of

landslide conditioning factor, F is the absence of landslide

conditioning factor, L is the presence of landslide and L is

the absence of landslide. Wi
? and Wi

- indicate that the

causative factor is present (positive correlation) and absent

(negative correlation), respectively. C (contrast, Wi) is

determined by the difference between Wi
? and Wi

-.

The continuous variables were classified into different

categories using the maximum likelihood ratio method

proposed by Chung and Fabbri (2003). Wi
?, Wi

- and C for

each class of the factors were calculated based on Eqs. (1)–

(3) (Table 1).

As the WoE method is restricted by the independence of

the input variables, the conditional independence of the

major influence factors that contribute to landslide was

further examined through pair-wise comparison using Chi-

square statistics. Two steps, including conversion of all

factors causing landslides into binary mode and preparation

of the 2 9 2 contingency table for all possible pairs of the

primary causative factors, should be conducted when the

Chi-square test is executed at the 99% significance level

and 1 degree of freedom. If the v2 value in the contingency

table is below 6.63, the pair of dichotomous predictor

patterns is independent (Oh and Lee 2010). The studentized

value of C referred as the ratio of C to its standard devi-

ation S(C) need to be computed before dichotomous

transform (Bonham-Carter 1994). On the basis of the

inflection point in the C/S(C) graph, classes which are more

susceptibility to landslide were assigned to the class given

the value W? with the sort have maximum C/S(C). Con-

versely, W- with the same rating was assigned to the class

less sensitive to landslide occurrence.

Logistic regression model (LR)

The LR is one of the most widely applied multivariate

methods in LS mapping as it involves a multivariate

regression between a dependent variable and several

independent variables, and can yield less biased results

(Hosmer and Lemeshow 1989; Atkinson and Massari

1998). In the case of LS mapping, logistic regression can
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Table 1 Likelihood ratio

classified factor categorical and

WoE calculated weight for each

class

Parameter Class W? W- Wi N (Wi)

Elevation 835–1250 m 1.43 -0.21 1.64 1.00

1250–1550 m 0.76 -0.42 1.18 0.91

1550–2100 m -0.41 0.18 -0.59 0.55

2100–2400 m -2.15 0.20 -2.35 0.19

[2400 m -3.11 0.16 -3.27 0.00

Slope 0�–9� 0.03 0.00 0.03 0.79

9�–20� 0.19 -0.14 0.33 1.00

20�–31� -0.16 0.12 -0.29 0.57

31�–39� -0.34 0.01 -0.34 0.53

[39� -1.10 0.01 -1.11 0.00

Aspect Flat -0.69 0.00 -0.70 0.00

0–45 -0.33 0.06 -0.39 0.24

45–90 -0.15 0.05 -0.20 0.38

90–135 0.07 0.00 0.08 0.60

135–180 0.23 -0.03 0.26 0.74

180–225 0.20 -0.03 0.22 0.71

225–270 0.14 -0.04 0.18 0.68

270–315 0.58 -0.02 0.60 1.00

315–360 -0.29 0.01 -0.30 0.31

Distance from fault 0–800 m 0.28 -0.09 0.37 1.00

800–1500 m 0.03 -0.01 0.05 0.81

1500–2400 m 0.13 -0.03 0.17 0.88

2400–4500 m 0.08 -0.01 0.09 0.84

[4500 m -1.23 0.13 -1.36 0.00

Lithology* A

B -1.10 0.09 -1.19 0.00

C -0.42 0.46 -0.88 0.13

D 0.79 -0.33 1.11 1.00

E 0.80 -0.08 0.88 0.90

Rainfall 27.5–29.1 mm -1.06 0.19 -1.25 0.33

29.1–31.8 mm 0.16 -0.37 0.53 0.94

31.8–34.3 mm 0.61 -0.08 0.70 1.00

34.3–37.5 mm -2.20 0.03 -2.22 0.00

Distance from drainage 0–400 m -1.10 0.06 -1.15 0.28

400–1000 m 0.57 -0.29 0.86 1.00

1000–1600 m 0.27 -0.13 0.41 0.84

1600–2500 m -0.59 0.14 -0.73 0.43

[2500 m -1.79 0.13 -1.92 0.00

Land-use Cultivated land 0.92 -0.54 1.46 1.00

Forest land -1.29 0.47 -1.76 0.00

Grass land 0.04 -0.02 0.06 0.57

Resident land

Water area land

Unused land

Settlement density 0–0.075 -2.58 0.34 -2.92 0.00

0.075–0.175 0.14 -0.11 0.25 0.67

0.175–0.25 0.49 -0.22 0.71 0.76

0.25–0.32 0.62 -0.04 0.66 0.75

[0.32 1.79 -0.03 1.83 1.00

Lithology* (A: igneous, marble; B: metastone, metamorphic conglomerate, thick layer slate, thick layer

sand conglomerate; C: sandstone, medium limestone, slate with limestone, gravel; D: phyllite, slate,

mudstone, thin layer limestone, siltstone, E: clay)
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determine the best-fit model to describe the relation

between the dependent variable (presence or absence of a

landslide) and a set of independent parameters, such as

slope angle, lithology and distance to drainage (Ayalew

and Yamagishi 2005). Furthermore, the regression coeffi-

cient determined in the logistic regression can be inter-

preted as a measure of the relative importance of the

independent variables. The logistic model representing the

maximum likelihood regression model can be expressed in

its simplest form as:

P ¼ 1

1þ e�z
ð4Þ

where P is the probability of an occurrence (landslide) that

varies from 0 to 1; z is defined as the following equation:

z ¼ b0 þ b1x1 þ b2x2 þ � � � þ bnxn ð5Þ

where b0 is a constant, n is the number of independent

variables, xi (i = 1, 2, 3, …, n) represents the value of the

independent variable, and bi (i = 1, 2, 3, …, n) is the slope

coefficient of the model.

Support machine learning (SVM)

The SVM is a machine learning method which was firstly

proposed by Vapink (1995). It is based on the statistical

approach in order to find an optimal hyper-plane for sep-

arating two classes (Kavzoglu et al. 2014). A more detailed

SVM algorithm for landslide assessment has recently been

depicted (Yao et al. 2008; Marjanović et al. 2011; Xu et al.

2012); it can be summarized as follows:

Consider a set of linear separable training vectors xi
(i = 1, 2,…,n) consisting of two classes, denoted as

yi = ± 1. The goal of the SVM is to search for an n-

dimensional hyper-plane differentiating the two classes by

the maximum gap. Mathematically, it is expressed as:

1

2
wkk 2 ð6Þ

subject to the following constraints:

yiððw � xiÞ þ bÞ� 1 ð7Þ

where kwk is the norm of the normal of the hyper-plane, b

is a scalar base, and (�) denotes the scalar product opera-

tion. Introducing the Lagrangian multiplier, the cost func-

tion can be defined as:

L ¼ 1

2
wkk 2�

Xn

i¼1

kiðyiððw � xiÞ þ bÞ � 1Þ ð8Þ

where ki is the Lagrangian multiplier. The solution can be

achieved by dual minimizing of Eq. (8) with respect to

w and b through the standard procedures; the detailed

discussions can be found in Vapink (1995) and Tax and

Duin (2002).

For application to a complicated non-separable problem,

the Slack variable ni can be introduced to modify the fol-

lowing limitation:

yiððw � xiÞ þ bÞ� 1� ni ð9Þ

And modification of Eq. (6) is as follows:

L ¼ 1

2
wkk 2� 1

vn

Xn

i¼1

ni ð10Þ

where v(0, 1) is introduced to account for misclassification.

In addition, Vapink (1995) brought in a kernel function

K(xi, xj) to account for a nonlinear decision boundary (Yao

et al. 2008).

LS class rating

In this study, we applied the maximum likelihood ratio

classification method (Chung and Fabbri 2003) to divide

the LS values. The likelihood ratio classification method

was then compared with the automated ‘‘natural break’’

methods in order to verify the robustness of this method.

The latter method is conventional and widely used for

classification of the susceptibility map (Schicker and Moon

2012). Relative landslide density (RLD) is derived from the

ratio of percentages of total landslide area in each sus-

ceptibility category to the total area in the class and gives

an indication of the goodness of fit. (Santacana et al. 2003;

Arora et al. 2004)

RLD ¼ ðni=NiÞ=
X

ðni=NiÞ ð11Þ

where ni is the sum of the landslide area with susceptibility

level i, and Ni is the total area of the susceptibility class

i. By deriving RLD for each class, comparative charts for

the two classifications method can be plotted.

Accuracy assessment

Future landslides provide a much better means of assessing

the performance of the models. As there was no temporal

information on the landslide dataset in this research, the

spatiotemporal surface deformation which could reflect the

activity of landslide to a certain extent was firstly applied

to validate the three models. InSAR can be used to detect

ground deformation by calculating the phase differences in

complex SAR images acquired in similar geometric con-

ditions, but at two different epochs. The SBAS-InSAR

allows reliable deformation measurements to be obtained

by implementing an easy combination of the SAR inter-

ferograms generated from an appropriate selection of SAR

data pairs characterized by a small spatial and temporal
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baseline (Tizzani et al. 2007). The StaMPS (Stanford

Method for Persistent Scatterers) package has proven its

ability to study landslide dynamics even in a densely

vegetated environment. In this study, the Delft Object-

Oriented Radar Interferometric Software (DORIS) and

StaMPS package were used to process 55 ENVISAT

images from descending track 018 and 290 collected

between November 2003 and September 2010, and the

detailed data processing of SBAS-InSAR in the study area

could be found at Zhang et al. (2016). Due to the decor-

relation caused by layover and shadows in mountainous

regions, we only selected areas of less rugged terrain in

populated valleys as our SBAS-InSAR calculated areas

(Zhang et al. 2016). The SBAS-derived mean velocity map

of the Bailong River Basin is used for further model

validation.

In order to access the models in a more quantitative way,

landslides, other than those from the calibrating dataset

with a total of 75 landslides and equivalent slope units,

were randomly selected from the non-landslide locations

and prepared for model verification. The receiver operating

characteristic (ROC) curve which shows goodness of fit

was also applied to assess the performance of the three LS

methods.

Results

Principal and conditional independent factors

As shown in Table 2, nine factors including elevation,

slope gradient, aspect, lithology, distance from fault, rain-

fall, distance from drainage, land-use and settlement den-

sity were identified as the main factors contributing to

landslide occurrence and accounting for 79.3% of the total

variance (Fig. 4). A multicollinearity diagnosis was further

implemented to test the correlation for each of the major

factors; the variance inflation factors (VIF) and tolerance

(TOL) are two important indexes for multicollinearity

diagnosis. According to Allison (2001), the variables with

VIF[ 2 and TOL\ 0.4 were identified as multi-

collinearity with other factors; as a result (Table 3), nine

major factors were found to be ‘‘independent’’ of each

other.

Table 4 summarizes the result of the Chi-square test,

the v2 values higher than 6.64 reflecting a stronger

association with other factors. Of the 9 key influencing

factors, only six factors (consisting of elevation, slope,

aspect, distance from fault, lithology and settlement

density) were found to be extremely independent of each

other; these six factors were utilized to construct the three

LS mapping models in this research. The outcome shows

that the influencing factors including elevation, rainfall

and land-use that were identified as independent of each

other based on the VIF and TOL judgment criteria when

linear regression was undertaken; in contrast, the three

factors are closely correlated within the Chi-square test. It

could be concluded that when the conditional independent

of the factors was required, the Chi-square test was more

effective to detect the correlation of the input factors in

this research.

Table 2 Total variance explained of the nine selected variables

Component % of variance Cumulative %

Elevation 19.325 19.325

Slope 12.992 32.317

Distance to fault 9.637 41.954

Distance to drainage 8.640 50.594

Settlement density 7.147 57.740

Lithology 6.578 64.318

Aspect 5.450 69.768

Precipitation 4.953 74.721

Land-use 4.628 79.349

Table 3 Multicollinearity diagnosis indexes for principle variables

Independent variables TOL VIF

Elevation 0.482 2.073

Slope 0.931 1.074

Distance to fault 0.953 1.050

Distance to drainage 0.853 1.172

Settlement density 0.588 1.700

Lithology 0.821 1.219

Aspect 0.994 1.006

Precipitation 0.864 1.157

Land-use 0.703 1.423

Table 4 Pairwise Chi-square statistics of the nine principal factors

EL SL AS DF DD PR LI LA SD

EL 1.32 0.81 6.96 12.45 11.6 4.37 22.56 1.05

SL 1.56 1.67 4.68 0.15 0.91 0.04 0.55

AS 0.14 8.11 0.01 0.02 0.69 0.08

DF 2.72 0.58 2.35 0.01 4.9

DD 0.03 0.33 1.23 1.03

PR 2.26 25.29 0.21

LI 14.5 1.46

LA 0

SD

Chi-square values in bold indicate the conditional dependence

EL elevation, SL slope, AS aspect, DF distance from fault, DD dis-

tance from drainage, PR precipitation, LI lithology, LA land-use type,

SD settlement density
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LS class rating and LS maps

Figure 5 shows the likelihood ratio curve of landslide

probability with uptrend across the whole range; this is

consistent with the real condition that higher probability

corresponds to larger likelihood ratio. Their cutoff points

were determined according to their characteristic inflection

point (Table 5). Susceptibility maps can be classified into

the following categories: very low susceptibility, low sus-

ceptibility, moderate susceptibility, high susceptibility and

very high susceptibility. On the basis of the charts shown in

Fig. 6, it is clear that in both the likelihood ratio and nat-

ural breaks classifications considered here, the likelihood

ratios are apparently superior for the LR as this method

produces the highest densities in both the high and very

high classes and the lower densities from the very low to

the moderate class. In the case of the WoE and SVM, the

likelihood ratios and the natural breaks are very similar

relative for these two models. Both classified methods in

the WoE and SVM show low density in the very low and

low susceptibility classes, and peak relative density in the

very high class in both likelihood ratio and natural breaks.

Fig. 5 Empirical likelihood ratio classification of the three models aWoE, b LR and c SVM, (VL very low, L low,M moderate, H high, VH very

high)

Table 5 Landslide probability range of different LS class for the

three models

Model LS class

Very low Low Moderate High Very high

WOE 0–0.30 0.3–0.50 0.50–0.60 0.60–0.80 0.80–1.00

LR 0–0.08 0.08–0.20 0.20–0.48 0.48–0.74 0.74–1.00

SVM 0–0.30 0.30–0.50 0.50–0.60 0.60–0.77 0.77–1.00
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These results indicate that the likelihood ratio method can

also result in robust classification in all three models,

providing a categorization that most sensitively reflects the

true distribution of landslides in the region.

The LS maps produced by the three models (WoE, LR

and SVM) are presented in Fig. 7a–c, while Table 6 pre-

sents the numeric results.

Fig. 6 Comparison of the relative density for the three models applied using likelihood ratio and natural breaks classified methods aWoE, b LR

and c SVM

Fig. 7 Landslide susceptibility mapping generated by a WoE, b LR and c SVM
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Accuracy evaluation

To evaluate the three LS models, the deformation infor-

mation derived from SBAS-InSAR was overlaid onto the

susceptibility maps. Since the majority of the basin has

been a rural environment with its consequent vegetation

cover, high slope inclination, and unsuitable orientation,

most of the region has no radar coverage (Colombo et al.

2006) and single descending acquisition data therefore lead

to an absence of information on movement on NE-facing

slopes (Meisina et al. 2008; Zhang et al. 2016). The mean

velocity maps of the Bailong River Basin were constructed

(Fig. 8a–c). The velocity was extracted along the line of

sight (LOS) of the satellite, which is 23� on average from

the vertical. Reliability of the high precise deformation

derived from the SBAS-InSAR in this study area has been

proved by field survey (Zhang et al. 2016). In Fig. 8a–c,

red (-25 to -8 mm/year) and orange (-8 to -2 mm/year)

points indicate subsidence, green points (-2 to 2 mm/year)

represent stable, and light blue (2–7 mm/year) and blue

(7–22 mm/year) points imply uplift. It should be noted that

the density of SBAS-InSAR points does not indicate the

magnitude of deformation. The substantial clusters of

Table 6 LS class distribution of the three models

LS class Model

WOE LR SVM

Very low (%) 13.46 24.20 23.48

Low (%) 13.07 14.86 16.50

Moderate (%) 25.38 19.52 14.15

High (%) 17.97 14.58 15.97

Very high (%) 30.12 26.84 29.90

Fig. 8 Landslide susceptibility maps overlaid with SBAS-InSAR derived deformation. a WoE, b LR, c SVM
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SBAS-InSAR points mostly correspond to more populated

areas in the river valley (e.g. towns of Zhouqu, Wudu)

which possibly exhibit high radar backscatters from man-

made buildings, and also the slowly decorrelating filtered

phase (SDFP) points were not evenly distributed. It can be

seen in Fig. 8a–c and Table 7 that there is a good corre-

spondence of SDFP points to the LS models, 63.31, 60.71

and 65.16% of the deformation points (both subsidence and

uplift) are located in areas classified by the LS models as

high and very high susceptibility to landslide, for the WoE,

LR and SVM, respectively, and the stable points corre-

spond to the low and very low LS, for the WoE, LR and

SVM were 0.49, 0.76 and 1.13%, respectively. It could be

concluded that the SVM classified more instability slope as

high LS level, and also more stable slope as low LS level.

As a consequence, it indicates that the result of SVM is

more reasonable and has a good engineering application

value. Nevertheless, we also should believe that it is not

appropriate to consider each deformation point in Fig. 8a–c

to be a landslide or mass movement.

Determination of the accuracy of different models

applied in this study was also achieved by plotting ROC

curves. The area under the ROC curve (AUC) can be used

to assess the quantitative prediction accuracy. For the

calibration set, the AUC values for the WoE, LR and SVM

were found to be 0.797, 0.840 and 0.844, respectively

(Fig. 9a), which indicates that the LR and SVM are models

with a better training capability. With respect to the pre-

diction skill, the three models show a similar tendency with

regard to the calibration set. The AUC of the WoE is 0.777,

while the AUCs of the LR and SVM methods are 0.812 and

0.830, respectively (Fig. 9b). Inspection of Fig. 9 clearly

shows the similar performance of the LR and SVM. On this

basis, it can be concluded that estimations drawn from the

LR and SVM are relatively good in determining LS in the

study area, whereas the WoE model is a relative poor

estimator. The SVM model is with better prediction ability

and is much more robust statistically. And this is consistent

with the result evaluated by high precise deformation

derived from SBAS-InSAR.

Discussion

The reliability of LS maps depends mostly on the quality of

available data and on the model applied (Ayalew and

Yamagishi 2005; Yilmaz 2010; Pourghasemi et al. 2013).

As can be seen in Fig. 7, several landslides in Northwestern

Zhouqu were classified into low to moderate LS level, and

these landslides were not highlighted by an apparently

increased LS level in any of the three models. This may be

caused by the limited quality of input data: as shown in

Fig. 4d, most of the landslides in Northwestern Zhouqu are

located in limestone areas, and this stratum was classified

as relative hard rock; however, the detailed rock property

such as weathering rate and joint distribution could not be

referenced in the current applied geological map. In addi-

tion, rain gauges in the Northwestern Zhouqu are mainly

Table 7 Percentages of SDFP

points versus landslide

susceptibility classes for WoE,

LR and SVM models

Deformation (mm/year) Susceptibility

Very high (%) High (%) Moderate (%) Low (%) Very low (%)

WoE

-25 to -8 (subsidence) 3.56 2.91 0.39 0.56 0.01

-8 to -2 (subsidence) 13.04 9.31 0.86 0.56 0.00

-2 to 2 (stable) 15.79 14.42 1.19 0.48 0.01

2–7 (uplift) 13.46 14.17 1.42 0.27 0.00

7–22 (uplift) 3.07 3.81 0.67 0.06 0.00

LR

-25 to -8 (subsidence) 5.31 0.95 0.45 0.21 0.51

-8 to -2 (subsidence) 18.76 2.69 1.52 0.39 0.38

-2 to 2 (stable) 25.77 3.48 1.88 0.47 0.28

2–7 (uplift) 23.51 2.77 2.47 0.40 0.16

7–22 (uplift) 5.90 0.82 0.76 0.12 0.04

SVM

-25 to -8 (subsidence) 5.80 0.89 0.06 0.26 0.42

-8 to -2 (subsidence) 19.86 2.92 0.13 0.65 0.20

-2 to 2 (stable) 27.09 3.48 0.20 1.03 0.10

2–7 (uplift) 24.66 3.64 0.20 0.76 0.05

7–22 (uplift) 6.11 1.29 0.08 0.10 0.02
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concentrated in the river valley, with no rain gauges

emplaced at higher elevation areas (Fig. 4f). This may also

influence the LS result to some extent. Therefore, better

quality input data would be needed to solve this problem.

Model evaluation is a significant process for LS map-

ping, which determines whether the LS map could be

applied for land planning and hazard mitigation; in addi-

tion, it could provide reliable basis on model comparison.

Traditional evaluation mostly used the contemporaneous

landslide or ‘‘future’’ landslide which were not applied for

calibration to test the model performance; besides, these

dataset could not reveal the real activity state of landslide.

In this study, the surface deformation derived from the

SBAS-InSAR was applied to evaluate the three LS models.

The surface deformation can also reveal the dynamic

deformation processes of landslides, and these activity

states of landslides are with more concern to the decision

maker. As seen from Fig. 8a–c and Table 7, for the three

LS models, most of the deformation points correspond well

to the high and very high LS levels. And it could also

challenge the traditional view that the knowledge-based

SVM was prone to overfitting (Brenning 2005; Pradhan

2013), however, in this study, more stable points (1.13%)

corresponding to low and very low LS levels for the SVM

when compared with the WoE and LR. This could provide

significant support that the SVM is effective in predicting

the slope units with deformation as high or very high LS

level and also classifying the stable slope units as low and

very low LS level.

However, there still are some limitations by applying the

SBAS-InSAR for evaluating the model accuracy in this

research. Firstly, most of the SDFP points were concen-

trated in the populated valley; in addition, these SDFP

points also cover other deformation types including

potential landslides, the movement of debris and

subsidence (Zhang et al. 2016). Although some researches

have made use of SAR interferometry for LS assessment or

updating the risk map (Singh et al. 2005; Lu et al. 2014),

how to efficiently integrate LS models and InSAR tech-

nique to obtain more reliable LS maps is still a problem. A

potential solution might be to seek a strategy that could

demonstrate the temporal deformation information, either

with highly deformed history or with long-term stability, of

landslides in the LS map. This could possibly be achieved

by analyzing the relationship between the ground defor-

mation which is obtained by time series analysis of PS-

InSAR and SBAS-InSAR, and environmental factors with

statistical models.

The lack of interpretability regarding the contribution of

individual variables when applied to statistical methods for

LS mapping has always been criticized. In the case of the

three models used here, the importance of the different

classes of the influencing factors related to slope instability

could be highlighted in the WoE model (Table 1), as this

method using an categorization to transform the nominal

variables to numeric variable, the weighted value of each

class could be obtained; the spatial distribution of LS

obtained by the WoE models was mainly influenced by

elevations from 835 to 1150 m, slope ranges between 9�
and 20�, aspect between 270� and 315�, the 0–800 m class

of proximity to faults, lithology with phyllite, slate, mud-

stone, thin limestone and siltstone groups, and settlement

more than 0.3, as relatively high weights assigned to these

classes. In addition, the most important contributing factors

could also be identified from the WoE model; for example,

the settlement density, elevation and lithology were found

to be having the higher maximum contrast weight

(Table 1). With regard to the LR, each factor can be

assigned a weight; there is an element which cannot be

attributed to any one factor but to the group as a whole

Fig. 9 ROC curve evaluation of the model fit and predictive capability of the three models. a Calibration set, b validation set
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which is represented by the model intercept in LR

(Schicker and Moon 2012). Therefore, relative weights of

the each influence factor can be derived from the model

(Table 3). The coefficient for the elevation, settlement

density and distance from faults was relatively higher in the

LR model, indicating that these three factors dominated the

results issued by the LR model. For the SVM, it is not an

interpret model just like a black box which cannot provide

relative weights for the variables.

Conclusion

In this study, three statistical models, including the WoE,

LR and SVM pertain to the bivariate statistical, multi-

variate statistical and knowledge-based statistical methods,

respectively, are compared on LS mapping in a study of the

Zhouqu to Wudu segment in Bailong River Basin, China.

Six major independent explanatory variables, i.e., eleva-

tion, slope, aspect, distance from fault, lithology and set-

tlement density, related to landslide occurrence were

selected after implementation of the PCA and Chi-square

test. The accuracy of the models was evaluated by the

SBAS-InSAR derived high precise deformation and ROC.

Results show that the three LS maps agree well with our

SBAS-InSAR-derived deformation maps, most of the

deformation points (subsidence or uplift) are correspond to

the high and very high LS level, which are 63.31, 60.71 and

65.16% for the WoE, LR and SVM, respectively, particu-

larly more points of stable correspond to the low and very

low LS level for the SVM. The AUCs values for the pre-

diction of the WoE, LR and SVM are 0.777, 0.812 and

0.830, respectively. The accuracy evaluation provides a

strong support of SVM with better performance on LS

mapping in the study area.

With regard to their operational and interpretation

capability, the WoE is a simple bivariate model, whereas

the LR and SVM are much more complicated when applied

to LS mapping. The WoE is effective in determining the

contribution of different class rates in the controlling fac-

tors, which derives the class of factors consisting of the

elevation from 835 to 1150 m, slope range from 9� to 20�,
aspect between 270� and 315�, the class 0–800 m of

proximity to fault, lithology with phyllite, slate, mudstone,

thin limestone and siltstone group, and settlement density

more than 0.3 most contributed to landsliding in the study

area; with regard to the LR, the relative weights in each

factor as a group can be derived reveal that factors

including elevation, settlement density and distance from

fault played major roles in landslide occurrence and dis-

tribution. Finally, the SVM is not an interpretable model;

rather, it is like a black box in which the internal processing

steps are difficult to follow.

To sum up, the SVM with better prediction ability was

the most reasonable model for LS mapping of the study

area, whereas the WoE and LR have better interpretation

capability could be applied to enhance our understanding

between the landslide occurrence and the landslide condi-

tioning factors. Thus, the SVM LS maps could be used as

the preliminary basis by decision makers, planners, and

engineers to avoid and/or minimize the damage and losses

caused by existing and future landslides. However, site-

specific studies need to be undertaken so as to complement

the assessment and when the results of these models are

taken into practical engineering applications.
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Landslides 9(1):93–106

Allison PD (2001) Logistic regression using SAS System: theory and

application. Wiley Interscience, New York

Arora M, Das Gupta A, Gupta R (2004) An artificial neural network

approach for landslide hazard zonation in the Bhagirathi (Ganga)

Valley, Himalayas. Int J Remote Sens 25(3):559–572

Atkinson P, Massari R (1998) Generalised linear modelling of

susceptibility to landsliding in the central Apennines, Italy.

Comput Geosci 24(4):373–385

Ayalew L, Yamagishi H (2005) The application of GIS-based logistic

regression for landslide susceptibility mapping in the Kakuda–

Yahiko Mountains, Central Japan. Geomorphology 65(1):15–31
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