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Abstract Flash floods are among the most severe hazards

which have disastrous environmental, human, and eco-

nomic impacts. This study is interested in the characteri-

zation of flood hazard in Gabes Catchment (southeastern

Tunisia), considered as an important step for flood man-

agement in the region. Analytical hierarchy process (AHP)

and geographic information system are applied to delineate

and characterize flood areas. A spatial database was

developed based on geological map, digital elevation

model, land use, and rainfall data in order to evaluate the

different factors susceptible to affect flood analysis. How-

ever, the uncertainties that are associated with AHP tech-

niques may significantly impact the results. Flood

susceptibility is analyzed as a function of weights using

Monte Carlo (MC) simulation and Global sensitivity

analysis. AHP and MC–AHP models gave similar results.

However, compared to AHP approach, MC–AHP confi-

dence intervals (95%) of the overall scores had small

overlaps. Results obtained were validated by remote

sensing data for the zones that showed very high flood

hazard during the extreme rainfall event of June 2014 that

hit the study basin.

Keywords Flood hazard � Analytical hierarchy process �
Monte Carlo simulation � Tunisia

Introduction

Flood is one of the most frequent, widespread, and disas-

trous natural hazards in Tunisia (Abida and Ellouze 2008).

Flash floods happen very suddenly and are difficult to

forecast. Flood events generally cause damage to agricul-

tural crops and property, roads and railways, and may even

result in the loss of human lives. Millán (2014) affirmed

that flash flood hazard is mainly related to the size of the

concerned catchment and its geomorphologic characteris-

tics. According to Taubenbock et al. (2011), meteorologi-

cal conditions and urbanization rates are arguably the most

significant driving forces of flood hazard. In arid areas,

floods are generally caused by storms of high intensity and

are often of relatively limited extent. In these areas, the

type of slope and the nature of soil may enhance the

potential of rapid surface runoff during intense rainfall. The

activation of surface runoff can also be increased by land

use modification, urbanization, and fire-induced alteration.

Moreover, the dynamics of the socio-economic system and

the expansion of urban areas, especially in flood-prone

areas, may significantly contribute to raise the damages

from flooding events (Elmer et al. 2012).

Gabes Catchment, located in Southern Tunisia on the

Mediterranean Sea, is confronted to the impacts entrained

by flash floods. The basin is characterized by sparse veg-

etation, steep slopes, poor soil development, large imper-

meable areas, high urbanization, and an ever growing

population. Besides, rainfall in the region is characterized

by its erratic distribution, ranging from extended drought

periods to extreme rainfall events resulting in flash floods.

In the past, Gabes Region was hit by many flash floods, the

most significant of which is the flood of 1962, which

resulted in 50 deaths, 7000 persons without shelter and

important material losses (Fehri 2014). In the main
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meteorological station of Gabes City, the analysis of

daily precipitation data from September 1983 to

December 2014 revealed that intense events represent

approximately 23% of the total number of rainy days.

The ‘extreme’ and ‘very extreme’ events, estimated by

percentile indices, correspond to 49.5 and 60.8 mm,

respectively. Lately, an extreme rainfall event hit the

Gabes Region in June 2014, causing human deaths and

major material losses. This resulted in the stagnation of

storm water in the numerous low zones of the study area,

endangering thereby human health and causing disas-

trous environmental impacts.

Various methods, used to assess flood susceptibility, are

available in the literature. In the context of lacking

knowledge about flood phenomena, expertise is required to

provide analyses for decision and hazard management

purposes using multi-disciplinary qualitative and quantita-

tive approaches. The former is based on expert knowledge

to afford a relative indication of hazard while the latter

offers quantitative results, based on calculated data and/or

modeling. However, these approaches are complementary.

Enormous progress has been made in the development of

susceptibility mapping and hazard zoning, whereby much

of this progress is based on the extensive use of geographic

information system (GIS), survey data and remote sensing

techniques (Kachouri et al. 2014). GIS environment pre-

sents effective tools for handling, integrating, and visual-

izing diverse spatial data sets (Dixon 2005). The extension

of hazard areas is an important consideration in the pre-

diction of flood hazard and the management of natural

resources.

One of the most important tools used in hazard mapping

is the combination of an analytical hierarchy process

(AHP) method (Saaty 1980) with a GIS platform. This

process has received significant consideration among

multi-disciplinary decision makers and has demonstrated

its value in various studies related to natural hazard eval-

uation, including soil erosion hazard mapping (Kachouri

et al. 2014), flood hazard (Fernandez and Lutz 2010), and

landslide susceptibility mapping (Feizizadeh et al. 2013).

The AHP represents a powerful tool for the analysis of

complex decision problems based on an approach of multi-

criteria evaluation, generally involving incommensurable

data or factors. The integration of AHP into a GIS envi-

ronment was shown to be efficient in the development of

automated methods for quantifying the spatial variability of

flood hazard and the associated problems (Pourghasemi

et al. 2012).

The application of AHP method has obtained consider-

able attention and value in various studies related to natural

hazard assessment (Dambatta et al. 2009). However, the

uncertainties that are associated with AHP techniques may

significantly impact the results. The uncertainties are

mainly due to incomplete and inaccurate data which are

combined into flooded susceptibility values and parameters

used in the combination rules. A strong correlation is

presented between data uncertainty and parameters uncer-

tainty, since model parameters are obtained directly from

measured data, or indirect calibration (Ascough et al.

2008). The large number of parameters and the hetero-

geneity of data sources make the uncertainty of results

difficult to quantify. Thus, AHP technique should be

exhaustively evaluated to ensure its robustness under a

wide range of possible conditions. The incorporation of

probabilistic uncertainty into the AHP technique is con-

sidered to quantify the sensitivity and uncertainty of the

proposed model. The beta-PERT distribution has been

widely used for modeling expert’s judgments and provid-

ing a close fit to normal distributions with little demand for

data (Coates and Rahimifard 2009; Lake et al. 2010). This

technique uses the most likely, minimum, and maximum

values of expert estimates to generate a probability distri-

bution that provides a possibility of measuring the level of

confidence in AHP decision (Chen et al. 2011).

The objective of this study is to examine the magnitude

and the extent of flood hazard in Gabes Basin using GIS

and AHP techniques. However, this latter is based on

expert opinions and thus may be subjected to cognitive

limitations with uncertainty and subjectivity (Pourghasemi

et al. 2012). Therefore, Monte Carlo simulation-aided

analytic hierarchy (MC–AHP) is used to quantify the

sensitivity and minimize uncertainty of AHP model. This

technique has been already applied to landslide suscepti-

bility mapping (LSM), soil erosion hazard, and pollution

control (Cao et al. 2016). To the authors’ knowledge, the

evaluation of flood hazard remained limited to sensitivity

analysis and this the first time that the MC-AHP technique

is applied to flood susceptibility mapping (Fernandez and

Lutz 2010). The results obtained by the MC–AHP

approach were validated based on their confrontation with

remote sensing data for the extreme rainfall event that hit

the region in June 2014.

This paper is organized as follows. The next chapter (2)

presents the study area and describes the methods: AHP,

MC–AHP and the validation exercise. Our results are

reported and discussed in chapter 3. A conclusion closes

the paper in chapter 4.

Materials and methods

Study area and data analysis

Gabes Watershed, located in Southern Tunisia on the

Mediterranean Sea, covers a drainage area of 95 km2. It is

characterized by mild slopes and altitudes varying from
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0.3 m in the northeast to 235 m in the southwest (Fig. 1).

This area is subjected to the influences of both warm and

humid air masses coming from the desert and the

Mediterranean Sea, respectively. Rainfall is characterized

by its shortage, irregularity and erratic distribution, leading

to dry and intensive rainy periods, with extreme flood

events. Average rainfall is approximately 185 mm/year.

Average monthly temperatures vary from 12 �C in January

to 29 �C in August, with an annual average of 21 �C. This
area is influenced by occasionally strong winds of variable

directions. The downstream part of the basin is character-

ized by its development in terms of housing, industrial, and

agricultural activities. Both natural and anthropogenic

factors contributed to the damages and impacts of floods.

Six evaluation factors were considered in order to

develop a flood susceptibility map of the area (Fernandez

and Lutz 2010; Wang et al. 2011; Elsheikh et al. 2015;

Dahri et al. 2016; Danumah et al. 2016). They include

litho-facies, slope gradient, land use, elevation, rainfall,

and drainage density. The analysis starts with the digital

elevation model (DEM), created from both real elevation

data and SRTM 30 m data. Real elevation data were

derived from the urban management plan. The obtained

elevation data were organized as grid data, corresponding

to the 1:30,000-scale. The determination of the absolute

accuracy of SRTM data is based on the computation of the

standard deviation statistic for the elevation differences

between the SRTM data and a reference dataset (GPS

point measurements) (Gorokhovich and Voustianiouk

2006). The performance of SRTM data involved firstly the

conversion of SRTM raster data set into xyz data and then

the comparison with observed data in the same location.

The results obtained show that a mean difference in ele-

vation between the two data sets is 1.1 m for 110 point

measurements. The coefficient of correlation between the

two data sets was 0.95. These results indicate a strong

positive correlation between the two data sets. Further

analysis of the SRTM surface involved a comparison

between contours generated from SRTM and the contour

maps at a 1:25,000-scale published by the Office of

Topography and Cartography (OTC), Tunisia. The results

obtained show a reasonably good superposition of the two

Fig. 1 Location map and digital elevation model of Gabes Catchment
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contours derived from the two disparate sources. Further,

the superposition of stream networks generated from the

two different origins revealed that the two surfaces are

generally close. The obtained DEM was adopted to obtain

digital thematic layers. Digital slope and stream network

layers were also determined on the basis of DEM data. D8

flow direction is the method used to determine the flow

direction for each cell according to the steepest descent to

one of its 8 neighboring cells (O’Callaghan and Mark

1984). The flow accumulation raster is used for stream

delineation. The threshold value for stream network

identification depends mostly on climate, basin physical

characteristics as well as the spatial resolution of DEM

used (Yamamoto 2009). In this study, 1% of the maxi-

mum flow accumulation is considered as the default

stream threshold value (Girish et al. 2013), computed to

be 1055 for Gabes Watershed. This would imply that all

cells with flow accumulation value above the threshold

are considered to be part of the stream network. A drai-

nage density map was produced from stream network data

using the Kernel Density Algorithm. Drainage density is

expressed as the total length of the stream network per

unit area. The litho-facies basin map resulted from

digitalization of the geological maps (1:50,000) as vector

files and then rasterized.

Land use data were obtained by classifying Landsat

TM 8 images (Mertikas and Zervakis 2001). The images

were classified using a maximum likelihood classification

algorithm in a per-pixel classification approach (Sharma

et al. 2013). The image classification was run using an

appropriate signature file (Fig. 2). Five land use types

were identified, including (1) urban area, (2) oasis, (3)

forest, (4) low vegetation, and (5) bare soil. This method

showed fine details not achieved by photo-interpretation

(Mertikas and Zervakis 2001). The overall accuracy and

the Kappa coefficient were found to be 93.5% and 0.92,

respectively, which clearly shows the accuracy of the

classification method (Table 1). The spatial distribution of

rainfall data is used to characterize the climatic factor.

The thematic layer of rainfall spatial distribution was

produced using kriging interpolation (Krige 1951) of data

gathered by 6 meteorological stations to create a contin-

uous raster rainfall data within the catchment and its

surroundings.

According to Cova (1999), flood hazard assessment is

based on the highest rainfall situation. Indeed, extreme

Fig. 2 Land use of Gabes Catchment
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events are generally used in flood mapping. Rainfall

factor in this study was derived from the 2014 extreme

event. The maximum registered rainfall over a period of

almost 6 h varied between 65 and 110 mm all over Gabes

Catchment, showing an erratic spatial rainfall distribution.

Downtown Gabes, located downstream, is the area that

acquired the maximum of precipitation (from 107 to

110 mm). Gumbel distribution was applied to estimate the

recurrence of the annual maximum rainfall recorded

during 1 day (R 9 1d) over the period extending from

1983 to 2014 (Gumbel 1958; Fehri and Yadh 2016).

Table 2 shows that the 2014 extreme rainfall is charac-

terized by a 50 year return period. This is in agreement

with the findings of Bourges (1974) who reported that the

majority of extreme rainfall events that caused severe

damage and human losses in Gabes Region have a return

period of 50 years. Finally, all data were projected using

the Universal Transverse Mercator (UTM) projection

system and arranged as raster maps with a resolution of

20 m for further analysis.

Standardization

Standardization technique is used to translate various

inputs of a decision problem to a common scale, to allow

comparison, and to overcome the incommensurability of

data (Azizur Rahman et al. 2012; Eastman 1997). The

standardization process consists in the transformation of

the input raster cell values into the [0, 1] range. In this

study, the fuzzy module is applied to translate all factors to

a common scale [0, 1]. A fuzzy set is an important part of

fuzzy logic model (Bellman and Zadeh 1970; Zadeh 1983).

The fuzzy sets design is defined by membership functions

and rule bases. The membership is the approach that

defines the shapes of the fuzzy sets. Fuzzy logic defines the

interval between 0 and 1 in order to indicate the various

states of truth (Zadeh 1988). This process facilitates the

combination of various raster layers regardless of their

original measurement scales (Gorsevski et al. 2012). The

fuzzy function is selected in such a way that highly suit-

able raster cells, in terms of achieving the analysis objec-

tive, reach high standardized values and less suitable cells

are associated with low values (Azizur Rahman et al.

2012).

Analytical hierarchy process (AHP)

Factor weights are assigned to each criterion based on its

importance relative to each of the other factors using

Saaty’s Method (Saaty 1980). AHP is applied to help

decision makers make pair-wise comparisons between the

factors (Table 3), through an importance scale varying

from 1 to 9. The method is weighed for each criterion (Wi)

by taking the eigenvector corresponding to the largest

eigenvalue of the matrix, and then normalizing the sum of

the components to unity (Eq. 1).

Xn

i¼1

Wi ¼ 1 ð1Þ

Table 1 Kappa statistic and confusion matrix

Overall accuracy = 93.5%

Kappa coefficient = 0.92

Class name Urban

area

Oasis Low

vegetation

Forest Bare

soil

Ground truth (Percent)

Unclassified 0.16 0.17 0 0 0

Urban area 87.29 2.45 1.24 0 0

Oasis 1.32 95.59 2.35 0 0

Low

vegetation

2.48 1.63 88.95 1.71 0.56

Forest 5.45 0 3.87 98.29 0

Bare soil 3.3 0.16 3.59 0 99.44

Total 100 100 100 100 100

Table 2 Statistics of extreme daily rainfall (mm) using Gumbel

statistical distribution

T (years) Gabes_Meteo: 1983–2014

Theoretical value Lower limit Upper limit

2 36.3 31.87 40.73

5 60 52.54 67.4

10 75.7 65.6 85.8

20 90.8 78.3 103.3

50 110 93.7 126.3

100 125 106.1 143.9

200 140 118.4 161.6

1000 173 145.1 200.9

Table 3 Scales for pair-wise AHP comparisons (Saaty and Vargas

1991)

Intensity of importance Description

1 Equal importance

3 Moderate importance

5 Strong or essential importance

7 Very strong or demonstrated importance

9 Extreme importance

2, 4, 6, 8 Intermediate values

Reciprocals Values for inverse comparison
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The creation of AHP model is based on the following

steps:

Step 1: Define the problem and structure its hierarchy

which includes a main goal, factors and alternatives.

Step 2: Construct the original basic data which is the

pair-wise comparison matrix, PCM, of n factors, estab-

lished on the basis of Saaty’s scaling ratios as defined in

Eq. 2. PCM is a matrix with elements aij. The matrix has

also the property of reciprocity (Eq. 3). The construction

of pair-wise comparison matrix (PCMs) is based on the

surveys and interviews of experts’ opinions (eight

experts).

PCM ¼ aij
� �

; i; j ¼ 1; 2; 3. . .n ð2Þ

aij ¼ 1=aji ð3Þ

Step 3: Use the pair-wise comparison matrix obtained by

experts’ opinions for each non-diagonal element to

generate a corresponding beta distribution (Fazar 1959).

Three inputs data (i.e., minimum, maximum, and most

likely) are used to fit a beta-PERT distribution. This

approach makes the modeling of expert opinions in

decision making processes an ideal technique. The

PERT formula estimates the average values (mean)

and standard deviations (stdev) of non-diagonal elements

as defined in Eqs. 4 and 5. These parameters are

necessary to calculate shape factors (a and b) from the

corresponding beta-PERT distributions (Eqs. 6 and 7).

mean ¼ minþ 4modalþmax

p
ð4Þ

stdev ¼ max�min

p
ð5Þ

a ¼ mean�min

max�min

� �
:

ðmean�minÞ:ðmax�meanÞ
stdev2

� 1

� �

ð6Þ

b ¼ max�mean

mean�min

� �
:a ð7Þ

Step 4: Stochastically produce the beta-PERT distribu-

tions and generate the elements of matrix as defined in

Eq. 8.

aij ¼ minþ betaða; bÞ:ðmax�minÞ ð8Þ

Step 5: Normalize the matrix obtained in step 4. The

normalized elements are named bij which formed a new

matrix Mn. The normalization step is defined as shown in

Eq. 9

bij ¼ aij=
Xn

i¼1

aij ð9Þ

Factor’s weights are calculated as presented in Eq. 10.

The results of Factor’s weights are presented in Table 4.

Wi ¼
Pn

j¼1 bijPn
i¼1

Pn
j¼1 bij

; i; j ¼ 1; 2; 3. . . n ð10Þ

Equation 11 represents the relationship between the

maximum eigenvalue (kmax) and its corresponding

eigenvector (W) (Chen et al. 2010).

MnW ¼ kmaxW ð11Þ

Step 6: Compute the consistency ratio (CR), which

reflects the degree of consistency of judgements and

determines the quality of the comparison (Saaty 1977).

The average random consistency index (RI) is provided

in Saaty (1980) (Table 4). The consistency index (CI)

results from Eq. 12. CR index is calculated using Eq. 13.

CR varies from 0 to 1. A CR value exceeding 0.1 is a

sign of inconsistency, and a revision of the preference

matrix is recommended. A CR of the order of 0.10 or

less represents a reasonable level of consistency.

CI ¼ ðkmax � nÞ
n� 1

ð12Þ

CR ¼ CI

RI
ð13Þ

Monte Carlo AHP (MC–AHP)

To improve the performance of the proposed model, an

innovative Monte Carlo simulation-aided analytic hierar-

chy process (MC–AHP) is used. This is an important

approach to quantify the sensitivity and the uncertainty

when weights are assigned based on subjective expert

opinion, or personal preference (Gomez-Delgado and

Tarantola 2006). This approach is related to probability

distributions of all non-diagonal elements of the pair-wise

comparison matrix (PCM). In this approach, the same steps

and constraints of AHP are used with introduction of beta-

random (betarnd function). The betarnd is a function in

MATLAB that generates beta distributed numbers within

the interval of [0, 1] using to shape factors a and b. The
Eq. 8 used in AHP method is replaced by Eq. 14.

aij ¼ minþ betarndða; bÞ:ðmax�minÞ ð14Þ

Table 4 Random index RI for

different n values
n 3 4 5 6 7 8 9 10 11 12 13 14

RI 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.54 1.56 1.57
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The repetition of the same steps (step (4) to step (6)) of

AHP, with Eq. 14 instead of Eq. 8, is considered with a

number of replications (raying from 100 to 10.000). The

relative weights for factors are obtained (Table 5) and

plotted as probability density functions rather than as point

values (Jing et al. 2013).

Weighted linear combination (WLC)

Weight values derived from AHP and MC–AHP were

assigned to layer factors. Weighted linear combination

(WLC) is considered as a decision rule to derive com-

posite maps using GIS platform (Malczewski

1999, 2006). WLC is a concept which aggregates maps

by applying a standardized score to each class of factors

and a weight to the factors themselves. Factor weights

are used to determine the hazard condition (R) as defined

by Eq. 15.

R ¼
X

Wi � Xi ð15Þ

Wi is the mean weight values of the factor i, and Xi is the

potential rating of the factor i.

Validation

Satellite data were analyzed to identify flood-prone areas

(Zhang et al. 2002). A Landsat TM 8 image, captured in

June 3, 2014, was used to validate the AHP flood hazard

delineation for selected sample points. All bands images

were orthorectified, georeferenced to the UTM projection

32 and converted to digital numbers (Knight and Kvaran

2004). Atmospheric correction was also performed to

obtain the surface reflectance of all raw images (Devadas

et al. 2012). The Landsat image was corrected using ENVI

software (Knight and Rvaran 2014; Williams 2008; ITT

Visual Information Solutions 2009). Inundated areas were

Table 5 Factors weights from

AHP and MC–AHP approaches
Factor Classes AHP-weighting MC-AHP-weighting

Slope (%) 0–2.2 0.1019 0.1161

2.2–4.8

4.8–9.2

9.2–16.1

16.1–37

Elevation (m) 0.3–35.4 0.0883 0.0827

35.5–70.7

70.7–106.8

106.8–152.2

152.2–237.6

Litho-facies Very low impermeable materials 0.1841 0.175

Low impermeable materials

Moderate impermeable materials

High impermeable materials

Very high impermeable materials

Rainfall (mm) 67.5–74.9 0.1488 0.1711

74.9–82

82–89.9

89.9–97.7

97.7–110

Drainage density (km/km2) 0–0.8 0.147 0.1484

0.8–1.8

1.8–2.8

2.8–4.2

4.2–7.3

Land use Bare soil 0.3298 0.3068

Low vegetation

Forest

Oasis

Urban area
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classified based on thresholds of NDWI (Normalized Dif-

ference Water Index) and NDVI (Normalized Difference

Vegetation Index), considered to be sufficient to accurately

map and monitor the presence of water in natural and

artificial ponds. This methodology was tested and verified

in arid and semiarid regions (Gond et al. 2004).

Results and discussion

Both GIS and AHP techniques are used to identify flood

hazard areas. The AHP method is generally used to

describe hazard evaluation (Erkut and Moran (1991).

However, for large-scale applications, it is important to

incorporate stochastic simulations to better reflect real

conditions. This takes into account uncertainty in a real

application, which shall increase the confidence of a

decision maker in the final results. Monte Carlo simula-

tion, known to be particularly useful in stochastic mod-

eling, was considered. MC–AHP method is based on the

fact that input variables are presented as statistical dis-

tributions that are derived by best fitting the data

collected. Numerous iterations were performed in order to

quantify results and identify the optimum solution. In the

following, results of both AHP and MC–AHP are com-

pared based on an error quantification analysis. MC–AHP

results were validated using the methodology of Gond

et al. (2004). Obtained flooded areas were also verified by

survey data collected after a particular flood event.

The obtained flood hazard map of the study area (Fig. 3)

was subdivided into five classes, ranging from ‘very low’

to ‘very high’ hazard. The areas labeled as ‘very high

hazard’ are strongly influenced by the impervious areas in

the urban sector. Impermeable litho-facies and high drai-

nage density tend to increase the flood hazard. The map

shows that the northeastern part of Gabes Catchment has

the highest flood hazard, with a flooded area of 11.9% of

the total area (Table 6). 20.5% of the total area is shown to

be under a high level of flood hazard. The areas with very

low to low flood hazard are generally located in the

southwestern part of the study basin and represent 21.7% of

the basin. Table 5 shows that 45.9% of the total area is

found to be under a moderate flood hazard. The flood

hazard influence is increased mainly downstream of the

Fig. 3 Final flood susceptibility map derived by AHP approach
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catchment, characterized by high urbanization rates.

Moreover, anarchic urbanization in flood-prone areas and

the lack or the limited capacity of the storm water collec-

tion system are considered as important factors contribut-

ing to flood risk.

The region of ‘very high’ flood hazard is also located

along the coast, which represents the zone that receives

the highest amount of rainfall and the most important

extreme events. This was demonstrated by Ellouze et al.

(2009) who indicated that rainfall increased from the

west (continent) to the east (coast line) in southeastern

Tunisia regions. Indeed, a high precipitation over a short

period of time is the most important factor responsible

for triggering floods (Wang et al. 2011). Finally, the

urban area located downstream of Gabes Catchment is

characterized by mild slopes, inducing thereby water

stagnation.

The analytical hierarchy process (AHP), as a method of

factors weighting, suffers from sensitivity and uncertainty,

as reported by (Banuelas and Antony 2004). The Monte

Carlo simulation-aided analytical hierarchy process (MC–

AHP) approach is expected to quantify the sensitivity and

uncertainty of AHP model. MC–AHP integrated the beta-

PERT distribution, which was shown to closely resemble

the realistic probability distribution with little demand of

data. A PERT normal distribution was considered because

the triangular distribution is limited in its ability to model

real-world estimates (Jing et al. 2013). The proposed

approach addresses the uncertainty resulting from insuffi-

cient information and subjectivity judgements in group

decision making problems. For all MC–AHP simulations,

the consistency ratio was shown to be less than 0.1 (Fig. 4).

The results obtained after 10.000 replications show that

MC–AHP presented similar results if sorted into five

classes (Fig. 5).

The probability density distributions of factor weights

obtained by the kernel-smoothing method are plotted in

Fig. 6. Compared to other probability density distribu-

tions, land use probability function has the most

important weights (Fig. 6). Regardless of experts’ judg-

ments, the land use factor increased flood hazard espe-

cially downstream. The high flood hazard areas are also

attributed to mild topography and natural depressions or

low points (called Sebkhas) inducing water stagnation.

Figure 6 also shows similar flood hazard contributions of

both ‘rainfall’ and ‘litho-facies’ factors. Finally, eleva-

tion contributed with the minimum weight to flood

hazard. The results obtained by AHP and MC–AHP were

compared. The beta-PERT distribution adopted in the

proposed approach significantly reduced standard devi-

ations of the overall scores. Other indices such as con-

fidence interval with a confidence level of 95% were

derived for both AHP and MC–AHP as shown in

Table 7. In the AHP approach, the overall scores had

large variation intervals (Fig. 7). Unlike the traditional

AHP method, MC–AHP approach tends to concentrate

the weight around the mean with a small confidence

interval (Fig. 7). The MC–AHP model mainly reduced

Table 6 Subdivision of the different flood risk classes within Gabes

Catchment

Classes risk Area (km2) Area (%)

Very high 11.32 11.9

High 19.5 20.5

Moderate 43.6 45.9

Low 17.3 18.2

Very low 3.4 3.5

Fig. 4 Consistency ratio of

MC–AHP (10.000 Monte Carlo

replications)
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the standard deviations of weight factors. This method

minimizes the error produced by subjectivity judgments

of the AHP model.

The results obtained by the MC–AHP approach were

also compared to the Landsat analysis of June 2014 flood

event (Fig. 8). The examined flooded areas in 2014 show

that 226 observed flood samples are used to validate the

accuracy of the results obtained by MC–AHP approach.

The total observed inundation area is estimated to be

62 ha (0.65% of total basin area). Two hundred and

seven from a total of 226 observed flooding zones are

located in a high to very high susceptibility zone. Flood

samples are mainly concentrated downstream of the

catchment. 95.5% of observed flooding areas are espe-

cially located in Gabes City surrounding the streams and

anarchic urbanization (Fig. 8). The lack or the limited

capacity of the storm water collection system also con-

tributed to water stagnation. Indeed, Gabes City lacks an

appropriate drainage system in order to afford a signif-

icant level of conveyance, avoiding thereby the multi-

plication of flooding zones. Storm water is simply

conveyed by gravity via roads and streets to the

Mediterranean Sea.

Fig. 5 Flood susceptibility map derived by the MC–AHP method

Fig. 6 Probability density estimates of factor weights
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Conclusion

Analytical hierarchy processes (AHP), with and without

Monte Carlo simulation, were applied, and flood suscep-

tibility maps of Gabes Catchment were developed. The

analysis considered six variables, including elevation,

slope, land use, drainage density, litho-facies, and rainfall.

This latter was derived from the spatial distribution of the

June 2014 extreme rainfall event, characterized by a return

period of 50 years since the concept of hazard is especially

associated with extreme events.

The results obtained by both AHP and MC–AHP

approaches are similar for five hazard classes. The beta-

PERT distribution adopted in the MC–AHP approach sig-

nificantly reduced standard deviations of overall scores.

MC–AHP modified the original factor weights and produced

limited confidence intervals. The analysis showed that

reducing the error of the input weights results in improving

the flood map accuracy. The obtained MC–AHP results

show that 33.5% of the basin area is characterized by a high

to a very high flooding hazard. Land use was shown to be

the most important factor contributing to flood hazard.

Table 7 Statistics for overall

scores from the AHP and MC–

AHP techniques

Factors Mean Minimum Maximum SD CI

AHP

Slope 0.1019 0.0411 0.1618 0.0406 (0.022–0.1815)

Elevation 0.0883 0.0352 0.1492 0.0392 (0.0114–0.165)

Litho-facies 0.1841 0.0808 0.261 0.0774 (0.0324–0.336)

Rainfall 0.1488 0.0873 0.2107 0.0586 (0.0339–0.264)

Drainage density 0.147 0.0703 0.1769 0.0387 (0.0711–0.2228)

Land use 0.3298 0.2427 0.4272 0.0728 (0.187–0.4725)

MC-AHP

Slope 0.1161 0.0266 0.4135 0.0168 (0.1158–0.1164)

Elevation 0.0827 0.0231 0.207 0.0077 (0.0826–0.0828)

Litho-facies 0.175 0.0322 0.3877 0.0125 (0.1747–0.1752)

Rainfall 0.1711 0.053 0.4688 0.0162 (0.1708–0.1713)

Drainage density 0.1484 0.0535 0.4982 0.0162 (0.1481–0.1486)

Land use 0.3068 0.118 0.5991 0.0161 (0.3064–0.3072)

Fig. 7 Confidence interval of 95% plot of the overall scores for the different factors
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To validate MC–AHP model, Landsat analysis of the

2014 flood event was used. The examined flooded areas

proved that among 226 observed flood samples, 209 zones

are characterized by a high to a very high susceptibility

hazard. 96.3% of observed flooding areas are located in

Gabes City surrounding the streams and anarchic

urbanization.
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Bourges J (1974) Aperçu sur l’hydrologie du centre sud Tunisien:
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