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Abstract The mobility of metals in ultramafic rock–soil

systems and metal contamination in serpentine soils were

investigated from the Ranau area in Sabah, East Malaysia.

Metal concentrations were analysed after division into

seven operationally defined fractions by selective sequen-

tial extraction (SSE). Geochemical studies showed that the

soils are exceptionally high in Cr (\19,000 mg kg-1), Ni

(\4800 mg kg-1) and Co (\170 mg kg-1), about 140, 16

and 10 times higher than global soil averages, respectively.

Thus, the soil can be categorized as unusually contami-

nated in comparison with relevant guidelines. Neverthe-

less, despite expectations, low concentrations of Cr, Ni and

Co were found in surface waters flowing over the serpen-

tine massifs (\14, 94 and 7 lg L-1, respectively), indi-

cating mobile ingress into river waters is low or,

alternatively, diluted in the tropical environment resulting

in minimal decline in their quality ascribed to the regional

ultramafic geology of the area. The main reason is revealed

by the SSE finding of very low (\1%) mobile metal

abundances in available fractions of Ranau soils. While this

study is one of the first to use a comprehensive SSE in

tropical serpentine soils, the major SSE finding highlights

the majority of metals ([95%) residing in refractory

residual fractions. Metal speciation studies will shed

further light on toxicities in the Malaysian ultramafic

tropical environment, reconciled against elemental metal

tenure, adopted by common standards.

Keywords Serpentinite � Lateritic soil � Surface water �
Heavy metal � Mobility

Introduction

Serpentinites are hydrothermally altered ultramafic rocks

with heavy metal enrichment compared to many other rock

types, which cover about 1% of the earth’s surface (Tur-

ekian and Wedepohl 1961; Brooks 1987; Proctor 2003). It

is well documented that a substantial quantity of side-

rophile elements including chromium (Cr), nickel (Ni) and

cobalt (Co) in these rocks are exceptionally high compared

to the Earth’s crust. The concentrations, fractionation and

availability of metals in soils over ultramafic rocks

throughout the world have been extensively studied (Tur-

ekian and Wedepohl 1961; Schwertmann and Latham

1986; Graham et al. 1990; Bonifacio et al. 1997; Dinelli

et al. 1997; Shallari et al. 1998; Godard et al. 2000;

Quantin et al. 2002b; Proctor 2003; Lee et al. 2004;

Brearley 2005; Skordas and Kelepertsis 2005; Becquer

et al. 2006; Kierczak et al. 2007; Rashmi et al. 2009; Alves

et al. 2011; Tashakor et al. 2014a). The concentrations up

to 125,000 mg kg-1 Cr (Adriano 2001) and more than

10,000 mg kg-1 Ni (Hseu 2006) were observed in ser-

pentinite soils, while the concentration of these metals in

other soils commonly ranges up to 100 mg kg-1 (Kabata-

Pendias 2000). Heavy metals in the environment are

receiving increasing attention among soil scientists and

biologists (Ashraf et al. 2015) due to growing scientific and

public awareness of their polluting and potential
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carcinogenic role, with heavy metal contamination repre-

senting a significant challenge due to their persistence in

the environment. While metals from anthropogenic origins

are often considered to be more of an environmental

problem, lithogenic metal release should be considered in

certain areas, such as those over ultramafic rocks. Soils

over ultramafic rocks represent sources of natural geogenic

contamination (Oze et al. 2004; Hseu et al. 2007; Kierczak

et al. 2008), particularly in areas where there are significant

human populations. It is not surprising that parent rock

metal content is transferred to soils, though their geo-

chemical and mineralogical characteristics have the

potential to alter metal tenure and mobility, and therefore

influence the environment with possible knock-on effects

on human health. These soil quality issues are particularly

important in South-East Asia given the presence of large

area of ultramafic rocks (Repin 1998; Proctor 2003;

Tashakor et al. 2014b; van der Ent et al. 2016). The natural

metal sources can be traced back to geological and pedo-

genic processes through which metals are liberated from

parent materials and may enter the wider environment.

However, it is more important to understand the stocks and

fluxes within and between different fractions in which such

metals are held in rocks and soils if we are to gain a full

understanding of the importance of ultramafic lithologies in

potential geogenic contamination. Though emphasis is

often placed on the role of pH in mobility and solubility of

metals, the presence of soil organic matter, oxides and

hydroxides plays an inhibiting role in release of metallic

elements. In fact, our findings and others (Kaasalainen and

Yli-Halla 2003) show the affinity of heavy metals to bind

with different soil fractions, which may vary significantly,

determines how strongly metals are retained in soils and

how easily they might be released into soil solution and

subsequently to adjacent surface waters (Vardaki and

Kelepertsis 1999; Cancès et al. 2003). As soil is composed

of a heterogeneous mixture of organic and inorganic con-

stituents with varying ability to interact physically and

chemically with heavy metals, metals present in soils can

be associated with several reactive components. Soil metal

mobility is limited largely by initial mineralogical specia-

tion and subsequent metal binding forms associated with

soil constituents and/or speciation that may partition into

various soil fractions. Based on the affinity of metals to

bind with different soil constituents, they are defined rep-

resenting a decreasing degree of metal availability, ranging

from ions in soil solution to ions in rock crystal lattices that

can be assessed using sequential extraction procedures

(Tessier et al. 1979; Silveira et al. 2006). Few studies have

addressed potential pollutants in water resources and

agricultural or natural soils resulting from the large regio-

nal extent of ultramafic rocks in the Malaysian tropical

setting, particularly with methods revealing species

contributions such as the selective sequential extraction

(SSE) method. This is one of the first studies using a

combination of mineralogical analysis (XRD), elemental

content (XRF) and soil physical and chemical character-

istics, in which we aim to determine the availability of

metals in rocks, soils and waters in such environments. It

therefore contributes to our understanding of potential

health effects on populations living on or near ultramafic

lithologies.

Materials and methods

Study area and sampling

Sabah is one of the two Malaysian states located in north-

west Borneo. Ultramafic peridotite outcrops extend widely

over about 3500 km2 (Repin 1998). The current study

focuses on the Ranau area in north-west Sabah between the

latitudes of 5�570–6�020N and longitudes of 116�400–
116�450E (Fig. 1) where the ultramafic series forms a broad

expanse of land covering about 41 km2 (Hing 1969). The

common rock types in the area are tremolite peridotites and

spinel lherzolites (Hutchison 2005). However, peridotites

of Ranau are partially to totally altered through intense

serpentinization and weathering and are difficult to recog-

nize in the field. Serpentinites are characterized by their

blue colour with small ill-defined greenish lenses. Their

appearance is waxy, although some specimens appear to be

crystalline. Associated metamorphic rocks are greenschists

and amphibolites. The serpentinites are in fault contacts

associated with hornblende gabbro. Diabase dikes intrude

the ultramafic formations in some areas. The sedimentary

rocks of the Ranau area are mainly associated with the

north-west Borneo eugeosyncline of late Cretaceous to

Tertiary age. These sedimentary rocks (Trusmadi or

Crocker formations) consist of thick successions of sand-

stones and shale.

Four rock and ten soil samples (\20 cm depth

including A and upper B horizons) were taken from the

environs of the villages of Kinaratuan, Lohan Skim 1 and

2, Lohan Ulu and Tuhan (Fig. 1). Soils were taken from

upper horizons after removal of debris and vegetation.

Water sampling (from c. 10 cm depth) included samples

taken from rivers flowing over serpentinites, namely

Bongkud, Liwagu, Lohan, Napatau and Takorek. The

focus of this study is on the surface water composition,

though additional seepage water from Lohan Ulu, col-

lected by hand pumping through a plastic pipe, was also

analysed for comparison. Samples of 150 mL were kept in

pre-washed polyethylene containers, and 2 mL of con-

centrated high-purity HNO3 was added to each of them to
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preserve the samples and avoid precipitation of oxyanions.

They were analysed elementally by ICP-MS (Perkin-

Elmer ELAN 9000).

Soil physical and chemical characterization

Particle size distribution of soil samples was determined

using the hydrometer method (British Standard Institution

1990). The pH was measured in a 1:2.5 (w:v) soil:distilled

water suspension. The cation exchange capacity (CEC) was

calculated by summation of Ca, Mg, K, Na and titrat-

able acidity, all extracted with 1 M ammonium acetate

(CH3COONH4). The solutions were filtered through cel-

lulose nitrate membrane filters (45 lm) and were analysed

elementally by ICP-MS (as above).

Mineralogical analyses

X-ray diffraction (XRD) analysis of rock and air-dried,

pulverized and sieved (\2 mm) soil samples was per-

formed on a Bruker D8 Advance diffractometer. The

analysing radiation was CuKa with a wavelength of 1.5406

Å (0.15406 nm). X-ray diffractograms were collected on

powder samples within the 2h range [5�–60�], with 0.02�
0.1 s step.

Bulk elemental analyses

The bulk chemical composition of rock and soil samples

was determined by X-ray fluorescence spectrometry (XRF)

using a Bruker S8 Tiger X-ray with the exciting energy

source of Rhodium K-a line. In order to measure ten major

oxides (SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, CaO,

Na2O, K2O and P2O5), the powdered soils (\30 lm) were

made into 32-mm-diameter fused beads, by igniting 0.5 g

of sample with 5.0 g of Johnson–Matthey Spectroflux 110.

To measure trace elements (Appendix), pressed powder

pellets were prepared by applying a pressure of 20 tonnes

for one minute to 1 g of sample with 6 g of pure boric acid

powder.

Elemental speciation

Chromium, Ni and Co were fractionated with the seven-

step extraction procedure scheme proposed by Tessier et al.

(1979) and modified by Silveira et al. (2006) (Table 1).

This method is adapted for tropical Oxisols in which the

mineralogy is dominated by Fe and Mn oxides and pro-

vides data on operationally defined soil fractions. Unlike

many extraction procedures, the extraction scheme of Sil-

veira et al. (2006) is capable of differentiating metals

trapped in amorphous or poorly crystalline oxides from

crystalline forms. Selective sequential extraction was

Fig. 1 Map of Ranau area (Sabah, Malaysian Borneo) studying the geochemistry of metal transfer between rocks, soils and water. Sampling

locations are noted as rock (R), soil (S) and water (W)
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performed using 1 g of air-dried and sieved soil samples

(\2 mm) in 50-mL polycarbonate centrifuge tubes.

Reagents were added in a stepwise fashion to digest the

soils, and the suspensions were equilibrated as described in

Table 1. The supernatants were separated from the solid

phases by centrifugation for 18–24 h at 12,880 RCF. They

were then filtered through 45-lm cellulose nitrate mem-

brane filters and analysed by ICP-MS (as above) following

each stage of extraction.

Data quality

All samples were analysed in duplicate to verify the pre-

cision of analysis; the relative percentage difference

between duplicate measurements was always less than

10%. Precision of the ICP-MS was shown by analysing the

international reference standard STD 125 ppb-1 five times

giving a relative standard deviation of less than 1.6% in all

cases. Detection limits for Cr, Ni and Co were 0.05 lg g-1

and 0.1 lg L-1 for soil and water samples, respectively.

The international standard for corundum was used as a

reference material for the XRD analysis, whereas several

certified reference materials with varying SiO2 content

(USGS-BCR-2, SO-2, W-2a, CANMET SY-2 and CRPG-

GSN) were analysed by XRF. There are no reference

materials certified for all steps of the SSE, so, in order to

evaluate the extraction efficiency, the concentrations of the

various forms of Cr, Ni and Co were summed after

extraction from each sample and compared to their total

concentration obtained by XRF determination of the bulk

sample.

Results and discussion

Mineralogical composition of rocks and soils

The rock mineral assemblage is characteristic for ultra-

mafics containing antigorite, chrysotile and lizardite

(Fig. 2). Different types of spinel, especially chromite and

magnetite, also occur in the rocks. The studied serpentinite-

derived soils typically showed representative features of

tropical soils with major contents of oxides and hydrous

oxides dominated by hematite and including goethite (that

are weathering products of magnetite) (Fig. 2). The ser-

pentine soils typically contain chromite and minor amounts

of chlorite and ilmenite and trace amounts of inherited

serpentine minerals are also recognized. The dominant clay

mineral is kaolinite. Allochthonous quartz is present in

almost all the soil samples, probably related to their aeolian

origin.

Bulk composition of serpentinite rocks and soils

The mean SiO2 content in the rocks was 43.2% (by weight)

(Table 2). The mean content of MgO was 35.5% and Fe2O3

showed a mean content of 8.8% (Table 2). The mean CaO

content was very low (2.5%) as were Na2O (0.18%), K2O

(0.09%) and P2O5 (0.01%). Analyses of major oxides of

rocks from Ranau accord with the chemical compositions

of numerous ultramafic massifs throughout the world listed

by Brooks (1987). Among the 20 trace metals analysed, Cr,

Ni and Co are considered further (Table 2). The total

concentrations of Cr and Ni ranged from 2622 to

2781 mg kg-1 and 1602 to 1840 mg kg-1, respectively,

and the observed range of Co was between 61 and

64 mg kg-1. The former two elements are notably higher

compared to the average Earth’s crust (Cr 100 mg kg-1

and Ni 25 mg kg-1) (Mason and Moore 1982). The most

striking result with regard to the soils was, again, notably

high concentrations of Cr, Ni and Co (Table 2). Chromium

in Ranau soils had a high mean value of 14,208 mg kg-1

(range 2427–27,863 mg kg-1). The global content of Cr in

soils range up to 200 mg kg-1 (Bourrelier and Berthelin

1998); however, in the presence of ultramafic bedrocks,

such as serpentinites, the Cr concentration is up to

10,000 mg kg-1 (Stueber and Goles 1967; Schwertmann

and Latham 1986). This study showed a mean Ni con-

centration of 1647 mg kg-1 (range 850–4753 mg kg-1).

The common background average for Ni is less than

Table 1 Sequential extraction procedure for metals in tropical soils as proposed by Silveira et al. (2006) Source: Silveira et al. (2006)

Fraction Solution Equilibrium conditions

Soluble–exchangeable 15 mL 0.1 M CaCl2�2H2O 2 h, room temperature

Surface adsorbed 30 mL 1 M NaOAC (at pH 5 with CH3CO2H) 5 h, room temperature

Organic matter 5 mL NaOCl (at pH 8.5 with HCl) 30 min, 90–95 �C
Mn oxides 30 mL 0.05 M NH2OH�HCl (at pH 2 with HCl) 30 min, room temperature

Poorly crystalline Fe oxides 30 mL 0.2 M H2C2O2 ? 0.2 M (NH4)2C2O4 (at pH 3 with NH4OH) 2 h, dark

Crystalline Fe oxides 40 mL 6 M HCl 24 h, room temperature

Residual HNO3–HCl–HF ? 1.5% H3BO3 digestion 3050 bar
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100 mg kg-1 (Kabata-Pendias 2000), while numerous

studies have reported Ni concentrations of more than

10,000 mg kg-1 in ultramafic soils (Brooks 1987; Hseu

2006). Cobalt had a mean concentration of 112 mg kg-1

and ranged from 35 to 167 mg kg-1. According to Kabata-

Pendias and Mukherjee (2007), surface soil Co ranges from

4.5 to 12 mg kg-1. Chromium, Ni and Co concentrations

in serpentinite rocks and soils of Sabah were also in

agreement with the reported values from serpentinites of

India (Rashmi et al. 2009), Oman (Godard et al. 2000),

Greece (Skordas and Kelepertsis 2005) and Iran (Ghade-

rian and Baker 2007). Nevertheless, serpentinite soils of

New Caledonia contained much higher concentrations of

Cr (31,000 mg kg-1) and Ni (12,000 mg kg-1) (Massoura

et al. 2006). SiO2 shows strong positive correlation with

CaO (0.81), Na2O (0.82) and K2O (0.87) (Appendix) and

these alkali and alkali earth elements also indicate the same

correlation with each other, whereas Fe2O3 forms another

very strongly correlated pair with MnO having a correla-

tion coefficient of 0.80. Cobalt and Cr correlate with this

group showing strong coefficients: Fe2O3–Co (0.66),

Fe2O3–Cr (0.80), MnO–Co (0.61) and MnO–Cr (0.67).

There is a strong positive correlation between Cr and Co

(0.96). However, Ni presents a different behaviour and

shows moderate association with MgO with a correlation

coefficient of 0.60 due to its calchophile nature.

Physico-chemical characteristics of soils

The soils are slightly acidic, showing a mean pH value of

5.8 ± 0.6 (Table 3). The pH ranges from 5.2 to 7.2 in line

with soils derived from mafic and ultramafic rocks in

lowland tropical regions (Brearley 2005; Massoura et al.

2006; Garnier et al. 2009). Silt is the predominant fraction

in all of the soils except for sample S12, which is mainly

composed of clay particles (Table 3). The soils are thus

classified as silty loam to silty clay loam and clay (Soil

Survey Division Staff 1993). Cation exchange capacity

(CEC) shows a broad range with a mean of 12.0 ± 10.4

cmol(?) kg-1 (Table 3); the CEC was dominated by

exchangeable Mg2? with the mean value of 11.3 ± 10.2

cmol(?) kg-1, over 90% of the mean CEC. The highest

CEC was shown by sample S3 (33.9 cmol(?) kg-1), fol-

lowed by clay sample S12 (23.7 cmol(?) kg-1). Sample S4

showed the lowest CEC (1.2 cmol(?) kg-1), near a

regional contact inflexion, and possible faulting, approxi-

mately midway between the highest S3 and S12 CEC

samples.

Enrichment and depletion of elements from rocks

to soils

During chemical weathering and pedogeological processes,

the concentrations of certain elements from the parent

rocks may significantly increase or decrease in the resultant

soils (Osama 2007). Al2O3 and MnO were minor compo-

nents of bulk rock composition, while the amounts of these

elements showed a threefold to fivefold increase in derived

soils along with Fe2O3 (Table 2). The concentrations of Cr

and Co were also enriched five and two times, respectively,

in the soils compared to parent materials. The concentra-

tion of Ni in the soils was equal to that in the parent rocks

Fig. 2 X-ray diffractograms of representative serpentinite rock (left) and soil (right) samples in the vicinity of Ranau, Sabah (Malaysian Borneo)
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whereas MgO showed a tenfold depletion. The observed

enrichment and depletion pattern in this study is similar to

that proposed by Kostić et al. (1998) for wet environments.

In general, tropical climates, by inducing intense and

complete hydrolysis, lead to the immobilization of poorly

leachable metals in the secondary minerals and oxides and

Table 2 The concentration of major oxides and trace elements in serpentinite rocks and soils in the vicinity of Ranau, Sabah (Malaysian Borneo)

Source: Tashakor et al. (2014b) for soil data

Major oxides (wt %)

SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO

Rock

R1 43.20 0.14 3.23 8.74 0.12 35.45 2.75

R3 42.60 0.08 2.29 8.53 0.12 37.32 1.80

R4 43.70 0.17 3.71 9.17 0.13 35.32 3.20

R7 42.50 0.14 3.41 8.92 0.11 34.07 2.40

Mean ± SD 43.20 ± 0.50 0.13 ± 0.03 3.20 ± 0.60 8.84 ± 0.30 0.12 ± 0.01 35.54 ± 1.34 2.54 ± 0.59

Soil

S1 60.50 0.63 16.84 11.35 0.08 0.76 0.36

S3 26.40 0.25 9.77 41.04 0.73 8.47 0.10

S4 14.50 0.47 17.75 38.82 0.59 2.83 0.03

S5 5.10 0.94 22.89 42.69 0.29 0.31 0.04

S6 17.60 0.24 12.85 42.90 0.75 7.97 0.17

S7 13.60 0.61 19.34 45.47 0.81 0.86 0.02

S8 58.00 0.61 10.18 11.47 0.17 3.70 0.13

S10 19.10 0.99 22.63 42.05 0.40 1.31 0.09

S12 25.30 0.29 5.87 25.62 0.12 0.29 0.10

S13 54.60 0.57 11.88 12.78 0.18 8.71 0.33

Mean ± SD 29.47 ± 20.42 0.56 ± 0.26 15.00 ± 5.76 31.42 ± 14.52 0.41 ± 0.28 3.52 ± 3.52 0.10 ± 0.11

Enrichment and depletion factors 0.68 4.30* 4.69* 3.55* 3.42* 0.10* 0.04*

Major oxides (wt %) Trace metals (mg kg-1)

Na2O K2O P2O5 Co Cr Ni

Rock

R.1 0.23 0.09 0.01 63 2743 1609

R.3 0.10 0.09 0.00 64 2622 1840

R.4 0.23 0.09 0.01 62 2641 1602

R.7 0.14 0.10 0.00 61 2781 1658

Mean ± SD 0.18 ± 0.07 0.09 ± 0.01 0.01 ± 0.01 62 ± 1 2697 ± 77 1677 ± 111

Soil

S1 0.09 1.95 0.12 136 13,929 1675

S3 0.05 0.00 0.05 122 14,720 2237

S4 0.01 0.00 0.03 146 16,381 1573

S5 0.03 0.00 0.05 112 14,029 850

S6 0.07 0.00 0.04 167 19,025 4753

S7 0.02 0.00 0.04 127 17,233 1219

S8 0.16 0.63 0.02 35 2427 865

S10 0.04 0.01 0.06 114 15,807 1311

S12 0.00 0.01 0.04 93 11,277 972

S13 0.11 1.26 0.02 46 2828 1418

Mean ± SD 0.06 ± 0.05 0.40 ± 0.70 0.04 ± 0.02 109 ± 41 12,766 ± 5736 1687 ± 1156

Enrichment and depletion factors 0.33* 4.32 8.00* 1.76* 4.73* 1.01

Enrichment or depletion factors are the ratio between the concentration of the element of interest in the rock compared to the soil; significant

differences (p\ 0.05) are marked by an asterisk
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accumulation in soil profiles, especially towards the sur-

face. During the pedogenesis of serpentinite, highly mobile

elements such as Mg and Si leach from the soil profile at

the early stages of weathering, while newly formed clay

minerals become enriched in less mobile elements such as

Fe and Al.

Distribution of Cr, Ni and Co in various soil

fractions

The difference between the total metal concentrations (by

XRF) and the sum of the concentration of metals extracted

from each step of the SSE analysis was less than 20% in all

cases indicating a reliable extraction (Tessier et al. 1979).

The SSE indicated the main incorporation of Cr and Ni was

within the residual fractions of soils (Fig. 3); this was

12,256 mg kg-1 for Cr and 1233 mg kg-1 representing

92.3 and 89.8% of the total extracted metals (assuming the

XRF analyses represent the total concentration of the

metals). Combining this result with mineralogical obser-

vation, we conclude that Cr and Ni are bound in serpentine

minerals and chromite spinels that are highly resistant to

weathering, extracted only at the last stage using strong

acidic reagents. This is in agreement with other research in

New Caledonia (Quantin et al. 2002a), Brazil (Garnier

et al. 2009), Poland (Kierczak et al. 2008) and Taiwan

(Cheng et al. 2011). The use of microscopic (e.g. syn-

chrotron, EDX, electron microprobe) techniques would aid

further research to determine the co-location of these

metals with certain primary or secondary minerals.

Amorphous (poorly crystalline) and crystalline Fe-oxide

and Mn-oxide fractions were the most abundant metal

pools among the non-residual fractions, as predicted for

‘lateritic’ tropical soils. About 3.3% of the total extracted

Cr (432 mg kg-1) was ‘trapped’ in the crystalline Fe-oxide

fraction, and the concentration of Cr in the Mn-oxide

fraction (371 mg kg-1; 2.8%) was higher than that in the

poorly crystalline Fe-oxide fraction (135 mg kg-1; 1.0%).

With respect to Ni, a preferential association with crys-

talline Fe oxide (73 mg kg-1; 5.0%) rather than with

poorly crystalline Fe oxide (25 mg kg-1; 1.6%) or Mn

Table 3 Physical and chemical characteristics of serpentine soils in the vicinity of Ranau, Sabah (Malaysian Borneo)

S1 S3 S4 S5 S6 S7 S8 S10 S12 S13 Mean ± SD

pH 5.6 7.2 5.8 5.7 5.4 5.8 5.2 5.3 5.9 6.4 5.8 ± 0.6

[2 mm (%) 1 0 0 0 0 0 1 2 0 1 0.5 ± 0.7

\2 mm (%)

Sand 25 20 33 19 30 30 22 18 20 19 23.6 ± 5.5

Silt 58 52 54 50 52 55 59 48 25 51 50.4 ± 9.6

Clay 16 28 13 31 18 15 18 32 55 29 25.5 ± 12.6

Texture Silt

loam

Silt clay

loam

Silt

loam

Silt clay

loam

Silt

loam

Silt

loam

Silt

loam

Silt clay

loam

Clay Silt clay

loam

Exchangeable cations (cmol(?) kg-1)

CEC 5.3 33.9 1.2 11.8 7.3 3.7 3.2 12.0 23.7 17.8 12.0 ± 10.4

Mg2? 4.9 33.5 0.9 11.2 7.0 3.5 2.4 11.0 21.4 17.4 11.3 ± 10.2

Ca2? 0.3 0.3 0.1 0.6 0.2 0.1 0.4 0.3 0.4 0.2 0.3 ± 0.1

K? 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 ± 0.1

Na? 0.2 0.1 0.1 0.1 0.1 0.1 0.4 0.5 1.7 0.2 0.4 ± 0.5

Fig. 3 Percentage of chromium, nickel and cobalt found in seven soil

fractions following selective sequential extraction (see Table 1) for

serpentinite soils in the vicinity of Ranau, Sabah (Malaysian Borneo).

Percentage recovery (in relation to total determination by XRF) is

noted on the right-hand side of the figure
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oxide (50 mg kg-1; 3.3%) was observed. This result is in

agreement with the work of Garnier et al. (2009) who

found Ni to be preferentially associated with crystalline Fe

oxide over poorly crystalline Fe oxide and Alves et al.

(2011) who found comparable amounts of Ni in crystalline

Fe oxides compared with poorly crystalline Fe oxide plus

Mn oxides. However, it contrasts with the work of Mas-

soura et al. (2006) who suggested that in highly weathered

tropical soils, a higher proportion of the Ni should be found

in the poorly crystalline Fe-oxide fraction. van der Ent

et al. (2016) found higher proportions of Ni in the amor-

phous Fe oxides (\30%) and crystalline Fe oxides (\10%).

However, these soils were covered by Ni hyperaccumulator

plants with[0.01% Ni in plant parts that may return Ni to

the surface soil and increase the soil Ni content. In com-

parison with Cr and Ni, Co showed a much higher affinity

for the Mn-oxide fraction of soils (65.6 mg g-1; 58%) in

addition to its abundance in the residual fraction

(24.8 mg g-1; 23%). The non-resistant components

including the first three fractions of soluble–exchangeable,

surface adsorbed and organic matter contained very small

quantities (less than 1.5% in total) of Cr, Ni and Co

extracted from all the samples (Fig. 3). This suggests that

the metals of concern are not easily leachable and thus not

readily transferable within the environment under ambient

conditions. This is also influenced by the nature of these

soils being low in organic matter as soils with higher

organic matter content are likely to have more Ni in

organic fractions (Hseu et al. 2016).

The ‘quality’ of serpentinite soils

The mean concentrations of Cr, Ni and Co in the serpentine

soils are about 130, 40 and 10 times higher than average

global soil composition (Table 4). Using the geoaccumu-

lation index (Igeo) of Müller (1969) and the background

values for relevant soil Fe concentrations from Hamon

et al. (2004), we determined that the soils were moderately

to strongly contaminated (Igeo class 3 on a six-point scale)

by Ni and strongly contaminated (Igeo class 4) by Cr.

Based on the concentration of Cr and Ni, all the soils were

attributed to group C in the Dutchlist (2009) standard

(indicating significant pollution and a serious toxic threat to

the environment), while the Co concentration corresponds

to group B (referring to polluted soils that may lead to

possible harmful effects) (Table 4). Comparing with soil

quality guidelines developed by Australian and New

Zealand Environment and Conservation Council

(ANZECC/NHMRC 1992), the concentration of Cr in the

studied soils is about two orders of magnitude higher than

the maximum background value for Cr (110 mg kg-1).

Similarly, Ni in the investigated soils exceeds the highest

background concentration level (400 mg kg-1) given by

ANZECC/NHMRC (1992). Thus, the metals in the sur-

veyed serpentinite soils are also considered polluted by this

standard. Using the Greater London Council (2001)

guidelines, with regard to Ni and Cr, the soils are catego-

rized as ‘unusually heavily contaminated’, which is point 5

on a five-point scale; these guidelines do not furnish any

classification for Co contamination. It should, of course, be

noted that these standards do not necessarily relate to the

specifics of tropical soil characteristics as they were largely

and obscurely adopted from European standards

(McLaughlin et al. 2000). In a comprehensive study,

Zarcinas et al. (2004) suggested the 95th percentile values

of the 241 randomly selected soils sampled from Penin-

sular Malaysia as ‘Investigation Level’ (Table 4); this

would apply to all soils sampled from Ranau in this study.

Nevertheless, the 95th percentile via random sampling does

not reconcile differing parent geology, mineralogy and

climate or the interactions between them to either mitigate

or accelerate potential bio-toxicity.

Metal concentrations in waters

Surprisingly, few studies have examined metal concentra-

tions in water samples over ultramafic areas; those found

here were comparable to those observed by Vardaki and

Kelepertsis (1999) in Greece and Migon et al. (2011) in

New Caledonia although Cr was, in general, lower. The

maximum concentrations of Cr (14 lg L-1), Ni

(94 lg L-1) and Co (7 lg L-1) in river samples (Table 5)

were lower than the maximum permissible values (Cr

50 lg L-1, Ni 200 lg L-1, Co 50 lg L-1) proposed by

Interim National Water Quality Standards of Malaysia

(INWQS 2006). The metal concentrations in Ranau rivers

also compared reasonably, with the exception of a single

value for Ni, with the World Health Organization (WHO

2006) standard of 50 lg L-1 Cr and 70 lg L-1 Ni and the

US drinking water quality guideline (EPA 2009) of

100 lg L-1 Cr. It was found that Cr, Ni and Co in all of the

rivers flowing over serpentine soils fell within these ‘per-

mitted’ INWQS thresholds and the majority were within

the WHO threshold. Hence, according to these published

standards, these rivers, limited by sampling constraints

presented, appear safe both for drinking water and crop

production. It must be noted, however, this does not

address ionic complexion, speciation factors, for Cr in

particular, and the potential bio-toxicity thereof. The

seepage water sample analysed, however, had a Ni con-

centration considerably higher than in surface waters

(Table 5) and clearly in excess of standards for Ni. It is

conceivable that more extensive seep water sampling and

more local fluvial waters will reveal analyses in excess of

threshold standards. Possible reasons include low volume

of seepage water relative to larger rivers subject to high
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flow surface run-off, regional outlier geological prove-

nance dilution and local to regional metal precipitation

through oxyanion species. While sampling was limited,

evidently local seepage waters that ingress and flow

through serpentine soil profiles do become enriched in

these elements. Lottermoser (1997) believed almost all

seepage and groundwater associated with ultramafic for-

mations have elements beyond environmental quality

guidelines in accordance with findings of this study

showing, concentration of Ni up to nine times higher than

INWQS standards, though Cr and Co in the seepage water

are still within the ‘safe’ limits, albeit with the potential

caveats aforementioned.

The relationship between Cr, Ni and Co in soil

and surface water

This study showed that the geochemistry of the ultramafic

parent materials has a minor effect on the chemical com-

position of regional flowing surface waters. This may be

due to various factors, as noted above, though this study

reveals the low contribution of the metals in the easily

leachable and exchangeable fractions of soils is the main

factor responsible. The metals concerned are held mainly

in the residual fraction of soils as refractory latticed min-

erals and secondly sorbed in the oxide and hydroxides of

Fe and Mn with relatively high affinity as liganded species.

Table 4 The mean concentration of chromium, nickel and cobalt in

serpentine soils in the vicinity of Ranau, Sabah (Malaysian Borneo),

and their geoaccumulation index enrichment (Igeo) in comparison

with the average global composition, the 95% ‘Investigation Levels’

determined for Malaysia, ANZECC/NHMRC and Greater London

Council guideline (all values are mg kg-1)

Ranau

soil

Igeoa Average global soil

compositionb
Malaysian

investigation levelsc
ANZECC/NHMRCd Greater London Council

guidelinese

Background

level

Environmental

investigation

I II III IV V

Cr 12,766 3.29 100 60 0.5–110 50 100 200 500 2500 [2500

Ni 1687 2.39 40 45 2–400 60 20 50 200 1000 [1000

Co 109 – 10 10 2–170 – – – – – –

a Igeo = log2 (M/1.5 9 Bn) where M is the concentration of metal in soil and Bn is the background concentration of metal (Müller 1969)
b Average soil composition from Siegel (1975)
c The 95% ‘Investigation Levels’ determined for Peninsular Malaysia (n = 241 soils) (Zarcinas et al. 2004)
d Soil quality guideline developed by Australian and New Zealand Environment and Conservation Council (ANZECC/NHMRC 1992)
e Greater London Council guidelines (G.L.C (2001) definitions of contaminated soils (I = typical values for uncontaminated soils, II = slight

contamination, III = contaminated, IV = heavy contamination, V = unusually heavy contamination)

Table 5 Concentrations of

chromium, nickel and cobalt in

river and seeping water

traversing serpentinites in the

vicinity of Ranau, Sabah

(Malaysian Borneo)

Sample ID Cr (lg L-1) Ni (lg L-1) Co (lg L-1)

Surface water W3 14 42 2

W5 7 23 1

W8 5 67 1

W9 8 18 2

W12 6 11 2

W13 9 42 5

W14 7 20 4

W20 11 94 7

Mean ± SD 8.3 ± 2.7 39.7 ± 26.6 3.0 ± 2.0

Seeping water W4 23 936 22

Threshold standards WHOa 50 70 –

INWQSb 50 200 50

EPAc 100 – –

a World Health Organization (WHO 2006)
b Interim National Water Quality Standards for Malaysia (INWQS 2006)
c US drinking water quality guideline (EPA 2009)
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Therefore, in accordance with previous studies (Becquer

et al. 2003; Massoura et al. 2006), Cr, Ni and Co in the

studied soils have low mobility with little tendency to

readily migrate into the environment. On the other hand,

the solubility of Cr and Ni in surface water is pH dependent

to some degree. Chromium is soluble at pH values of less

than 4 and the solubility of Ni occurs only at pH value of

less than 5.5 (Rahim et al. 1996). The pH values of the

investigated soils ranged from slightly acidic to circum-

neutral preventing significant metal solubility. In addition,

the soils displayed a fine granular structure and a silty loam

to silty clay loam texture. Since silt and clay grain size

fractions are capable of adsorbing more metals because of

their larger specific surface area, it is assumed that these

soils bound higher concentrations of metals and have low

tendency to release them into the environment. In addition,

the aerobic status of soils may affect metal release as

waterlogged conditions may lead to the release of metals

by reductive dissolution of Fe and Mn oxides (Rinklebe

et al. 2016).

Conclusions and prospects

Malaysian serpentinites studied here showed a ferromag-

nesian mineralogy with high concentrations of Cr, Ni and

Co, suggesting they are capable of inducing serious natural

pollution. However, surface waters flowing over

serpentinite soils revealed minimal notable concentration

of Cr, Ni and Co and are considered ‘safe’ as defined by

relevant threshold standards. Consequently, for the most

part, chemical composition of surface water is concluded to

ineffectively reflect bedrock and soil geochemistry of

regional expanses of serpentinites. The main reason for this

is concluded to be the very low proportion of metals

associated with the easily leachable and ion exchangeable

fractions of the soils. Being largely immobile, ingress of

these metals into surface waters via leaching is minimized

and subsequent dilution may be expected to further mini-

mize wider fluvial metal transport and contamination.

Therefore, despite their anomalously high natural concen-

trations of certain metals, these serpentine soils are not

considered to pose a health or environmental risk. How-

ever, further work should examine metal speciation and

soil Cr is of particular interest, given Cr3? is considered an

essential nutrient and Cr6? carcinogenic.
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Appendix

See Tables 6 and 7.

Table 6 The concentration of trace elements (mg kg-1) in serpentinite rocks and soils from Ranau, Sabah, Malaysia

As Ba Ce Co Cr Cu Ga Hf La Nb

R1 bdl 493 636 63 2743 20 bdl 6 38 32

R3 bdl 466 616 64 2622 14 bdl 6 38 28

R4 bdl 491 699 62 2641 25 bdl 6 38 37

R7 bdl 552 600 61 2781 25 bdl 6 39 36

Mean ± SD – 501 ± 36 638 ± 43 63 ± 1 2697 ± 77 21 ± 5 – 6 ± 0 38 ± 1 33 ± 4

S1 3 bdl 176 136 13,929 54 3 4 25 10

S3 2 bdl 159 122 14,720 45 3 5 21 9

S4 bdl 80 244 146 16,381 67 5 5 22 12

S5 2 bdl 144 112 14,029 52 8 4 21 12

S6 bdl 29 237 167 19,025 49 3 5 21 11

S7 bdl 136 295 127 17,233 49 5 4 23 15

S8 4 597 523 35 2427 55 8 6 28 29

S10 1 158 319 114 15,807 59 8 5 23 17

S12 3 201 332 93 11,277 26 6 5 23 18

S13 4 557 506 46 2828 33 10 6 26 28

Mean ± SD 3 ± 1 251 ± 230 294 ± 133 110 ± 42 12,766 ± 5736 49 ± 12 6 ± 3 5 ± 1 23 ± 2 16 ± 7

Ni Pb Rb Sr Th U V Y Zn Zr

R1 1609 22 8 18 bdl 9 78 bdl 53 21

R3 1840 23 7 9 bdl 9 62 bdl 59 16
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