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Abstract Knowledge of the moisture variation is essential

for water resources management and policy making,

especially for the arid regions, where the water resources

can hardly meet the demand of the human being and the

ecosystem. Hexi Corridor in northwest China is in a typical

arid area with little precipitation and high evaporation. A

lot of tree-ring studies were conducted in this area; how-

ever, no long-term and large-scale moisture history

research had been conducted in this region until now, due

to the lack of long-time tree-ring records in eastern and

western Qilian Mountains. Here, we synthesized the

moisture evolution of nearly one millennium (AD

1161–2006) in this region by using four published mois-

ture-sensitive tree-ring records, including two recently

published millennium reconstructions in eastern and

western Hexi Corridor. The comparisons of tree-ring

records from the eastern, central and western part of Qilian

Mountains show that all the reconstructions are statistically

similar to each other. The principal component analysis

was applied to extract the common signal recorded by these

series. The first principal component (PC1), which

expressed 61.1% of the total variance, was used as an

indicator of regional moisture variations. The PC1 suggests

that the Hexi Corridor has alternated between contrasting

climatic conditions, with dry periods at AD1161–1216,

1260–1349, 1409–1417, 1443–1510, 1617–1737,

1759–1838 and 1929–1948, wet periods at AD1217–1259,

1350–1408, 1418–1442, 1511–1616, 1738–1758,

1839–1928 and 1949–2006. The droughts and pluvial

periods identified in the Hexi Corridor are generally con-

sistent with those in nearby regions recorded by tree-ring

and other proxies. We also find that droughts periods in the

Hexi Corridor trend to coincide with the solar minimum,

highlighting the importance of solar variability on forcing

regional moisture variability.
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Introduction

Water is possibly the most precious natural resource,

especially for arid to semiarid regions, where the quantity

and quality of water are often essential to local socioeco-

nomic development as well as ecosystem health and sus-

tainability (Gleick 2010). The Hexi Corridor, a crucial

segment of the Silk Road and one of the key regions during

the great development of Western China, is dominated by a

semiarid to arid climate and very vulnerable to climate

changes. This region contains a string of fertile oases;

however, persistently increasing water demand with pop-

ulation growth and economic development has caused

overuse of water resources and environmental degradation

in these areas (Chen and Hao 2005). Thus, knowledge

about the water resource variation for these oases is

essential for making responsible policies that can balance
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the socioeconomic development and environmental sus-

tainability. These oases are fed by continental rivers orig-

inating from the Qilian Mountains. Therefore, fluctuations

in climate and, most of all, changes in hydroclimate in the

source region are of special significance, since they play an

important role in maintaining surface streamflow formed in

the mountains. Documenting and better understanding how

climate has varied in the Qilian Mountains will enhance

our ability to adapt to possible future climate change.

However, the climate data recorded by weather stations are

scarce in the mountainous area and generally limited in

length and thus may not faithfully represent the full range

of spatial and regional climate variation. To better under-

stand the course of climatic variability in the pre-instru-

ment period, a wide variety of archives, both natural (ice

and sediment cores, tree-rings, corals for example) and

documentary, can be used (e.g., Gates et al. 2008; Yang

et al. 2014; Zhang et al. 2008). Information obtained from

these paleoclimate proxy data is valuable. Among them,

the annually resolved tree-ring data play a unique value in

understanding the climate history of the last millennium.

The tree-ring studies in the Hexi Corridor are mostly in

the Qilian Mountains. Qilian Mountains is one of the

regions where tree-ring research in China started. In the

recent two decades, tree-ring-based studies in this region

have been greatly successful. In the eastern Qilian

Mountains, several reconstructions have been conducted;

for example, Gao et al. (2015) reconstructed the temper-

ature variation, Chen et al. (2011, 2016), Gou et al. (2001)

and Hou et al. (2011) reconstructed the precipitation

variation, Deng et al. (2013) and Gou et al. (2015a)

reconstructed drought variation. Among them, Gou et al.

(2015a)’s drought reconstruction has extended to more

than 1000 years. The middle part of the Qilian Mountains

is one of the most researched regions in the tree-ring

domain in China, and many long-term tree-ring

chronologies have been developed in this region. Using

tree-ring data, several studies have reconstructed the

variation of streamflow for the Heihe River (e.g., Liu

et al. 2010; Qin et al. 2010; Yang et al. 2011b), and

temperature (e.g., Liu et al. 2005; Zhang et al. 2014) and

precipitation (e.g., Sun and Liu 2012; Zhang et al. 2011)

variation. Beside the tree-ring width, the carbon and

oxygen isotopes have also been applied in the dendrocli-

mate studies in this area (e.g., Liu et al. 2005). In the

western Qilian Mountains, Tian et al. (2007), Liang et al.

(2009), Liu et al. (2009a), Yang et al. (2011a) and Gou

et al. (2015b) have reconstructed the drought and pre-

cipitation variation. Outside the Qilian Mountains, several

studies have also been conducted in the Hexi Corridor.

For example, Liu et al. (2010) reconstructed the ground-

water level at the lower reach of the Heihe River. How-

ever, all these dendroclimate studies are site or region

based, and no long-term research for the whole Hexi

Corridor has been conducted yet.

To explore the drought variability of the Hexi Corridor

during the last millennium and its possible forcing mecha-

nism, in this study, we collected four moisture-sensitive tree-

ring records from the eastern to western Qilian Mountains

and used their PC1 to represent the regional drought varia-

tion for the Hexi Corridor. Possible influence of solar activity

on regional drought variation is also discussed.

Materials and methods

Study area

The Hexi Corridor lies in the northwest of the Gansu

Province and to the west of the Yellow River in China

(Fig. 1). It is a narrow natural land passage, bound by the

South Mountains (including Qilian Mountains and Aerjin

Mountains) from the South and the North Mountains (in-

cluding Longshou Mountains, Heli Mountains and Mazong

Mountains) from the north, stretching some 1000 km from

Wushaolin Mountain to the Yumen Pass. The Badain Jaran

Desert and the Tengger Desert lie to its northeast. The

study area has an arid continental climate. According to the

data obtained from the Climatic Research Unit (CRU) of

the University of East Anglia (CRU TS v. 3.22; Harris et al.

2014; available at http://www.cru.uea.ac.uk/cru/data/hrg/),

average annual temperature of Hexi Corridor ranges from

-12.2 to 10.0 �C, and annual precipitation ranges from 15

to 375 mm (Fig. 2). The temperature has a tendency of

decreasing from the northeast to the southwest, corre-

sponding to the increase in elevation. The annual precipi-

tation also shows an obvious spatial pattern, and it should

be related to the distance to the ocean. The Hexi Corridor

includes three river systems, namely the Shiyang, the

Heihe and the Shule Rivers from southeast to northwest, all

of them originating from the Qilian Mountains. The water

resources of all three rivers are over-utilized, according to

internationally recognized alarm line (Chen and Hao 2005).

Tree-ring data

To represent the moisture variation of the Hexi Corridor in

the past millennium, we collected four drought, streamflow

and precipitation reconstructions from the eastern to the

western Qilian Mountains (Gou et al. 2015a, b; Qin et al.

2010; Zhang et al. 2011) (Fig. 1). Among them, the mil-

lennium standardized precipitation–evapotranspiration

index (SPEI) reconstruction in the eastern Qilian Moun-

tains was based on two tree-ring chronologies sampled in

the Langya valley (LYG) (Gou et al. 2015a); the millen-

nium Heihe River streamflow reconstruction was made
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available by using three tree-ring chronologies in the

middle Qilian Mountains (HH) (Qin et al. 2010); the pre-

cipitation in the middle Qilian Mountains over the past

1232 years was reconstructed by using the tree-ring data

originating from Haiya valley (HYG) (Zhang et al. 2011);

and the 850-year reconstruction of May–July self-cali-

brating Palmer drought severity index (scPDSI) in the

western Qilian Mountains was based on two nearly mil-

lennia long ring-width chronologies sampled in Qifeng

conservation station (WQF) (Gou et al. 2015b). All the

reconstructions are based on Qilian juniper (Juniperus

przewalskii Kom.) tree-ring width chronologies. During the

development of each chronology, all or most of the tree-

ring records were detrended by using the conservative

curves, such as the negative exponential function or linear

regression function. All the tree-ring indices were calcu-

lated as ratios between the raw measurements and fitted

values, except the chronologies used in the Heihe River

streamflow reconstruction, which were calculated by using

the residuals between them. Detrended tree-ring indices

Fig. 1 Map of the study area

showing the location of the four

moisture reconstructions (red

dots). LYG, HH, HYG and

WFQ denote moisture-related

reconstructions at Langya valley

(Gou et al. 2015a), Heihe River

(Qin et al. 2010), Haiya valley

(Zhang et al. 2011) and Qifeng

conservation station (Gou et al.

2015b), respectively

Fig. 2 Annual total

precipitation (upper) and mean

temperature (lower) of the Hexi

Corridor
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were averaged to generate chronologies based on robust

mean methodology (Cook and Kairiukstis 1990).

Climate data

Because all these tree-ring chronologies are sensitive to

moisture variation, only the standardized precipitation

evapotranspiration index (SPEI; Vicente-Serrano et al.

2010), a multi-scalar drought index, was used in this study.

The SPEI measures the dryness (or wetness) based on both

precipitation and evapotranspiration, and its timescale is

defined so that an n-month scale considers the accumulated

climatic water balance (difference between precipitation and

evapotranspiration) of the current month and n-1 previous

months. For example, to obtain the 6-month SPEI, the cli-

matic water balances from five months before to the current

month were considered. The SPEI has been widely used as a

drought index in the past several years (e.g., Vicente-Serrano

et al. 2013; Hernandez and Uddameri 2014; Gou et al.

2015a). The SPEI data used in this study were obtained from

the SPEIbase version 2.3 (Beguerı́a et al. 2010; available at

http://sac.csic.es/spei/database.html), which has a spatial

resolution of 0.5� 9 0.5� in longitude and latitude and cov-

ers the period 1901–2013. To explore the impact of drought

on regional trees’ growth, the SPEI at 1-, 3-, 6-, 9- and

12-month scale were used in this study.

Methods

The visual comparison and correlation analysis were

employed to test whether similar information had been

recorded by these tree-ring chronologies. To extract the

common signals in the four moisture reconstructions, we

applied the principal components analysis (PCA) and used

the first principal component (PC1) to represent regional

moisture variation. To explore the season and timescale of

drought signals embedded in the PC1, the correlation coef-

ficients between the PC1 and SPEI of different timescales at

different month and season from April to August are com-

puted. The PC1 is considered to denote the one that having

both the largest number of positively correlated SPEI grids in

Hexi Corridor and the largest mean of those significant

correlations. A low-pass filter with a cutoff frequency of

0.02 cycles/year was used to highlight regional moisture

variability at low frequency (Mann 2008).

Results and discussion

Figure 3 shows the four moisture-related reconstructions in

the Hexi Corridor, while Table 1 presents the correlation

coefficients among them. The reconstructions show some

degree of consistency over their common period, as corre-

lation coefficients among the four reconstructions are all

significant and positive (Table 1). However, obvious dif-

ferences also exist, especially at the low frequency. For

example, during the last two centuries, there was a dramatic

increasing trend in the tree-ring series labeled with LYG and

HH, which was not recorded by HYG and WFQ. This indi-

cates that a single local reconstruction cannot represent

regional moisture variation, highlighting the importance of

using records from different regions to denote it. Therefore,

the PC1 of the four reconstructions (Fig. 4), which explained

61.1% of the total variance, is used to represent the moisture

variation in the Hexi Corridor.

The summary of the correlation result between PC1 and

SPEI in Hexi Corridor is shown in Fig. 5. The PC1 is well

correlated (with more than half of the grids statistically

significant) with June SPEI in Hexi Corridor, for all time-

scales except the 12-month. For May, the PC1 is only well

correlated with the short timescale (1- and 3-month) SPEI.

Fig. 3 Comparison between the four moisture reconstructions in the

Hexi Corridor. a LYG (Gou et al. 2015a); b HH (Qin et al. 2010);

c HYG (Zhang et al. 2011); d WFQ (Gou et al. 2015b). All series are

standardized to their common period (AD 1161–2006)

Table 1 Correlation coefficients between four moisture reconstruc-

tions in Hexi Corridor during their common period (AD 1161–2006)

ID LYG HH HYG WQF

LYG 1

HH 0.620 1

HYG 0.514 0.473 1

WQF 0.388 0.328 0.547 1

All correlations are significant at the 0.01 level
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The July SPEI at 1-month scale is not significantly corre-

lated with the PC1, while July SPEI at 3- and 6-month scale

are also well correlated the PC1, which may be because the

longer timescales have taken the water balance of the prior

months into consideration. For seasonalized SPEI, the

May–June SPEI at 1-month scale show the best results: The

correlation coefficients with the PC1 were significant

(p\ 0.05) and positive for all grid points in Hexi Corridor,

and the mean value of significant correlation coefficients is

also the highest (0.42), indicating that the PC1 can generally

represent the regional drought variation at this season and

timescale. The spatial pattern of correlation between the

PC1 and May to June SPEI at 1-month scale is shown in

Fig. 6. The highest correlation coefficients are located in

middle-east part of the Hexi Corridor, and relative low ones

in the northwestern and the eastern parts, where there is no

tree distribution or the age of trees is relative young.

Therefore, further studies with additional proxy data from

these regions should improve this result.

The PC1 is centered to have a mean of 0 and scaled to have

standard deviation of 1 over the full period. Figure 4 shows

the unfiltered and 50-year low-pass filtered PC1 from AD

1161–2006. The wet ([1) and dry (\-1) years occur almost

equally, accounting for 16.6 and 15.5% of the entire time

span. Extreme wet years with a value higher than 2 occurred

in AD 1205, 1249, 1388, 1525, 1577, 1583, 1896, 1983, 1988

and 2002, while extremely dry (\-2) was identified at

25 years, much more than the extremely wet years. The

smoothed series suggest that the Hexi Corridor had alter-

nated between contrasting climatic conditions, with dry

periods occurring at AD 1161–1216, 1260–1349,

1409–1417, 1443–1510, 1617–1737, 1759–1838 and

1929–1948, and wet periods at AD 1217–1259, 1350–1408,

1418–1442, 1511–1616, 1738–1758, 1839–1928, and

1949–2006. And the peaks and troughs have a good consis-

tency with the moisture-sensitive tree-ring series in the

source region of Yellow River (Gou et al. 2010) and Qaidam

Basin (Zhang et al. 2003) (Fig. 7).

The recent wetness of the instrumental period (1951–2006)

was unprecedented in the entire record, and it happened within

a prominent pluvial period (1949–2006) that has the largest

magnitude and strongest intensity. Also, three extremely wet

years occurred in this period, and no extremely dry year

happened; even though extremely dry years were much more

frequent in the full period. This pluvial may have extended

Fig. 4 Standardized PC1 and the 50-year low-pass filtered curve

(upper), and the intensity, duration and magnitude of the droughts and

pluvial identified in the smoothed series (lower). The dashed line is

the long-term average, the years out of the range of dash-dot lines are

dry or wet years, and that out of the range of dotted lines are extreme

dry or wet years. The duration of drought (pluvial) is the number of

consecutive years when smoothed series lower (higher) than long-

term mean. The magnitude is the accumulated negative (positive)

anomalies belonging to the same drought (pluvial) event. The

intensity is the mean deviation over the duration (magnitude/duration)

Fig. 5 Summary of the correlation results between PC1 and gridded

climate variables (monthly SPEI from April to August and their

seasonalized combination) in Hexi Corridor. Each row (column) is the

result for each timescale (climate variable). The height of shaded area

is the proportion of climate variable grid points that having significant

positive correlation with the PC1, while the width is the ratio of the

mean significant correlation coefficients and the largest mean. The

square highlighted with red indicates that the PC1 significantly and

positively correlated with May–June (MJ) SPEI at 1-month scale for

all the grid points, and the mean value of these significant correlation

coefficients is also the largest (0.42)
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beyond this period and this region. Previous tree-ring-based

three millenniums long precipitation reconstruction for the

northeastern Tibet Plateau found that the last several decades

were the wettest period in the entire reconstruction (Yang et al.

2014). In northern Pakistan, the twentieth century was also

found to be the wettest over the past millennium as suggested

by oxygen isotope record from tree-rings (Treydte et al. 2006).

The unprecedented wetting at this period maybe the result of

enhanced hydrological cycle coincident with warming

(Treydte et al. 2006; Yang et al. 2014).

The drought in the latter half of the fifteenth century had

the strongest intensity. Droughts at this time had also been

recorded by tree-ring and many other proxies in many other

studies in Hexi Corridor and adjacent areas. Studies from

the Badain Jaran Desert (Gates et al. 2008), the Qinghai

Lake (Zhang et al. 2004), Kusai Lake (Liu et al. 2009b), the

source of the Yellow river (Gou et al. 2010), the Qaidam

Basin (Zhang et al. 2003; Sheppard et al. 2004; Shao et al.

2005; Liu et al. 2006; Yang et al. 2014) all supported the

existence of a severe drought during this time. A drought in

the middle to late fifteenth century has also occurred in the

north-central Europe and the southeastern United States

(Cook et al. 2015).

The drought from the early seventeenth to early eigh-

teenth century had the largest magnitude (Fig. 4). The

drought in the early eighteenth century (1701–1737) is very

severe; this 37-year long period included 17 dry years, with

5 extreme dry years. This drought was also reported in the

Qaidam Basin (Zhang et al. 2003; Sheppard et al. 2004;

Shao et al. 2005; Wang et al. 2013), and many sites in

Mongolia (Davi et al. 2006, 2013; Pederson et al. 2013), as

recorded by tree-ring width and oxygen isotope.

The study area is located in the margin of the monsoon-

affected area; therefore, monsoon strength may influence

regional climate. At the long-term scale, solar variability

may play an important role in modulating the Asian

monsoon (e.g., Wang et al. 2005). So here we compared the

PC1 with a millennium solar activity reconstruction, which

is inferred from 10Be and 14C records (Muscheler et al.

2007). In the Hexi Corridor, the association of drought

during solar minima and wetness during maxima indicates

a possible influence of solar activity on regional moisture

variability (Fig. 8). The possible influence of solar vari-

ability on climate change has also been reported in studies

nearby (Zhang et al. 2008; Gou et al. 2014).

Solar activity is an important external forcing on climate

variation, affecting surface temperature and evaporation

and then the local moisture budget (Gray et al. 2010).

Considering the high specific heat of water, the oceans are

expected to respond to the changes in solar irradiance more

Fig. 6 Correlation coefficients

between PC1 of the four local

reconstructions and the gridded

May to June SPEI at 1-month

scale for the period 1951–2006.

All these correlations are

statistically significant

(p\ 0.05)

Fig. 7 Comparison between PC1 and moisture-related reconstruc-

tions in the source region of Yellow River (Gou et al. 2010) and the

Qaidam Basin (Zhang et al. 2003). All the series are smoothed using a

50-year low-pass filter
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slowly than continents. The land-sea thermal contrast

would be greater during a period of high net radioactive

forcing than a period of low net radioactive forcing. The

Asian summer monsoon systems are controlled mainly by

thermal forcing (Wu et al. 2012); therefore, higher land-sea

thermal contrast will increase the monsoon strength. Rising

temperatures will also dramatically increase the air mois-

ture holding capacity as the specific humidity would

increase roughly exponentially with temperature (Allen

and Ingram 2002). Hence, during the period of high net

radioactive forcing, intensified Asian monsoons would

bring more moist air to this region, resulting in more pre-

cipitation. In addition, because of the large percentage

difference in continents and oceans between the two

Hemispheres, the Northern Hemisphere will heat up more

quickly than the Southern Hemisphere. The asymmetry in

warming between the two Hemispheres will shift the

position of the thermal equator (Broecker and Putnam

2013), which is sometimes referred to as the intertropical

convergence zone (ITCZ). So the ITCZ is expected to

move north (south) when the North Hemisphere is warm

(cool). During the Little Ice Age, the ITCZ had shifted

about 500 km south than its present position (Sachs et al.

2009). The north–south shift of the ITCZ will result in

corresponding hydroclimatic changes in many regions, and

monsoonal Asia is expected to become wetter when the

ITCZ moves north (Broecker and Putnam 2013). The

coinciding moisture and solar activity at centennial to

multi-centennial scale maybe introduced by some or all of

the proposed mechanisms. Additional paleoclimate records

and climate modeling studies are needed to further confirm

the relationships between moisture variation and solar

actively at centennial to multi-centennial scale and

improve our understanding of their physical mechanisms.

Conclusions

Principal component analysis was used to identify the

common signals of the four moisture-sensitive tree-ring

width chronologies from the Hexi Corridor, and the PC1

was found to be an indicator of regional drought varia-

tion. Wet spells are from AD 1217–1259, 1350–1408,

1418–1442, 1511–1616, 1738–1758, 1839–1928 and

1949–2006. The dry periods are from AD 1161–1216,

1260–1349, 1409–1417, 1443–1510, 1617–1737,

1759–1838 and 1929–1948. The droughts and pluvial

periods identified in the PC1 are consistent with other

studies nearby. Series comparison also suggests that solar

variation may be an important driving force of the

moisture variations in the Hexi Corridor, at centennial and

longer timescale. Several mechanisms may have involved

for this relationship; however, more investigation is nee-

ded to test and understand the associations and physical

mechanisms.
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new global 0.5� gridded dataset (1901–2006) of a Multiscalar

Drought Index: comparison with Current Drought Index Datasets

Based on the Palmer Drought Severity Index. J Hydrometeorol

11:1033–1043

Vicente-Serrano SM, Gouveia C, Camarero JJ et al (2013) Response

of vegetation to drought time-scales across global land biomes.

Proc Natl Acad Sci USA 110:52–57

Wang Y, Cheng H, Edwards RL et al (2005) The Holocene Asian

monsoon: links to solar changes and North Atlantic climate.

Science 308:854–857

Wang W, Liu X, Xu G et al (2013) Moisture variations over the past

millennium characterized by Qaidam Basin tree-ring d18O. Chin

Sci Bull 58:3956–3961

Wu G, Liu Y, He B et al (2012) Thermal controls on the Asian

summer monsoon. Sci Rep 2:404
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