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Abstract Soil temperature (Ts) is one of the most impor-

tant parameters which affect physical and chemical prop-

erties of soil. In the present study, two biologically inspired

approaches for artificial intelligence including gene

expression programming (GEP) and artificial neural net-

works (ANN), as well as multiple linear regression (MLR)

were used to estimate the soil temperature at six different

depths (5, 10, 20, 30, 50 and 100 cm) for the Sanandaj

synoptic station in a semiarid region in western Iran.

Twelve combinations of meteorological parameters, such

as minimum and maximum air temperatures, relative

humidity, wind speed, sunshine hours and extraterrestrial

radiation, were used as input variables. The full data set

containing soil temperature and atmospheric parameters,

which spans the time period from 1997 to 2008, was

divided into training (1997–2004) and testing (2005–2008)

data sets. To evaluate the accuracy of the models, deter-

mination coefficient (R2) and root mean square error

(RMSE) were calculated. The results showed that the GEP,

ANN and MLR were able to model Ts at different depths.

However, the performance of the ANN approach was the

best.

Keywords Artificial neural networks � Gene expression

programming � Soil temperature

List of symbols

Tmin Daily minimum air temperature (�C)
Tmax Daily maximum air temperature (�C)
RH Daily relative humidity (%)

U2 Daily wind speed at 2 m height (m s-1)

n Daily sunshine hours (hr)

Ra Daily extraterrestrial radiation (MJ m-2

day-1)

Ts Daily soil temperature (�C)
w Weight of each neuron

x Input to each neuron

s Summation of inputs multiplication in

corresponding weights

f Transfer function

E Error function of network in the back-

propagation algorithm

g Learning constant in the back-propagation

algorithm

yj The output value of jth neuron

R2 Determination coefficient

RMSE Root mean square error (�C)
Pi ith estimated Ts (�C)
Oi ith observed Ts (�C)
Pav Average of the estimated Ts values (�C)
Oav Average of the observed Ts values (�C)
N Number of observations

Y Dependent variable in MLR (i.e., Ts)

X1, …, Xn Independent variables in MLR

a0, …, an Constant coefficients of MLR approach& Javad Behmanesh
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Introduction

Soil temperature (Ts) and its spatial and temporal variations

affect physical and chemical processes in soil. Soil tem-

perature is an important meteorological parameter for

transferring heat energy from the atmosphere to soil and

vice versa, solar energy applications such as the passive

heating and cooling of buildings, frost depth prediction

(construction depth of drainage structures and urban water

supply networks), agricultural applications (crop growth,

root development and potential evapotranspiration),

hydrology (effect on climate change), geology, agronomy

(determining suitable depth and time for seeds planting)

and environmental studies (Mihalakakou 2002; Kocak

et al. 2004; Jackson et al. 2008; Yilmaz et al. 2009). Soil

temperature depends on a variety of environmental factors,

including meteorological conditions such as surface global

radiation and air temperature; soil physical parameters such

as surface albedo, water content and texture; topographical

variables such as elevation, slope and aspect; and other

surface characteristics such as leaf area index and ground

litter stores (Kang et al. 2000; Garcia-Suarez and Butler

2006; Paul et al. 2004).

Soil temperature is measured by using sensors. For

example, THERM200 is a soil temperature probe, which

has a temperature span from -40 to 85 �C. It outputs a

voltage proportional to the temperature, so no complex

equations are required to calculate the temperature from

voltage. It is highly accurate with 0.125 �C of resolution.

Empirical equations and models can be suitable to estimate

Ts because of high costs of direct measurements. Soil

temperature can be estimated by two different approaches

based upon: (1) soil heat flow and energy balance and (2)

empirical correlations with easily acquirable variables

(Kang et al. 2000). The former approach can give accurate

predictions for a well-evaluated site. However, in many

sites, there is not sufficient data for calculating heat transfer

equations such as surface global radiation (Kang et al.

2000). In addition, several studies have been conducted to

estimate soil temperature by using various models, such as

analytical, semi-analytical, numerical and experimental

models (Hanks et al. 1971; Ghuman and Lal 1982; Paul

et al. 2004; Prangnell and McGowan 2009; Droulia et al.

2009). Ghuman and Lal (1982) predicted soil temperature

by Fourier analysis in a tropical area. The results demon-

strated the high accuracy of the Fourier analysis. Usowicz

and Walczak (1994) presented a mathematical model of

heat flow to predict soil temperature. The results showed

that the estimated values of soil temperature had accept-

able accuracy. Droulia et al. (2009) estimated subsurface

ground temperature profiles of a bare soil. They used an

experimental plot located in the Agricultural University of

Athens campus and analytical and semiempirical models. It

was concluded that the proposed models may serve as

useful tools for predicting Ts.

Recently, artificial intelligence techniques have been

increasingly used to estimate meteorological and environ-

mental parameters such as soil temperature. Artificial

intelligence methods can be used as alternative techniques.

These methods do not require the internal relationship

between variables of any investigated system. Simple

solutions for multivariable problems and factual calcula-

tion (for variables with nonlinear relationships) are other

advantages of artificial intelligence methods (Zadeh 1992;

Chaturvedi 2008; Huang et al. 2010). Gene expression

programming (GEP) and artificial neural networks (ANN)

are two examples of biologically inspired approaches to

artificial intelligence.

Multiple linear regression (MLR) is one of the most

simple methods to model variables which have a linear

relationship. Nevertheless, the GEP and ANN are biolog-

ically inspired methods which have the ability to model

variables with nonlinear relationship. The relationships

between soil temperature and meteorological parameters

are generally nonlinear (Jungqvist et al. 2014).

The GEP was used by many researchers in a wide range

of sciences. For example, rainfall–runoff modeling (Aytek

et al. 2008), modeling of daily river discharge (Guven

2009), modeling of groundwater table fluctuations (Shiri

et al. 2013), estimation of potential evapotranspiration (i.e.,

is a measure of the ability of the atmosphere to remove

water from the surface through the processes of evapora-

tion and transpiration assuming no control on water supply)

(Traore and Guven 2012; Shiri et al. 2014a), solar radiation

modeling (Landeras et al. 2012; Mehdizadeh et al. 2016),

estimation of dew point temperature (Shiri et al. 2014b),

function finding in component thermodynamical selection

(Guo et al. 2014) and estimating the peak flood (Zorn and

Shamseldin 2015) were accomplished by using GEP. To

our knowledge, no study has been yet conducted about soil

temperature estimation using GEP. However, the ANN was

extensively used to predict Ts in many studies. George

(2001) predicted Ts in Gujarat, India, by using ANN with

relative humidity, wind speed and air temperature serving

as input parameters. The results showed that the ANN was

able to estimate Ts. Mihalakakou (2002) modeled daily and

annual variations of soil surface temperatures in Athens

and Dublin by a deterministic equation (based on the

transient heat conduction differential equation and using as

boundary condition the energy balance equation at the

ground surface) and neural network approaches. It was

found that the proposed neural network had the capability

to estimate the soil surface temperature distribution. Bilgili

(2010) estimated the monthly Ts using linear and nonlinear
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regression and artificial neural networks in Adana, Turkey.

He concluded that the ANN showed a better performance

than both regression methods. Tabari et al. (2011) com-

pared the ANN and MLR methods to estimate Ts in Isfa-

han, an arid region of Iran. The results showed that the

ANN predictions were superior to the MLR. Bilgili et al.

(2013) estimated Ts by multi-nonlinear regression and

ANN at eight stations in Turkey. They concluded that the

ANN model provides a simple and accurate prediction of

Ts. Also, the ANN had a better performance than the

nonlinear regression method. Tabari et al. (2014) predicted

short-term soil temperature using ANN for two weather

stations located in humid (Sari) and arid (Zahedan) regions

of Iran. They concluded that the ANN can be successfully

applied to provide accurate and reliable short-term soil

temperature forecasts. Kisi et al. (2015) modeled monthly

Ts in Mersin, Turkey, by using three different neural

techniques which are multilayer perceptron, radial basis

neural networks and generalized regression neural net-

works. Radial basis neural networks were found to be

better than the generalized regression neural networks and

multilayer perceptron in estimating monthly Ts at 5 and

10 cm depths, while the multiple linear regression and

generalized regression neural networks gave the best

accuracy at 50 and 100 cm depths, respectively. Further

studies have been conducted to estimate soil temperature

by Kisi et al. (2016), Hosseinzadeh Talaee (2014), Kim and

Singh (2014), Shaker et al. (2014), Napagoda and Tila-

karatne (2012).

As mentioned, accurate estimation of soil temperature

is one of the most important problems in agricultural and

environmental fields. Since strawberry is planted in

Sanandaj and the time of planting this crop is a function

of soil temperature, the investigation of soil temperature

and its prediction have an important role in obtaining

considerable yield. Literature review revealed that the

GEP has not been used to estimate Ts. Furthermore, the

GEP can give an algebraic equation which can be easily

used in the future. Moreover, the ANN is commonly

used in modeling of environmental variables with the

nature of nonlinear dynamic. Beside the GEP and ANN

models, the MLR method was employed to predict Ts.

Twelve combinations of meteorological parameters, such

as minimum air temperature, maximum air temperature,

extraterrestrial radiation, relative humidity, wind speed

and sunshine hours, were used as inputs in GEP, ANN

and MLR.

Materials and methods

Study area and meteorological data

The considered site is Sanandaj which is located at latitude

35� 200N and longitude 47� 000E in western Iran (Fig. 1).

Sanandaj has an area of 2906 km2 and is located 1373.4 m

above free water level. According to the de Martonne index

(1925), Sanandaj is located in a semiarid region. The

meteorological conditions in Sanandaj during the study

period (1997–2008) are summarized in Table 1.

The data for the present studywere included minimum and

maximum air temperatures (Tmin, Tmax), relative humidity

(RH), wind speed (U2), sunshine hours (n) and soil temperature

(Ts) at six different depths (5, 10, 20, 30, 50 and 100 cm). The

used data were collected from the Islamic Republic of Iran

Meteorological Organization (IRIMO) for the period

1997–2008. It should be noted that the average measured soil

temperature in three hours (03:00, 09:00 and 15:00) was con-

sidered as mean daily Ts. Other meteorological variables are

measured at 00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00 and

21:00. The data between 1997 and 2004 aswell as from2005 to

2008 were used in training and testing stages, respectively.

Fig. 1 Location of studied area

in the west of Iran
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Gene expression programming (GEP)

GEP was presented by Ferreira (2001). GEP is one of the

several machine learning techniques which are based on

the concept of Darwinian evolution. GEP is a member of a

broad family of techniques called evolutionary algorithms.

All these techniques are based on the Darwinian principle

of reproduction and survival of the fitness. In fact, in this

method, the best population is selected. Otherwise, the new

population is reproduced to obtain the best population. One

important point that distinguishes the GEP from many

other artificial intelligence techniques is the representation

of the solutions. GEP returns algebraic equations. The most

important advantages of the GEP to other intelligent

models are: (1) The chromosomes are simple entities: lin-

ear, compact, relatively small, easy to manipulate geneti-

cally (replicate, mutate, recombine, transpose, etc.) and (2)

the expression trees are exclusively the expression of their

respective chromosome (Ferreira 2001).

The flowchart of a GEP algorithm is shown in Fig. 2.

The generation of an initial population is the first stage in

GEP. This can be done randomly or incorporate prior

knowledge on the problem to be solved. Then, the chro-

mosomes are expressed in the form of an expression tree.

The results are evaluated using a fitness function to

determine the suitability of a solution. If a solution of

satisfactory quality is found, the evolution process will be

stopped and the best obtained solution to this stage will be

reported. If the stop condition is not satisfied, the best

solution from the present generation will be copied to the

next generation. The chromosomes are selected to repro-

duce with modification. During reproduction, it is the

chromosomes of the individuals, not the expression trees,

which are reproduced with modification and transmitted to

the new generation. The process is repeated for a certain

number of generations or until a solution has been found.

In this study, GeneXpro Tools 4.0 program was

employed to develop planning models based on gene

expression programming. To apply GEP to a given prob-

lem (e.g., Ts), the user needs to provide the following,

1. In the first step, a terminal set is selected which

includes the independent variables of an investigated

phenomenon. In this study, the input variables were

different combinations of meteorological variables,

e.g., minimum and maximum air temperatures, relative

humidity, wind speed at 2 m height, sunshine hours

and extraterrestrial radiation (Table 2).

Table 1 Statistical

characteristics of daily

meteorological parameters for

Sanandaj during 1997–2008

Parameter Xmin Xmax Xmean Xstdev

Minimum air temperature, Tmin (�C) -22.4 28.2 6.4 8.3

Maximum air temperature, Tmax (�C) -8.2 42.2 22.5 11.5

Extraterrestrial radiation, Ra (MJ m-2 day-1) 16.4 41.7 29.9 9.0

Relative humidity, RH (%) 13.0 96.0 48.3 17.3

Wind speed at 2 m height, U2 (m s-1) 0.0 8.2 1.8 1.2

Sunshine hours, n (hrs) 0.0 13.2 8.3 3.7

Create chromosomes of initial population

Express chromosomes 

Execute each program

Evaluate fitness

Iterate or 
terminate?

End

Terminate

Iterate

Keep best program

Select programs

Replication

Mutation

IS Transposition

RIS Transposition

Gene transposition

1-Point recombination

2-Point recombination

Gene recombination

Prepare new programs of next generation

no
it

cu
do

rp
e

R

Fig. 2 Flowchart of a GEP algorithm (Ferreira 2001)
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2. The second stage is to select the function set. In the

present study, the function set includes the four basic

arithmetic operators þ;�;�;�f g and a set of alge-

braic and transcendental functions x2; x3;
ffiffiffi

x
p

;
�

ffiffiffi

x3
p

; Lnx; ex; Sinx;Cosx;Atanxg.
3. The third step is to choose an index for evaluating

model’s accuracy. In this research, the root mean

square error (RMSE) was used as fitness function.

4. In the fourth step, the structure and architecture of the

chromosomes are selected. In this process, head size

(head contains special functions that activates function

set) and the number of genes (these genes code for

expression trees of different sizes and shapes) and

chromosomes (composed of one or more genes of

equal size) were selected 8, 3 and 30, respectively.

Also, addition function was used as a linking function

between expression trees. Finally, the genetic operators

(to modify chromosomes) and corresponding rates

were selected (Table 3).

5. In fifth step, a stop condition must be defined. In this

study, the generation number equal to 1000 was

employed as stop criterion.

It should be noted that the GEP is not a deterministic

model and it is likely to achieve different results from

repeating GEP runs. In the present study, all set of sce-

narios (see Table 2) were used to run the GEP. Then, the

best runs for each scenario were selected.

Artificial neural networks (ANN)

Artificial neural networks are an artificial intelligence

technique inspired by biologically neural networks. The

ANN establishes a model between a set of input and output

variables. Artificial neural networks typically consist of

three layers: input layer, hidden layer and output layer

(Fig. 3a). Each layer consists of one or several nodes

(neurons). The input layer contains the input variables. The

output layer contains the output variable(s) of the ANN.

The hidden layer(s) processes the information between

input and output layers.

The structure of a neuron is shown in Fig. 3b. The input

to a node is given by a vector x = (x1, x2, …, xn) with n

components. The inputs are multiplied with corresponding

weights w = (w1, w2, …, wn) and added up to calculate

transfer function variable, s,

s ¼
X

n

n¼1

wn:xn ¼ wT :x ð1Þ

These weights are optimized by the model. To obtain the

output of the respective neuron, s is transferred using a

nonlinear transfer function f,

y ¼ f ðsÞ ð2Þ

The nonlinear transfer function usually is defined as a

sigmoid function,

f ðsÞ ¼ 1

ð1þ e�sÞ ð3Þ

Further detailed information about the ANN can be

found in Haykin (1998).

In this study, a three-layer feed-forward neural networks

(Fig. 3a) with a back-propagation learning algorithm was

employed to estimate soil temperature. To develop the

ANN models, the ANN toolbox in MATLAB R2014a was

used.

In the present study, the input layer contains several

nodes defined by one of the various combinations of

meteorological parameters (Table 2). The output layer

contains one node representing the soil temperature at a

certain depth. The number of neurons in the hidden layer

was optimized by trial and error procedure.

Back-propagation algorithm

More than 70% of the studies implementing ANN for

environmental and hydrological applications employed the

back-propagation learning algorithm because of its sim-

plicity and robustness (Kumar et al. 2011). The back-

propagation algorithm is divided into two stages: forward

and backward stages. In the forward stage, all samples

Table 2 Different GEP and ANN scenarios and the respective input

variables

Scenario Input combinations

GEP1, ANN1 Tmin, Tmax

GEP2, ANN2 Tmin, Tmax, RH

GEP3, ANN3 Tmin, Tmax, n

GEP4, ANN4 Tmin, Tmax, U2

GEP5, ANN5 Tmin, Tmax, Ra

GEP6, ANN6 Tmin, Tmax, Ra, RH

GEP7, ANN7 Tmin, Tmax, Ra, U2

GEP8, ANN8 Tmin, Tmax, Ra, n

GEP9, ANN9 Tmin, Tmax, Ra, RH, U2

GEP10, ANN10 Tmin, Tmax, Ra, RH, n

GEP11, ANN11 Tmin, Tmax, Ra, U2, n

GEP12, ANN12 Tmin, Tmax, Ra, RH, U2, n

Table 3 Setup of the genetic operators in GEP

Mutation rate 0.044 Two-point recombination 0.3

Inversion rate 0.1 Gene recombination rate 0.1

One-point recombination 0.3 Gene transposition rate 0.1
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enter the network and the neurons are continuously updated

from input to output layer. In this stage, all inputs into a

neuron are calculated and each input is multiplied to its

weight. The weights are randomly applied by the ANN,

and the optimum values are obtained. The input value of jth

neuron is calculated as,

sj ¼
X

i
xiwji ð4Þ

where xi is the ith neuron value and wji is the ith neuron

connection weight to jth neuron. Then, sj is converted to

the neuron output by an activation function (f),

f ðsjÞ ¼ yj: ð5Þ

The tangent–sigmoid function is often used as an activation

function. In the forward stage, weights are not adjusted and

remain constant. The outputs obtained are compared with the

actual values, and the error function of network is calculated.

In the backward stage, the errors (Eq. 6) are used to update the

weights from output to input layer. This stage aims to mini-

mize the errors between network output and reference data.

The forward and backward stages are repeated several times.

The iteration process is stopped until minimizing the error

function (Eq. 6) is obtained. A popular method for this is the

steepest descent method. In this method, the weights are

adjusted as follows (Eqs. 6 and 7),

EðwÞ ¼ 1

2

X

j;k

ðyj;k � oj;kÞ2 ð6Þ

where w is the weight, yj,k is the output value of jth neuron

in the last layer which is obtained from kth learning sample

and oj,k is the actual value of jth neuron in kth learning

sample. There are different methods to minimize the value

of E(w).

wnþ1
j;i ¼ wn

j;i � g
oE

own
j;i

ð7Þ

where wn
j;i is the weight of ith neuron to jth neuron at time

n, g is the learning constant (between 0 and 1) which is

optimized by model and oE
own

j;i
is the derivation at wn

j;i.

Further detailed information about the back-propagation

algorithm can be found in Rojas (1996).

Multiple linear regression (MLR)

Besides applied artificial intelligence models, i.e., GEP and

ANN, the MLR method was employed to estimate Ts. The

general form of the MLR approach is as follows:

Y ¼ a0 þ a1X1 þ a2X2 þ � � � þ anXn ð8Þ

where a0, …, an are constants which are obtained by linear

regression between dependent variable (Y, i.e., Ts) and

independent variables used in the present study (X1, …, Xn,

i.e., different combinations of predictors).

Evaluation criteria

To evaluate the performance of GEP, ANN and MLR for

soil temperature prediction, two statistical indices, the

determination coefficient (R2) and the root mean square

error (RMSE) were used (Eqs. 9 and 10):

R
2 ¼

PN
i¼1 ðPi � PiÞðOi � OiÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 ðPi � PiÞ2

PN
i¼1 ðOi � OiÞ

2
q

0

B

@

1

C

A

2

ð9Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 ðPi � OiÞ2

N

s

ð10Þ

Input layer Hidden layer Output layer

(a) (b)

Tmin

Tmax

Ra

RH

Ts

Tmin Tmax Ra RH

Inputs

Weights

Summing junction 
(s in Eq.1)

Transfer function

Outputyj

Fig. 3 Architecture of a three-layer feed-forward neural network with four input nodes (ANN6) (a) and structure of a neuron (b)
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where Pi is the ith estimated Ts using GEP, ANN and MLR

approaches; Oi is the ith observed Ts; Pav is the average of

the estimated Ts values (the average of the Pi); Oav is the

average of the observed Ts values (the average of the Oi);

and N is the number of observations.

Results and discussion

The variations of the annual mean daily soil temperature

at different soil depths are presented in Fig. 4. In the

studied period, maximum and minimum soil temperatures

occurred at 5 and 20 cm depths, respectively. The maxi-

mum and minimum soil temperatures at 5 and 20 cm

depths were 19.9 �C (in 2008) and 16.6 �C (in 1997),

respectively.

The statistical characteristics of daily soil temperature at

various depths in the studied period are shown in Table 4.

Maximum and minimum soil temperatures were observed

at 5 cm depth (equal to 44.4 �C and -3.9 �C, respec-

tively). From surface to the deeper depths, minimum soil

temperature increased and maximum soil temperature

decreased. The standard deviation of the soil temperature is

highest in the surface layer. This is most likely caused the

meteorological conditions which have a stronger effect on

the surface layer than on deeper soil layers.

Results of the GEP models

To develop the GEP models, various function sets were

tested. The results showed that a function set consisting of

basic arithmetic operators þ;�;�;�f g, as well as alge-

braic and transcendental functions Sinx;Cosx;A tan x;f
x2; x3;

ffiffiffi

x
p

;
ffiffiffi

x3
p

; Lnx; exg, showed the best performance

compared to all other tested function sets. The values of R2

and RMSE for the GEP in all twelve scenarios are pre-

sented in Table 5. The values of RMSE range from

2.027 �C at the depth of 10 cm in GEP5 to 4.812 �C at

100 cm depth (in GEP12). Moreover, R2 varies from 0.686

(100 cm) to 0.974 (10 cm) in GEP12 and GEP5, respec-

tively. The performance of GEP1 is acceptable, especially

for 10, 20, 30 and 100 cm depths. At 30 cm depth, the

GEP1 was the best scenario (R2 = 0.941 and

RMSE = 2.593 �C). Of all scenarios with three inputs

(GEP2 to GEP5), the GEP2 (with Tmin, Tmax and RH pre-

dictors) showed the best performance at 20, 30, 50 and

100 cm depths. At 5 and 10 cm depths, the GEP4 and

GEP5 were the best scenarios. At all depths, by increasing

the number of input variables to four (GEP6 to GEP8), the

GEP7 yielded the best results in estimating Ts, except at

30 cm depth. Therefore, with regard to the input variables

in GEP6 to GEP8, it can be concluded that the use of wind

speed with accompaniment of Tmin, Tmax and Ra showed

better performance in comparison with adding RH and n to
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Fig. 4 Annual mean daily soil

temperature at different depths

in the studied period

Table 4 Statistical

characteristics of daily soil

temperature for Sanandaj during

1997–2008

Characteristic Soil depth (cm)

5 10 20 30 50 100

Minimum soil temperature, Ts,min (�C) -3.9 -3.8 -1.3 0.0 1.5 5.2

Maximum soil temperature, Ts,max (�C) 44.4 40.7 37.0 33.7 33.6 33.4

Average soil temperature, Ts,mean (�C) 18.7 18.0 17.3 17.4 17.9 18.0

Standard deviation, Ts,stdev (�C) 12.5 11.7 10.4 9.8 9.1 7.7
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GEP5. In the scenarios with five inputs (GEP9 to GEP11),

different results were obtained. The GEP10 at surface layer

(5 cm depth), the GEP9 at 10, 20 and 50 cm depths and the

GEP11 at 30 and 100 cm depths were the best scenarios to

estimate Ts. In general, by considering six parameters as

inputs (GEP12), the estimation accuracy of Ts is not nec-

essarily increased.

According to the statistical indices in all scenarios which

have been presented in Table 5, it can be concluded that

the GEP10 at 5 cm depth (R2 = 0.966 and RMSE =

2.575 �C), the GEP5 at 10 cm depth (R2 = 0.974 and

RMSE = 2.027 �C), the GEP1 at 30 cm depth

(R2 = 0.941 and RMSE = 2.593 �C), the GEP7 at the

depths of 20 cm (R2 = 0.959 and RMSE = 2.270 �C),
50 cm (R2 = 0.914 and RMSE = 3.022 �C) and 100 cm

(R2 = 0.833 and RMSE = 3.304 �C) achieved the highest

accuracy in estimating Ts.

Figures 5 and 6 show scatter and time series plots

comparing observed and estimated soil temperature in

testing stage (2005–2008) for the best scenarios at each

depth, respectively. It is obvious from the given R2 of the

fitted lines in the scatter plots (Fig. 5) that the estimated

values from GEP5 at 10 cm depth are closer to the

observed soil temperature values than those of the other

different scenarios and depths. Temporal variations of

predicted soil temperature and its comparison with

observed data (Fig. 6) reveal that the observed and pre-

dicted values of soil temperature match closely. It can be

concluded from Fig. 6 that in warmer days, the values of Ts
have been underestimated by GEP. It is clear that the

model is adapted with all data and in the extreme points,

such as warmer days, the results of the model are lower

than observed data.

As mentioned before, the GEP returns algebraic equa-

tions between input and output variables. The equations of

the best model at each depth generated by GEP are pre-

sented in Table 6. It is clear from the table that in some

cases, all used predictors in different scenarios (Table 2)

are not seen. The reason of this fact can be explained from

little effect of the ignored predictor, i.e., the coefficient of

some variables is negligible. Moreover, the constant coef-

ficients in algebraic equations (Table 6) are randomly

values which are produced by GEP. As an example, the

expression tree returned by GEP5 for 10 cm depth is shown

in Fig. 7. This figure can be transformed into an equation

which is seen in Table 6. The mentioned equation has been

constructed from three components including Sub-ET 1,

Sub-ET 2 and Sub-ET 3 (in Fig. 7), and each Sub-ET was

seen as an algebraic sentence. For example, Sub-ET 1 can

be written as Ln ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eðTminþTmaxÞ
p

Þ � Ra

h i

.

Results of the ANN models

The ANN in this study consists of one hidden layer and one

output layer.Theoptimumnumberof nodes in thehidden layer

was obtained by trial and error and was found to vary between

3 and 10 for the different depths. As for GEP, twelve different

combinations of input variables were considered (Table 2).

RMSE and R2 for the different scenarios and soil depths are

presented in Table 7. The RMSE ranges from 1.902 �C at the

depth of 10 cm in ANN7 to 3.816 �C at 100 cm depth (in

Table 5 Statistical indices for the GEP models at different depths for 12 different scenarios (see Table 2)

Depth (cm) Indices Scenario

GEP1 GEP2 GEP3 GEP4 GEP5 GEP6 GEP7 GEP8 GEP9 GEP10 GEP11 GEP12

5 R2 0.960 0.965 0.964 0.966 0.962 0.961 0.964 0.956 0.960 0.966 0.960 0.965

RMSE* 2.804 2.833 2.611 2.607 2.789 2.768 2.615 3.031 2.836 2.575 2.713 2.592

10 R2 0.970 0.966 0.944 0.971 0.974 0.958 0.964 0.960 0.966 0.940 0.960 0.962

RMSE 2.149 2.244 2.892 2.129 2.027 2.536 2.316 2.440 2.242 3.021 2.427 2.370

20 R2 0.950 0.948 0.950 0.942 0.948 0.948 0.959 0.942 0.954 0.913 0.923 0.949

RMSE 2.505 2.566 2.704 2.694 2.684 2.569 2.270 2.931 2.419 3.473 3.059 2.571

30 R2 0.941 0.939 0.930 0.938 0.928 0.941 0.923 0.923 0.925 0.881 0.932 0.924

RMSE 2.593 2.632 2.853 2.681 2.901 2.657 3.099 2.974 2.913 3.692 2.843 2.930

50 R2 0.900 0.908 0.907 0.904 0.913 0.899 0.914 0.859 0.908 0.857 0.868 0.901

RMSE 3.371 3.144 3.242 3.398 3.293 3.375 3.022 3.786 3.135 3.901 3.674 3.222

100 R2 0.776 0.770 0.723 0.746 0.749 0.760 0.833 0.766 0.803 0.711 0.809 0.686

RMSE 3.847 4.000 4.341 4.122 4.160 4.296 3.304 3.961 3.725 4.468 3.570 4.812

* RMSE is in �C
Bold values indicate statistical indices of the best scenario in each depth
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ANN2). In general, ANN1 which uses only minimum and

maximum air temperatures does not give accurate estimation

of soil temperature. Out of all three inputs scenarios (ANN2 to

ANN5), theANN5 (with inputs ofTmin,Tmax andRa) estimated

Ts with the smallest error at all depths, except 20 cm depth. At

20 cm depth, ANN2 showed better results than the other three

inputs scenarios. The ANN7 was the best scenario at all soil

depths out of all four inputs scenarios (ANN6 to ANN8).

Similar results were obtained by GEP model (except 30 cm

depth). By addingU2 to Tmin,Tmax andRa, estimation accuracy

ofTs improved in comparisonwith addingRHandn. Similar to

the GEP models, in scenarios with five inputs (ANN9 to

ANN11), different results were obtained. ANN10 at 5 and

20 cm depths, the ANN9 at 10 and 50 cm depths, the ANN11

at 30 and 100 cm depths gave the best results of all five input

scenarios. In many cases, by considering the six inputs in

ANN12, the ANN models’ accuracy was increased.

With regard to the all statistical indices in Table 7, the

ANN10 at 5 cm depth (R2 = 0.980 and

RMSE = 2.191 �C), the ANN7 at the depths of 10 cm

(R2 = 0.980 and RMSE = 1.902 �C), 20 cm (R2 = 0.970

and RMSE = 2.093 �C) and 50 cm (R2 = 0.943 and

RMSE = 2.663 �C), the ANN5 at 30 cm depth

(R2 = 0.957 and RMSE = 2.405 �C) and the ANN12 at

100 cm depth (R2 = 0.909 and RMSE = 2.570 �C) were
the best scenarios.

Figures 8 and 9 show scatter and time series plots

comparing observed and estimated soil temperature for the

best scenarios at various depths. It is clear from the given

R2 of the fitted lines in the scatter plots (Fig. 8) that the

performance of ANN7 is quite good with high correlation.

A visual inspection of the estimated and observed soil

temperature clearly demonstrates the potential of ANN

modeling (Fig. 9).
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Fig. 5 Scatter plots between

observed and estimated soil

temperature Ts for the best GEP

scenario at 5, 10, 20, 30, 50 and

100 cm depths
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Results of the MLR models

Beside the GEP and ANN methods, the MLR approach was

used to estimate Ts. Statistical indices including RMSE and R2

for this method are given in Table 8. As seen, considerable

differences are not observed between themodels’ accuracy at a

specific depth, except for 100 cm depth. At this depth,

increasing the predictors leads to improvement in the perfor-

mance of the scenarios than upper layers. Also for all depths,

the MLR12 with full inputs is the best model.
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Fig. 6 Time series of observed

and estimated soil temperature

Ts for the best GEP scenario at

5, 10, 20, 30, 50 and 100 cm

depths

Table 6 Algebraic equations returned by the best GEP scenario for each depth

Soil depth (cm) GEP model Algebraic equations

5 GEP10 Ts ¼ A tanð6:42� TmaxÞ þ ðTmax � 1:75Þ þ A tanðTmin � ð0:08RHÞ þ ðTmax � nÞ � ðTmin þ 0:08Þ½ �Þ

10 GEP5 Ts ¼ Ln ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eðTminþTmaxÞ
p

Þ � Ra

h i

þ A tan ð�8:1Þ � Tmax � A tanðTmaxÞ � ðTmax � 8:5Þ½ �ð Þ½ � þ 0:18

20 GEP7
Ts ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ra�ðTmax
Ra

Þþ2:883
p

�1:42 þ 0:79Tmax þ A tanðTmaxÞ�Tmin

ðRaþ7:03Þ

h i

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðRa þ 7:03Þ
p

30 GEP1 Ts ¼ �0:86þ 0:77Tmax þ A tan A tanð 2Tmin

Tmax�2:82Þ
h i

þ A tan ðSinðTmaxÞ � ð8:68� TmaxÞ½ � � ðTmin � 8:68Þ þ 8:68½ �

50 GEP7 Ts ¼ �0:43� ðTmax þ u2Þ þ Tmax þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9:42þ 0:22T2
min þ Tmin

p

100 GEP7
Ts ¼ 0:79�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTmax þ
ffiffiffiffiffi

Ra

p
Þ23

q

þ 3:1� ðLn Ra

9:59Þ
2

h i2

þTmax
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Comparison of the GEP, ANN and MLR models

Comparing Tables 5 and 7 shows that in the scenarios with

the same predictors (e.g., comparing GEP1 and ANN1 at a

specific depth), the accuracy of ANN is better than for

GEP. Similar to the results obtained from the present study,

the superiority of the ANN to other models (e.g., multiple

linear regression, multi-nonlinear regression, neuro-fuzzy

and genetic programming) has been reported by Bilgili

(2010), Tabari et al. (2011), Bilgili et al. (2013) and Kisi

et al. (2016). Moreover, increasing depth and using the

scenarios with further predictors cause an improvement in

the accuracy of the ANN models than GEP scenarios,

especially at the depth of 100 cm (see Tables 5 and 7). The

values of R2 and RMSE (Table 5) indicate that the accu-

racy of the GEP models does not necessarily increase with

increasing the number of input variables. For example, the

GEP12 scenario considered the full predictor sets; how-

ever, this scenario performed the worst for 100 cm depth.

Similar behavior was observed for GEP10 at 30 and 50 cm

depths, i.e., increasing predictors in GEP does not cause the

enhancement in the models’ performance. For ANN, the

situation is different. Here for scenarios considering larger

numbers of input variables, the performance of the

respective ANN tends to be better than for scenarios con-

sidering less input variables. At 100 cm depth for instance

the ANN12 scenario worked the best. For all other depths,

scenarios which use five input variables (i.e., ANN9-

ANN11) show high performance. The ANN is an intelli-

gent model. Therefore, the ANN itself considers the

parameters which have high correlation with soil temper-

ature in modeling process, whereas the GEP does not have

this ability. However, in the case of the correct definition of

predictors to the GEP, the solutions of the GEP can be

satisfied.

The scenarios GEP2 to GEP5 and ANN2 to ANN5

might be of interest for regions where only the respective

subsets of meteorological predictors are available. In such

regions, the models generated by GEP2 using Tmin, Tmax

and RH which yields reasonable results, especially between

20 and 100 cm depth, and ANN5 with input variables Tmin,

Tmax and Ra are recommended.

The results of GEP, ANN and MLR methods

(Tables 5, 7 and 8) reveal that the MLR estimations are

generally better than GEP for investigated depths and

scenarios. On the other hand, the ANN showed the best

performance.

The tendency of used models in estimating Ts was

investigated. In warmer days, underestimation was

observed. For other days, constant trends were not seen.

However, all methods generally showed underestimation.

From a depth of 5 to 10 cm, the accuracy for all sce-

narios increased for all used methods. 10 cm depth had the

highest accuracy in estimating Ts in comparison with all

other depths due to the vicinity of upper layers to the

atmosphere. In general, from 20 to 100 cm depth, the error

increased. Similar results were obtained by Tabari et al.

(2011). This can be due to the meteorological conditions

having a stronger effect on the soil temperature near the

surface than deeper depths. The upper soil layers serve as

an insulation between lower atmosphere and deeper soil

layers. In other words, the deeper soil layers respond much

slower to changes in the atmospheric conditions than the

soil layers near the surface.

Fig. 7 Expression tree of the GEP5 model at the depth of 10 cm
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Table 7 Statistical indices for the ANN models at different depths for 12 different scenarios (see Table 2)

Depth (cm) Indices Scenario

ANN1 ANN2 ANN3 ANN4 ANN5 ANN6 ANN7 ANN8 ANN9 ANN10 ANN11 ANN12

5 R2 0.977 0.978 0.981 0.977 0.979 0.982 0.981 0.981 0.982 0.980 0.982 0.984

RMSE* 2.324 2.401 2.335 2.353 2.254 2.233 2.217 2.285 2.273 2.191 2.304 2.279

10 R2 0.976 0.976 0.979 0.977 0.978 0.978 0.980 0.978 0.980 0.978 0.980 0.980

RMSE 1.951 2.039 2.017 1.963 1.930 1.929 1.902 1.994 1.913 1.944 1.970 1.957

20 R2 0.965 0.967 0.968 0.968 0.966 0.967 0.970 0.967 0.967 0.968 0.966 0.969

RMSE 2.252 2.211 2.244 2.214 2.215 2.242 2.093 2.213 2.193 2.145 2.236 2.215

30 R2 0.948 0.949 0.946 0.951 0.957 0.951 0.953 0.952 0.955 0.951 0.956 0.957

RMSE 2.590 2.600 2.641 2.545 2.405 2.542 2.492 2.536 2.483 2.538 2.433 2.462

50 R2 0.918 0.922 0.919 0.923 0.941 0.941 0.943 0.932 0.940 0.939 0.932 0.943

RMSE 3.129 3.075 3.118 3.066 2.712 2.706 2.663 2.889 2.675 2.716 2.861 2.689

100 R2 0.787 0.789 0.788 0.802 0.903 0.902 0.907 0.882 0.907 0.902 0.909 0.909

RMSE 3.810 3.816 3.775 3.699 2.635 2.627 2.586 2.874 2.583 2.652 2.580 2.570

* RMSE is in �C
Bold values indicate statistical indices of the best scenario in each depth
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Fig. 8 Scatter plots between

observed and estimated soil

temperature Ts for the best ANN

scenario at 5, 10, 20, 30, 50 and

100 cm depths
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Table 8 Statistical indices for the MLR models at different depths for 12 different scenarios (see Table 2)

Depth (cm) Indices Scenario

MLR1 MLR2 MLR3 MLR4 MLR5 MLR6 MLR7 MLR8 MLR9 MLR10 MLR11 MLR12

5 R2 0.962 0.963 0.967 0.962 0.967 0.968 0.968 0.970 0.970 0.970 0.971 0.972

RMSE* 2.738 2.731 2.615 2.704 2.590 2.583 2.519 2.520 2.474 2.527 2.441 2.429

10 R2 0.965 0.966 0.968 0.966 0.967 0.968 0.968 0.969 0.970 0.969 0.970 0.971

RMSE 2.291 2.276 2.201 2.263 2.223 2.207 2.174 2.161 2.127 2.159 2.105 2.088

20 R2 0.953 0.953 0.954 0.954 0.953 0.953 0.954 0.954 0.955 0.954 0.955 0.956

RMSE 2.447 2.447 2.430 2.393 2.449 2.449 2.392 2.433 2.378 2.433 2.373 2.367

30 R2 0.934 0.934 0.934 0.937 0.935 0.935 0.937 0.936 0.938 0.936 0.938 0.939

RMSE 2.765 2.765 2.763 2.687 2.734 2.735 2.673 2.724 2.664 2.723 2.660 2.657

50 R2 0.905 0.905 0.904 0.910 0.911 0.911 0.915 0.913 0.915 0.912 0.916 0.916

RMSE 3.271 3.270 3.278 3.173 3.133 3.132 3.069 3.120 3.065 3.116 3.055 3.054

100 R2 0.769 0.769 0.767 0.783 0.844 0.844 0.849 0.847 0.850 0.847 0.850 0.852

RMSE 3.909 3.909 3.922 3.774 3.212 3.212 3.149 3.189 3.144 3.183 3.129 3.123

* RMSE is in �C
Bold values indicate statistical indices of the best scenario in each depth
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Fig. 9 Time series of observed

and estimated soil temperature

Ts for the best ANN scenario at

5, 10, 20, 30, 50 and 100 cm

depths
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Effect of meteorological parameters on soil

temperature

To investigate the effects of meteorological variables, such

as minimum air temperature, maximum air temperature,

extraterrestrial radiation, relative humidity, wind speed and

sunshine hours on soil temperature, the correlation coeffi-

cients between mentioned parameters and soil temperature

were obtained at all depths. Table 9 shows the mentioned

correlation coefficients. As seen, the highest correlation is

observed between Tmax and Ts. After Tmax, Tmin had the

highest correlation with Ts. Air temperatures (Tmax and

Tmin) appear to strongly affect soil temperature. This is in

accordance with Mihalakakou (2002), Tabari et al. (2011)

and Kisi et al. (2015) studies. They stated that soil tem-

perature has the highest correlation with air temperature.

Relative humidity has a strong negative correlation with Ts.

This is rational because solar radiation causes the evapo-

ration of soil moisture. Consequently, ambient relative

humidity increases and radiation energy dose not increase

Ts. After Tmax, Tmin and RH, the least informative param-

eters concerning Ts are Ra and n, respectively. The weakest

correlation was observed between U2 and Ts. This means

that wind speed has only little effect on Ts in comparison

with other meteorological parameters. The correlation

between meteorological parameters and Ts decreases with

depths. Also, a little difference is observed between the

correlations of meteorological parameters and Ts at

5–50 cm depths. However, for 50 and 100 cm depths, this

difference is slightly more considerable than upper depths.

This is due to negligible influence of meteorological

parameters on Ts at 100 cm depth in comparison with

upper layers.

Conclusion

In the recent years, artificial intelligence models have been

increasingly used to predict meteorological and environ-

mental parameters such as soil temperature (Ts). In this

study, gene expression programming (GEP), artificial

neural networks (ANN) and multiple linear regression

(MLR) were used to estimate Ts at six different depths. The

results indicated that used models are able to estimate soil

temperature. However, the performance of ANN was better

than for GEP and MLR. For used methods, the highest and

lowest accuracy were observed at 10 and 100 cm depths,

respectively. Between 20 and 100 cm depths, the accuracy

decreased with depth. Between 5 and 10 cm depths, the

accuracy increased. The results showed that the perfor-

mance of GEP5 (R2 = 0.974 and RMSE = 2.027 �C),
ANN7 (R2 = 0.980 and RMSE = 1.902 �C) and MLR12

(R2 = 0.971 and RMSE = 2.088 �C) at 10 cm depth was

superior to all other investigated scenarios and depths.

Moreover, correlation coefficients between soil tempera-

ture and meteorological parameters revealed that the cor-

relations coefficients decreased with increasing depth. As

the surface layers of the soil act as insulation, the effect of

the meteorological parameters on Ts is less apparent in the

deeper layers. Of all atmospheric parameters considered,

air temperatures (maximum and minimum air tempera-

tures) showed the highest correlation to soil temperature.

Furthermore, it was found that in the warmer days, the GEP

and ANN models underestimated Ts. For other days, the

special trends are not observed.

At the studied station (and other synoptic stations in

Iran), night measurements of Ts were not carried out. This

can cause the creation of errors in correct estimation of Ts.

In the present study, Tmin, Tmax, Ra, RH, U2 and n were

used to estimate Ts. Future works may consider the effects

of other variables such as precipitation, actual solar radi-

ation and soil moisture on Ts.

References

Aytek A, Asce M, Alp M (2008) An application of artificial

intelligence for rainfall runoff modeling. J Earth Syst Sci

117:145–155

Bilgili M (2010) Prediction of soil temperature using regression and

artificial neural network models. Meteorol Atmos Phys

110:59–70

Bilgili M, Sahin B, Sangun L (2013) Estimating soil temperature

using neighboring station data via multi-nonlinear regression and

Table 9 Pearson’s correlation

coefficients between

meteorological parameters and

soil temperature

Meteorological parameter Soil depth (cm)

5 10 20 30 50 100

Tmin 0.917 0.916 0.912 0.897 0.874 0.809

Tmax 0.972 0.971 0.966 0.956 0.935 0.873

Ra 0.824 0.816 0.785 0.745 0.687 0.541

RH -0.859 -0.857 -0.846 -0.835 -0.815 -0.760

U2 0.085 0.085 0.072 0.053 0.027 -0.024

n 0.680 0.676 0.655 0.642 0.623 0.569

76 Page 14 of 15 Environ Earth Sci (2017) 76:76

123



artificial neural network models. Environ Monit Assess

185:347–358

Chaturvedi DK (2008) Soft computing: techniques and its applica-

tions in electrical engineering. Springer, Heidelberg
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