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Abstract Heavy metals in mine wastes can considerably

influence surrounding surface waters, soils, and human

health. To estimate environmental impact, heavy metal

concentrations in stream sediments can be utilized because

they are indicators of contamination and change negligibly

with time. This study proposes a new Kriging method to

predict heavy metal concentrations in stream sediments.

The proposed methods compensate for the drawbacks of

Kriging based on Euclidean distance because they utilize

the stream distance for the prediction by analyzing the

stream path and networks using digital elevation models.

Moreover, the developed method reduces the exaggeration

problem in predicting the concentration of an uncontami-

nated stream segment by considering the catchment basin

area in Kriging. Application of these methods to synthetic

and real-world datasets proves that they exhibit improve-

ment in terms of overall error reduction, and they provide

reasonable predictions at stream junctions, rather than

Kriging based on Euclidean distance.

Keywords Geostatistics � Stream sediments � Kriging �
Heavy metal concentration � Digital elevation model

Introduction

Mine leachates and acid mine drainage from mine wastes

and tailings can cause environmental contamination in

surface waters and soils (Song and Choi 2015). When mine

tailings dam fails from a severe rainstorm, the surrounding

environments can be greatly influenced. In addition, vari-

ous harmful metals enriched in these mine wastes will be a

serious threat to human health when they move through the

ecosystem in biogeochemical cycles (Park et al. 1995;

Shamsi et al. 2016). To prevent and mitigate the damage

from heavy metal contamination, comprehensive studies on

the extents, pathways, distribution patterns, or other char-

acteristics of heavy metals are required (Kim et al. 2012a).

However, a field investigation on the effects of mining

pollution is difficult to perform because of poor accessi-

bility in steep terrain and extensive range of contamination

(Lee and Choi 2016). Sufficient data for analyzing con-

tamination trends in the area of interest are also difficult to

acquire because of time and budgetary constraints. There-

fore, to predict the pollution degree and extent precisely

from the limited data is a significant challenge. Geostatis-

tics, which is a branch of statistics focusing on spatial and

spatiotemporal datasets, can be utilized to solve this

problem.

Heavy metals in stream sediments are suitable variables

to estimate the continuous environmental impacts because

they are abundant in contaminated environments and barely

change over time (Thornton 1983; Lee et al. 2016). To

analyze the heavy metals in stream sediments, the path and

flow direction of the stream are essential to be considered

(Choi et al. 2011; Choi 2012; Kim et al. 2016). Geographic

information systems (GISs) combined with geostatistics can

be a useful tool to analyze the characteristics of streams and

topography. Furthermore, GIS analysis has the advantage of
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obtaining data and analyzing extensive areas easily (Choi

et al. 2008; Suh et al. 2013). With the growth of computer

technologies, various studies on GIS modeling have esti-

mated the pathway and distribution of contaminants

(Heathwaite et al. 2005; Yenilmez et al. 2011; Kim et al.

2012b). However, most of these studies have limitations in

indicating the real contamination degree and distribution

because field survey data were not utilized or were only

used to verify the predicted result. On the other hand,

geostatistics studies predict the contamination degree using

field survey data. Salgueiro et al. (2008) estimated the

chemical contamination of stream sediments at the Vale das

Gatas mine in Portugal using the geostatistical method.

Khalil et al. (2013) assessed the extension and magnitude of

soil contamination with toxic elements from abandoned

mines in semi-arid areas using geochemical analysis and

geostatistics. In addition, many studies predicted soil con-

tamination in cultivated land (Steiger et al. 1996; White

et al. 1997; Lin et al. 2001; Liu et al. 2004). Particularly,

Kriging, which predicts an unknown value using the

weighted linear summation, is widely used and studied in

different fields. Although a variety of software platforms

provide Kriging tools according to each objective, the

aquatic variables could not be predicted reasonably because

of their use of Euclidean distance when analyzing the cor-

relationship between samples.

Several studies that predict aquatic variables are repre-

sented in Table 1. Smith et al. (1997) suggested a method

using spatially referenced regressions of contaminant

transport on watershed attributes in regional water-quality

assessment. Yuan (2004) used a spatial interpolation to

estimate stressor levels in unsampled streams by consid-

ering the geology and land use of each sample catchment

basin. However, these studies predicted the overall water

quality on the area including land because Euclidean

distance was used in Kriging application. Dent and Grimm

(1999) quantified patterns of nutrient concentration in

surface waters of an arid land stream and compared spatial

patterns using stream distance. Torgersen et al. (2004)

sampled and analyzed multiscale, spatially continuous

patterns of stream fishes and physical habitat using the

distance between points along the stream path, or the net-

work distance. However, Kriging predictions were not

attempted. Curriero (1996), Little et al. (1997), and Rath-

bun (1998) predicted water quality using Kriging based on

stream distance instead of Euclidean distance, but it was

not applied to stream networks, and topography was not

considered. Skøien et al. (2006) estimated the 100-year

flood in stream networks considering the topology of

stream networks and nested catchments. However, the

method only predicted the variable in the unit of stream

segment for the stream networks and was not able to pre-

dict the continuous change of the variable in a stream

segment. VerHoef et al. (2006) developed spatial statistical

models for stream networks that can make predictions at

unsampled locations by incorporating flow and stream

distance using spatial moving averages. Most of these

studies analyzed aquatic variables in a stream or stream

networks composed of vector objects. These vector-based

methods have difficulties in considering topography,

requiring the construction of objects or database to pre-

serve information, such as flow direction and the distance

between samples. Therefore, those studies have difficulty

in analyzing the continuous change of variables and

automating the analysis process. Software development has

not been reported.

This study aims to develop the grid-based Kriging

algorithm to predict aquatic variables along the stream

networks. To compensate for the drawbacks of Kriging

based on Euclidean distance, this study utilizes the stream

Table 1 Review of the pattern analysis and prediction for aquatic variables

Authors Variable Prediction Stream

distance

Stream

network

Catchment

properties

or flow quantity

Topographical

conditions

Software

development

Curriero (1996) Water quality 4 4

Little et al. (1997) Water quality 4 4

Smith et al. (1997) Water quality 4 4

Rathbun (1998) Water quality 4 4

Dent and Grimm

(1999)

Water quality 4

Torgersen et al. (2004) Fish abundance 4 4

Yuan (2004) Water quality 4 4

Skøien et al. (2006) 100-year flood 4 4 4 4

VerHoef et al. (2006) Water quality 4 4 4 4

This study Heavy metal in stream

sediment

4 4 4 4 4 4
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distance by analyzing the stream path and networks using

digital elevation model (DEM). In addition, the area of

each sample catchment basin is applied to correlation

modeling and Kriging prediction to predict unknown val-

ues reasonably at stream junctions. Raster dataset, which is

a matrix data structure representing a grid of pixels, is used

in this study because of its advantage in analyzing the flow

direction, stream networks, catchment basins, and other

overlay analyses considering topography. Only the present

study and Skøien et al. (2006) in Table 1 considered

topography of the study area when predicting variables in

the stream by using raster dataset. Furthermore, only the

present study developed a software platform designed for

automation of aquatic variable prediction. This study pre-

sents two case studies of application to a synthetic sample

data and stream sediment data of an abandoned mining area

in South Korea.

Grid-based Kriging considering the stream
distance and catchment basin area

The Kriging method proposed in this study was designed to

consider the stream distance and networks in contrast to

general Kriging methods, which consider only spatial loca-

tions of samples. Figure 1 shows the difference between the

stream distance and Euclidean distance in rasterized digital

data. In Fig. 1a, the solid line is a stream, and the circle is a

sample in streams. A grid of pixels denotes a raster dataset,

and the colored pixel X indicates the unknown location to be

predicted. Figure 1b shows the rasterized samples and

streams. The distances from pixel X to samples A and B are

both (
ffiffiffi

2
p

� pixel size) in raster format (Fig. 1b), and the

two samples have same weights in general Kriging. How-

ever, it is rational that sample B is more associated with X

because sample B is even closer to the pixel X than sample

A when considering the stream path.

Figure 2 shows the flowchart for calculating the stream

distances between samples and predicting the unknown

value using Kriging by considering stream distance (i.e.,

STD-Kriging in this paper). First, raster format data rep-

resenting the sample locations and flow direction of the

study area are required to calculate the distances between

samples. If a sample is located on the stream path, the unit

distance in a pixel is accumulated along the flow direction

until the next downward pixel meets other samples. There

are sample pairs for all samples in Kriging using Euclidean

distance (i.e., EUC-Kriging in this paper). For example, ten

distance pairs exist excluding duplicates for five samples in

Fig. 3a. On the other hand, stream networks should be

considered when calculating the stream distance. In

Fig. 3b, it is reasonable to calculate the distances between

samples 2, 4, and 5 in the Kriging prediction because

sample 2 is connected with samples 4 and 5. However, no

distance pair between samples 1 and 2 exists because they

are unconnected and irrelevant to each other.

After calculating the distances between samples, the

empirical variogram should be obtained using the distances

and sample values. In this step, an adequate lag distance

should be defined because the shape of the empirical var-

iogram depends on the lag distance. The empirical vari-

ogram with the lag distance h is defined as follows for

observations of zi at locations xi (i = 1, …) (Cressie,

1985):

c hð Þ ¼ 1

2 N hð Þj j
X

i;jð Þ2N hð Þ
zi � zj
�

�

�

�

2 ð1Þ

where N(h) denotes the set of pairs with |xi - xj| = h, and

|N(h)| is the number of pairs in the set. In this study, the

approximate distance is used using a tolerance, which is the

half of the lag distance, h, to include all data.

Kriging requires valid variogram at every lag distance to

predict the unknown value. However, the empirical vari-

ogram cannot be computed at every lag distance, and it is

not ensured to be valid because of variation in the esti-

mation. Therefore, theoretical variogram models ensuring

validity are applied to approximate the empirical variogram

(Chiles and Delfiner 2012). Theoretical variogram

Fig. 1 Rasterization of a unknown area, b samples and stream paths
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modeling is an important step in Kriging because it affects

the prediction directly. The final step is to predict the

unknown value by calculating weights of samples, which is

calculated based on the theoretical variogram according to

the distance between the sample and the unknown location

to be predicted.

This study proposes a new Kriging method that uses the

catchment basin area instead of the distance. A stream

sediment sample is a result of constant erosion and

sedimentation of introduced materials, which are trans-

ported primarily by the flow of rainwater or stream. On the

assumption that the surface water flows to the lower area, it

is possible to analyze the catchment basin of the sample

where the water and materials came from by using GIS-

based spatial analysis. The area of the catchment basin of

each pixel can also be calculated by using the flow accu-

mulation algorithm (Jenson and Domingue, 1988). If a

wide gap of catchment basin area exists between two pixels

Fig. 2 Flowchart for

calculating the stream distances

between samples and predicting

the unknown value using STD-

Kriging

Fig. 3 Euclidean distance

(a) and stream distance

(b) between samples in the

stream network
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that are connected to each other, they tend to have different

values because many materials are introduced from another

area between the two pixels. On the other hand, if a small

gap of catchment basin area exists between the two pixels,

they tend to have similar values.

Figure 4 shows the advantage of Kriging using the

catchment basin area (i.e., CAT-Kriging in this paper)

when compared with STD-Kriging. The red line denotes a

contaminated stream, the blue line represents an uncon-

taminated stream, and the arrows indicate the flow direc-

tion of the stream pixel. Points A, B, and C are samples

with known value, and points X and Y are unknown

locations to be predicted. When predicting the value of

point X, which is ahead of the stream junction, the stream

distances from point X to samples B and C are 2 and 5,

respectively. When considering the stream distance, an

exaggerated value may be predicted for point X due to the

effect of polluted sample C. The differences of the catch-

ment basin area between point X and samples B and C are

2 and 44 (pixels), respectively. CAT-Kriging can provide a

more reasonable prediction for point X because the effect

of uncontaminated sample B is much larger than the con-

taminated sample C. When predicting the value of point Y

after the stream junction, the stream distances from point Y

to samples A, B, and C are 5, 5, and 2, respectively. The

closest sample C has the largest weight, and samples A and

B have same weights in STD-Kriging. However, it is rea-

sonable that sample A, which is the representative of a

larger catchment basin area, has more effect on point Y

than sample B because of the assumption that stream

sediment is a homogeneous mixture of materials in the

catchment basin. In the case of CAT-Kriging, the respec-

tive differences of the catchment basin area are 14, 44, and

2 for samples A, B, and C, respectively. Therefore, samples

C, A, and B are arranged according to weights on point Y

in CAT-Kriging.

Software development to implement the Kriging
process

To model the variogram and predict the unknown value

using the Kriging method, a new software was imple-

mented. The software was written in Visual Basic 2013 and

utilizes the ESRI ASCII grid file as a standard data format,

exchangeable with ESRI ArcGIS software.

Figure 5a is a module developed for calculating the

distance between samples, which provides Euclidean

distance, stream distance, and catchment basin area dif-

ference as a table. Figure 5b is the variogram-modeling

module constructed to calculate the empirical variogram

and model the theoretical variogram. Using the raster

format input data, such as the sample locations, sample

concentrations, and flow direction of the study area, this

module calculates the empirical variogram for each lag

distance and displays it as points in the graph. To predict

the unknown value using Kriging, theoretical variogram

models that ensure validity are required to approximate

the empirical variogram. In this module, the empirical

variogram is approximated by a combination of five

widely used theoretical variogram models, such as the

linear model, the spherical model, the exponential model,

Fig. 4 An example showing the effect of the catchment basin area to the chemistry values in the stream network

Environ Earth Sci (2017) 76:72 Page 5 of 18 72

123



Fig. 5 Graphical user interface of a distance calculator module, b variogram-modeling module, and c Kriging analysis module
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the Gaussian model, and the nugget model. It is impor-

tant to combine the models to represent the data and

empirical variogram appropriately. This module supports

modeling the theoretical variogram using weighted least

squares regression. The theoretical variogram can be

saved as its own format to be used for prediction. Fig-

ure 5c is the Kriging analysis module, which predicts the

unknown values using GIS layers and the saved vari-

ogram file. The predicted result is exported to ESRI

ASCII grid file. In addition, this module provides a leave-

one-out cross-validation function that uses one observa-

tion as the validation set and the remaining observations

as the training set. If the number of samples is N,

N models are created, and this function is repeated

N times. The advantage of this function is that it does not

allow for randomness because all the data can be used for

training. This function is commonly used and is known as

a useful validation method for Kriging (Aelion et al.

2009; Menafoglio et al. 2014). To compare the predicting

capabilities quantitatively, mean error (ME), mean

absolute error (MAE), and root mean square error

(RMSE) are also computed.

Application to synthetic datasets

Synthetic datasets creation

To demonstrate the improvements of the proposed meth-

ods, synthetic datasets were used. Synthetic data should be

created similar to the principle of real contaminant distri-

bution. In this study, two factors, such as soil erosion and

catchment basin derived from real DEM, were considered

to reflect the contaminant distribution.

Figure 6a shows a DEM with 100 m resolution and the

locations of synthetic stream sediment samples. Figure 6b

shows the catchment basins of some samples that are

derived from the DEM. Sample 8 is the lowest of the five

samples, and the catchment basin is the sum of A, B, C, D,

and E. Sample 65 is the highest of the five samples, and the

catchment basin is E. The heavy metal concentration of the

stream sediment is affected by contaminants in the eroded

soil. This study estimated the soil erosion of each pixel

using the Universal Soil erosion Equation (USLE) defined

as follows:

A ¼ R� K � L� S� C � P ð2Þ

Fig. 6 Synthetic datasets: a DEM and samples, b catchments of some samples, c distribution of LS factor that represents soil erosion,

d distribution of nonpoint pollution source, and e simulated heavy metal concentration of synthetic data
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The USLE has been widely used to estimate the average

annual soil erosion per unit land area (Wischmeier and

Smith 1978) and considers six major factors affecting soil

erosion, represented as the rainfall erosivity factor (R), the

soil erodibility factor (K), the slope length factor (L), the

slope steepness factor (S), the cropping management factor

(C), and the supporting conservation practices factor (P).

To create synthetic data, this study calculated the L-factor

and S-factor as relative soil erosion (Fig. 6c) using GIS-

based analyses of slope length and slope gradient (McCool

et al. 1987) supposing that other factors are the same for all

pixels. Figure 6d shows the synthetic concentrations of soil

distributed in the study area as a nonpoint source.

The synthetic concentrations of stream sediment sam-

ples were simulated using thematic maps with the follow-

ing steps:

1. Estimate the amount of heavy metal eroded at each

pixel by multiplying the soil erosion (Ai) and concen-

tration (Ci) of each pixel i.

2. Analyze the catchment basin (Wk), and calculate the

area (the number of pixels) for each sample k.

3. Define the amount of heavy metal introduced to each

sample as
PWk

i ðAi � CiÞ on the assumption that the

eroded heavy metals are mixed homogeneously.

4. Calculate the concentration of stream sediment sample

k by dividing
PWk

i ðAi � CiÞ by
PWk

i Ai, which is the

sum of eroded soil in the catchment basin Wk.

Figure 6e shows the concentrations of stream sediment

samples derived from these steps. Although this result

cannot represent the contamination in real world precisely,

synthetic datasets reflecting contamination and dilution

could be created.

Prediction for synthetic datasets

The variogram should be modeled before predicting the

unknown values using Kriging. Figure 7a–c shows the

empirical variograms and the theoretical variograms for the

three methods (i.e., Euclidean distance, stream distance,

and catchment basin area). The linear model was applied in

the same manner, and the ranges of the three models were

defined as 25,000 m, 40,000 m, and 800 km2 (80,000

pixels), based on the shape of the empirical variogram. The

range refers to the distance at which the variogram reaches

the sill. There is no correlation between two samples.

Figure 8 shows the prediction results using EUC-Krig-

ing (Fig. 8a), STD-Kriging (Fig. 8b), and CAT-Kriging

(Fig. 8c). Unlike other methods, EUC-Kriging predicts for

all pixels of the study area, but only the predicted values on

the stream network were extracted to be compared with

other two results. A remarkable difference among the three

methods exists at the stream junctions, such as area A and

area B. As shown in Fig. 9a, in the case of EUC-Kriging,

the predicted values continuously vary regardless of the

shape of stream network. On the other hand, the other two

methods (Fig. 9b, c) can distinguish both uncontaminated

and contaminated streams. The prediction tendencies are

similar for STD-Kriging (Fig. 9b) and CAT-Kriging

(Fig. 9c). However, at the stream segment marked by a

square, CAT-Kriging predicts larger values than STD-

Kriging because the stream segment covering sample 57

has larger catchment basin area than the stream segment

covering sample 56. Figure 9d–f shows the prediction for

area B in Fig. 8a. The stream segment with no observation

is predicted using downstream samples, such as sample 28.

Predicting these stream segments is challenging task, but it

may be generally not contaminated. In the case of STD-

Kriging (Fig. 9e), larger values are predicted than CAT-

Kriging (Fig. 9f) because of the effect of the adjacent

sample 28.

Figure 10 illustrates the predicted concentrations as a

graph along the path indicated by pink line. A to M rep-

resents junctions where other stream segments meet the

path. In the case of EUC-Kriging, the predicted values do

not depend on junctions. In other two cases, the predicted

values change drastically at junctions. For example, a

massive increase at junction C is observed where a con-

taminated stream joins the path. On the contrary, a huge

decrease at junction H occurred where an uncontaminated

Fig. 7 Empirical variograms and theoretical variograms calculated from a Euclidean distance, b stream distance, and c catchment basin area
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stream with large catchment area joins the path. This trend

is significant in CAT-Kriging.

As a result of cross-validation, the ME of EUC-Kriging,

STD-Kriging, and CAT-Kriging is -0.2, 3.0, and 1.4, the

MAE is 11.5, 6.2, and 5.2, and the RMSE is 15.2, 9.4, and

13.3, respectively. ME indicates bias in prediction, and

MAE or RMSE indicates the capability of prediction from

the point of overall errors. Compared to MAE, RMSE

amplifies large errors because of the square term in the

formula. Based on the ME results, the EUC-Kriging result

is the most unbiased and the STD-Kriging result is the most

biased. Based on the MAE and RMSE results, the predic-

tion capabilities of STD-Kriging and CAT-Kriging are

confirmed to have improved in terms of overall error

reduction. Even though the MAE of CAT-Kriging is the

lowest, the RMSE of CAT-Kriging is larger than that of

STD-Kriging owing to the influence of samples 50 and 61,

which have large errors. If samples 50 and 61 are excluded,

the RMSE of EUC-Kriging, STD-Kriging, and CAT-

Kriging is 15.4, 9.4, and 9.3, respectively. Figure 11 shows

Fig. 8 Prediction of heavy metal concentrations for synthetic data using a EUC-Kriging, b STD-Kriging, and c CAT-Kriging

Fig. 9 Prediction of heavy metal concentrations for area A using a EUC-Kriging, b STD-Kriging, and c CAT-Kriging; and for area B using

d EUC-Kriging, e STD-Kriging, and f CAT-Kriging
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the relationships between the predicted and the original

values. From the comparisons, the predicted values of

CAT-Kriging tend to be positioned on the red line, indi-

cating the position of one-to-one correspondence, com-

pared to other methods.

Application to real-world datasets

Study area

For a real-world application, the area of Yeonhwa II mine

(37�070N, 129�080E), which is located in Samcheok-si, a

city in South Korea, was selected as the study area. Two

tailings dams (Fig. 12a) hold mine tailings, which include

mainly lead (Pb) and zinc (Zn). The average annual rainfall

of the study area is 1315.1 mm, and 54.8% of the rainfall is

concentrated during summer (July to September), causing

surface water contamination by erosion of mine tailings

and mine water leaks (MIRECO 2007). Figure 12b shows a

DEM (30 m grid spacing) and sampling data of the study

area. To generate a DEM, topographical contours (contour

interval: 5 m) were extracted from 1:5000 scale topo-

graphical maps published by the National Geographic

Information Institute of Korea (http://www.ngii.go.kr). A

triangulated irregular network surface was created from the

topographical contours and converted to a DEM. As seen in

a DEM, the western part of the study area is higher than the

eastern part, where the main stream is flowing to the East

Sea. The circles denote stream sediment samples, and the

Fig. 10 Graph of the predicted heavy metal concentrations for the stream path represented by a pink line. A to M are stream junctions

Fig. 11 Original values versus predicted values based on cross-validation for a EUC-Kriging, b STD-Kriging, and c CAT-Kriging. The red line

indicates the position of one-to-one correspondence. The blue line with the equation represents the trend line of points
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squares represent farmland soil samples. The heavy metal

concentrations in the stream sediment samples are pre-

sented in Table 2. The Zn concentrations of 14 samples out

of 22 samples exceed the US standard of sediment removal.

The other eight samples were collected from the uncon-

taminated stream (i.e., not the main stream). The Zn con-

centrations become smaller on the whole as the distance

from Yeonhwa II mine increases. Therefore, Zn is an

indicator for pollution in this area. Table 3 shows the heavy

metal concentrations in farmland soil samples near a

stream. The concentrations of farmland soil are much

smaller than those of the stream sediment, which implies

that the major cause of contamination in this area is the

stream flow. Although farmland soil samples are close to

the stream, to consider the stream sediment samples and

farmland soil samples as one dataset is irrational. There-

fore, the Zn concentration of the stream sediment samples

was selected as a variable in this study.

Prediction for study area

To predict the heavy metal concentration, the distances

between samples were first calculated (Table 4) based

on Euclidean distance, stream distance, and differences

of catchment basin area. To make the real-world and

synthetic results comparable, the DEM with 30 m res-

olution was resampled to 100 m resolution, which is the

same as that of the synthetic data. It can be observed

from the results in Table 4 that the calculated Euclidean

distance, stream distance, and differences in catchment

basin area are similar for different DEMs. The stream

distance is confirmed to be longer than the Euclidean

distance for the same sample set. In cases of stream

distance and catchment basin area, some samples are

not connected with each other. If the relative distances

between samples and the relative range are the same for

different datasets, the prediction results are the same,

according to the characteristic of Kriging. Therefore,

the number of pixels can be used as a unit of catchment

basin area, instead of km2 or m2, regardless of the

resolution. The difference of the catchment basin area is

noticeably large for some sample pairs despite the short

stream distance (e.g., a pair of samples 11 and 12, or

the pair of samples 15 and 16). This phenomenon is

remarkable where a junction is placed between two

samples.

Fig. 12 Location of the study area on the satellite image (Google Earth, left), and DEM and locations of samples (right). Sample numbers in

brackets indicate stream sediment samples collected from the uncontaminated stream
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Figure 13a–c shows the empirical and theoretical vari-

ograms of the 30-m-resolution DEM for the three methods

(Euclidean distance, stream distance, and catchment basin

area), and Fig. 13d–f shows the variograms of the 100-m-

resolution DEM. Even though there are a few differences

between the two resolutions, the variogram shapes are

similar. The exponential model combined with the nugget

model was identically applied using weighted least squares

regression. The ranges of the three models were defined as

14,000 m, 20,000 m, and 140 km2 for both resolutions. In

comparison with the case of synthetic data, the nugget

effect is prominent because there is noise in real data and

the observed values of the near samples are significantly

different in the real world. Kriging prediction was applied

to the 100-m-resolution DEM to achieve correspondence

with the synthetic data and computational efficiency in

analysis.

Figure 14 shows the results of Zn prediction using EUC-

Kriging (Fig. 14a), STD-Kriging (Fig. 14b), and CAT-

Kriging (Fig. 14c). The predicted values of the western

part of the study area are more contaminated than the

values of the eastern part in all three results. However, in

contrast to the other two methods, EUC-Kriging cannot

distinguish the uncontaminated stream segments from the

contaminated streams. The stream segment of the western

part heading toward the southeast is predicted to have

larger values than the other stream segments because the

main stream samples connected with the stream segment

have large values while the uncontaminated sample

directly collected from the stream segment is only one.

Therefore, these stream segments need additional sampling

to prevent the exaggerated prediction. STD-Kriging tends

to be more exaggerated than CAT-Kriging.

Figure 15 illustrates the predicted concentrations as a

graph along the main stream path, which is indicated by a

pink line. A to M represent the junctions where other

stream segments meet the path. In the case of EUC-Kriging

and STD-Kriging, there is slight variation in the predicted

values except in near samples due to a little variation and

large nugget value in the theoretical variogram (Fig. 13a,

Table 2 Heavy metal

concentrations of stream

sediment samples (italicized

number exceeds the soil

contamination warning

standards of South Korea, and

the bold number exceeds the US

standard of sediment removal)

As Cd Cu Ni Pb Zn

Soil contamination countermeasure standards of South Korea 6 0.5 50 40 100 300

Soil contamination warning standards of South Korea 15 4 125 100 300 700

US standard of sediment removal 93 6.7 390 530 960

Sample ID

1 20.5 6.7 5.1 13.6 1.7 5157.8

2 9.3 2.8 3.0 8.0 11.6 5046.3

3 10.6 1.7 3.3 7.5 20.8 11,607.3

4 21.0 1.9 3.6 7.1 22.3 8558.4

5a 16.1 3.4 15.7 8.8 6.2 3090.4

6 15.0 2.1 4.8 7.2 20.5 6859.3

7 14.5 2.0 4.8 7.7 32.4 11,882.3

8a 1.7 0.1 0.5 8.3 4.9 150.6

9 12.8 1.5 4.5 7.3 19.2 6684.0

10a ND 0.0 0.7 11.1 1.1 228.7

11a 0.1 0.1 0.6 7.5 2.2 170.3

12 1.5 0.5 1.9 7.4 8.8 8910.7

13 7.1 1.4 6.0 7.1 28.5 4385.2

14a ND 0.1 0.8 16.1 1.5 161.1

15a 0.5 1.5 0.9 9.5 3.5 205.3

16 0.8 0.5 2.2 7.3 9.9 4346.7

17 16.4 1.9 5.0 7.8 19.5 3726.2

18 4.2 0.7 3.5 8.0 18.6 2380.0

19a 0.5 0.1 0.5 7.2 5.6 108.6

20 7.2 1.1 6.2 15.6 13.1 279.6

21 4.3 0.8 4.3 7.7 21.2 1955.6

22 0.4 0.1 1.9 13.7 1.9 307.1

Unit: mg/kg
a Sampled from uncontaminated stream
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b). However, the predicted values of STD-Kriging change

drastically at junctions, unlike EUC-Kriging. The predicted

values of CAT-Kriging change significantly at junctions

and on the whole.

As a result of cross-validation (Table 5), the number of

samples that each method predicted most accurately is 4 for

EUC-Kriging, 4 for STD-Kriging, and 14 for CAT-Krig-

ing, respectively. The ME of EUC-Kriging, STD-Kriging,

and CAT-Kriging is 37.3, 177.3, and 274.3, MAE is

2954.3, 2337.6, and 2095.3, and RMSE is 3633.0, 3016.7,

and 2844.0, respectively. Based on the ME results, the

EUC-Kriging result is the most unbiased and the CAT-

Kriging result is the most biased. Based on the MAE and

RMSE results, the prediction capabilities of STD-Kriging

and CAT-Kriging are confirmed to have improved in terms

of overall error reduction. Figure 16 shows the relation-

ships between the predicted and the observed values. From

the comparisons, CAT-Kriging provides more accurate

prediction than the others, particularly in the case of

exaggerated predictions of uncontaminated stream seg-

ments in Fig. 16b.

Conclusions

In this study, new prediction methods, namely the STD-

Kriging and CAT-Kriging, were developed and applied to

synthetic and real-world datasets. These methods predicted

Table 3 Heavy metal

concentrations of farmland soil

samples (italicized number

exceeds the soil contamination

countermeasure standards of

South Korea, and the bold

number exceeds the soil

contamination warning

standards of South Korea)

As Cd Cu Ni Pb Zn

Soil contamination countermeasure standards of South Korea 6 0.5 50 40 100 300

Soil contamination warning standards of South Korea 15 4 125 100 300 700

Sample ID

1 0.9 0.3 2.0 20.4 27.5 176.6

2 1.3 0.3 1.6 20.0 21.1 183.1

4 0.1 0.1 1.0 21.8 17.6 140.1

5 2.0 0.2 3.8 20.7 8.5 137.5

6 0.5 0.3 3.5 13.3 15.7 127.8

7 1.0 0.6 4.8 12.2 15.2 207.8

7-1 0.3 0.1 2.2 15.5 6.9 77.2

7-2 1.1 0.2 1.8 16.1 5.7 116.6

7-3 0.2 0.1 1.5 15.2 4.0 65.2

7-4 0.5 0.2 3.9 12.6 6.2 102.1

8 1.5 0.3 2.0 15.5 1.6 152.8

9 0.7 0.1 1.7 14.4 3.6 110.8

10 4.7 0.1 1.7 16.3 2.4 72.6

11 3.4 0.2 2.0 19.7 2.4 158.7

12 ND 0.1 1.7 16.2 2.8 51.6

13 0.4 0.1 2.0 8.9 7.5 54.1

14 1.1 0.1 2.2 10.8 6.6 83.9

15 1.6 0.2 2.9 10.6 6.2 70.3

16 3.8 0.5 4.5 17.8 8.9 204.2

17 1.0 0.2 3.0 13.8 8.7 103.9

18 1.3 0.6 5.8 13.8 14.6 213.7

19 0.7 0.1 1.6 9.3 8.1 44.0

20 2.8 0.2 2.6 16.6 3.6 109.8

21 2.4 0.1 2.4 12.5 5.7 99.0

22 1.3 0.5 5.5 15.0 13.9 197.5

23 2.0 0.2 2.5 21.7 2.8 121.4

24 1.1 0.2 3.2 23.5 6.2 179.8

25 0.9 0.1 2.7 16.1 4.0 81.7

26 3.3 0.3 6.1 20.9 7.3 179.2

27 1.7 0.1 3.2 21.2 4.9 111.0

Unit: mg/kg
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the concentrations of stream sediment samples rationally

by considering stream networks. In particular, CAT-Krig-

ing reduces the exaggeration problem in predicting the

sample of uncontaminated stream segment. As a result of

cross-validation, CAT-Kriging obtained the best result for

each sample prediction and overall error reduction. This

study has several important advantages over existing

studies on aquatic variables. First, this study performed a

prediction for aquatic variables along the stream network in

contrast to studies that apply Kriging on an entire area/

region or analyze only the patterns of aquatic variables

without prediction. In addition, this study takes flow

direction, stream networks, or catchment basin into account

by analyzing the topographical conditions based on a

DEM. Owing to the raster format basis of the study, the

continuous change of variable in a stream segment can be

predicted, and there is no necessity for constructing objects

or database to preserve information, unlike the vector-

based studies. The new software was developed to

automate the process in raster format, and it can provide

fast analysis by adjusting the variables easily.

A problem exists in predicting the upstream value in the

presence of contaminated downstream samples. To reduce

the problem, CAT-Kriging was proposed in this study.

However, this issue cannot be solved thoroughly if there is

no sufficient upstream data in that stream segment. In

addition, the upstream value may have some problems in

modeling a valid variogram using the catchment basin area

instead of the distance. If sufficient samples are available in

each stream segment, the application of each variogram

and prediction for each stream segment can be a solution

for this problem. This study can prioritize environmental

hazards and provide useful information for the reclamation

of stream networks. Furthermore, this study is universally

applicable to abandoned mines, industrial areas, farming

areas, and other various environments and can be applied

to stream sediments and other aquatic variables. The

effectiveness of the prediction is expected to be improved

Table 4 Euclidean distance, stream distance, and catchment basin area difference between samples

Sample ID

(A)

Sample ID

(B)

Euclidean distance

between (A) and (B)

(unit: m)

Stream distance

between (A) and (B)

(unit: m)

Catchment basin area

difference between (A) and (B)

(unit: km2 (pixels))

100 m resolution 30 m resolution 100 m resolution 30 m resolution 100 m resolution 30 m resolution

1 2 500.0 488.4 582.8 549.4 3.07 (307) 3.13 (3483)

2 3 360.6 318.9 382.8 344.6 0.48 (48) 0.23 (253)

3 4 1843.9 1841.8 2131.4 2213.1 8.45 (845) 8.87 (9850)

4 5a 141.4 134.2 Not connected Not connected Not connected Not connected

5a 6 424.3 426.4 482.8 512.1 21.17 (2117) 21.06 (23,396)

6 7 1360.1 1376.4 1690.0 1573.7 53.53 (5353) 53.47 (59,416)

7 8a 707.1 700.4 765.7 796.7 30.44 (3044) 30.28 (33,646)

8a 9 806.2 823.8 1007.1 1031.5 30.92 (3092) 30.89 (34,327)

9 10a 223.6 247.4 Not connected Not connected Not connected Not connected

10a 11a 1118.0 1075.4 1348.5 1368.8 4.14 (414) 4.57 (5082)

11a 12 1272.8 1272.8 1931.4 2003.1 82.68 (8268) 83.06 (92,290)

12 13 4123.1 4117.0 5062.7 5038.6 14.06 (1406) 14.07 (15,630)

13 14a 824.6 816.1 Not connected Not connected Not connected Not connected

14a 15a 943.4 973.5 1007.1 1068.8 1.11 (111) 1.18 (1310)

15a 16 1964.7 1986.6 2272.8 2315.5 163.28 (16,328) 155.47 (172,748)

16 17 1711.7 1719.4 2090.0 2156.1 3.56 (356) 3.07 (3412)

17 18 3935.7 3931.0 5045.6 5030.4 23.01 (2301) 22.87 (25,413)

18 19a 1529.7 1465.1 Not connected Not connected Not connected Not connected

19a 20 2334.5 2399.4 3407.1 3388.2 224.74 (22,474) 224.14 (249,039)

20 21 1486.6 1443.1 2738.5 2564.9 4.62 (462) 4.61 (5118)

21 22 2119.0 2135.1 2572.8 2428.2 10.23 (1023) 9.98 (11,093)

a Sampled from uncontaminated stream
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Fig. 13 Empirical and theoretical variograms calculated from a Eu-

clidean distance, b stream distance, and c catchment basin area using

30-m-resolution DEM. Empirical and theoretical variograms

calculated from d Euclidean distance, e stream distance, and

f catchment basin area using 100-m-resolution DEM

Fig. 14 Prediction of Zn

concentrations for the study area

using a EUC-Kriging, b STD-

Kriging, and c CAT-Kriging
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if the stream networks have a complex and sharp bend.

Based on the assumption that contaminants disperse

through permanent or transient flow, this study can be

applied to the case of soil contamination in semi-arid or

arid climates. However, if the effect of rainfall is negligible

or the shape of the catchment area is not definite, CAT-

Fig. 15 Graph of the predicted Zn concentrations for the study area stream path represented by a pink line. A to M are stream junctions

Table 5 Cross-validation

results of EUC-Kriging, STD-

Kriging, and CAT-Kriging for

the study area (the bold number

is the most similar value to the

observed value)

Sample ID Original value EUC-Kriging STD-Kriging CAT-Kriging

1 5157.8 4868.0 6593.6 7577.7

2 5046.3 5036.7 6834.2 7972.9

3 11,607.3 4222.7 5741.9 5923.7

4 8558.4 4529.2 6656.1 7044.7

5a 3090.4 5171.4 6060.1 5931.6

6 6859.3 4680.5 6403.7 6701.3

7 11,882.3 3979.9 5094.4 5421.3

8a 150.6 5010.2 6248.5 6584.0

9 6684.0 4405.7 5697.0 8064.4

10a 228.7 4939.3 3673.3 1689.7

11a 205.3 4611.7 3372.4 1615.8

12 8910.7 3923.8 4178.6 4231.6

13 4385.2 3204.9 3854.0 5655.0

14a 161.1 3594.6 2094.8 820.2

15a 170.3 3619.2 1986.4 811.9

16 4346.7 3099.3 2784.2 3706.8

17 3726.2 3126.4 2813.9 3783.3

18 2380.0 2943.6 2636.7 3033.4

19a 108.6 3109.6 811.2 792.4

20 279.6 2968.3 2196.6 1915.7

21 1955.6 2745.7 1927.8 1060.7

22 307.1 3230.2 2439.7 1899.3

ME 37.3 177.3 274.3

MAE 2954.3 2337.6 2095.3

RMSE 3633.0 3016.7 2844.0

Unit: mg/kg
a Sampled from uncontaminated stream
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Kriging may not provide a good prediction. Therefore, it is

necessary to apply this methodology to various environ-

ments and conditions.
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