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Abstract Lake sediments are major sink for carbon and

trace elements. Lake water and sediments need to be

monitored continuously for environmental and geochemi-

cal explorations. In the present study, sediment character-

istics, source and distribution of trace metals (Fe, Mn, Cr,

Cu, Ni, Co, Pb and Zn) of Yercaud fresh water lake sedi-

ments, South India, situated at an elevation of 1515 m asl is

presented. Twenty-five surface sediments were collected

covering the entire expanse of the lake in a gridded pattern.

Detailed chemical analyses reveal the following decreasing

order of elements: Fe[Cu[Cr[Mn[Zn[Ni[
Co[ Pb. Geoaccumulation index, enrichment factor,

contamination factor and pollution load index were cal-

culated to evaluate the ecological impacts of these trace

metals in the sediments. The index calculation indicates

that all the trace elements were derived from natural pro-

cess, but there are indications of anthropogenic activities.

The study area was found to be highly contaminated with

Cu, moderately contaminated with Cr and Co, considerably

contaminated with Pb, Zn and Ni, and uncontaminated with

Mn. The spatial distribution of the trace elements supports

the strong association of sediment fine fraction and organic

matter. The statistical principal component analysis also

confirms that the concentration of Cr, Cu, Fe and Mn was

mainly derived from the natural weathering and non-point

agricultural sources. Pb and Zn arise due to the confluence

of sewage effluents, traffic and boat activities. These ele-

ments need to be further evaluated for pollution control and

prohibiting further deterioration in the Yercaud Lake.

Keywords Lake sediments � Geochemistry � Trace metals �
Principal component analysis � Yercaud Lake

Introduction

Lakes are major sinks for carbon and trace metals, and

lake floor sediments are often enriched in trace metals.

Trace metals adhere to the fine fractions of the sediments.

Concentrations of trace metals in sediments are affected

by both the geogenic and anthropogenic aspects (Lalah

et al. 2008). Natural influences include benthic agitation,

flow changes, rock weathering and natural erosion, while

anthropogenic aspects include sewage discharge, indus-

trial wastewater discharge, atmospheric deposition, agri-

cultural runoff and fertilizer leaching (Romic and Romic

2003; Tang et al. 2010; Choi et al. 2012; Rodriguez-

Martin et al. 2013; Su et al. 2013; Islam et al. 2014a, b;

Hasrizal et al. 2015; Iqbal et al. 2016). Geochemistry of

lake sediments is often influenced by both natural and

anthropogenic processes, and trace metal assemblages can

be used to investigate the contributions of different

forcing mechanisms to the changes in the lake sedimen-

tary environments (Koinig et al. 2003; Routh et al. 2004;

Lalah et al. 2008; Li et al. 2013a, b; Ma et al. 2016). It is

important to monitor and explore the lake floor sediments

for trace metal toxicity, sources and health of the lake

water.
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Trace metal pollution in aquatic ecosystems (lakes,

rivers, estuaries and Marine) has significant reflexion due

to their toxicity, tenacity and biogeochemical buildup

(Magesh et al. 2011; Varol 2011; Jiang et al. 2012; Gu

et al. 2012, 2014a, b; Li et al. 2013a, b; Magesh et al. 2013;

Krishnakumar et al. 2015; Iqbal et al. 2016; Gopal et al.

2016a, b; Krishakumar et al. 2016). Hence, it is important

to understand how climatic variations and anthropogenic

activities influence the concentrations of geochemical

constituents, especially trace metals. High-altitude lakes

are commonly considered to be pristine because they are

small and sensitive ecosystems that experience rapid

flushing rates and also of limited human activity in their

catchments (Katrina 1994; Vreĉa and Muri 2006). How-

ever, human activities have faster cycling of geochemical

elements that result in elevated metal deliveries to water

bodies for the past several decades (Zahra et al. 2014; Zeng

et al. 2014). Lacustrine sediments provide archives of

natural evolution and anthropogenic influences on lakes

and their catchments (Leorri et al. 2014; Guo et al. 2015).

An assemblage of sediment organic matter (OM) in these

lakes is generally high (Vreĉa and Muri 2006; Choudhary

et al. 2009a, b) because of multiple processes, including

high productivity, rapid sedimentation and anoxic condi-

tions on the lake bottom (Meyers 2003). As a result, these

organic-rich lacustrine sediments retain their original

source signatures (e.g., C/N ratio, specific biomarkers) and

thus reflects environmental conditions at the time of

deposition. Based on studies on investigative environ-

mental recent changes in lacustrine environments, natural

processes affect the transportation of geochemical elements

from watersheds to lakes (Braun et al. 2013; Kylander et al.

2013).

A review of recent geochemical work carried out on

lake sediments reveal that the fine fractions are positively

correlated with organic matter (OM) and total organic

carbon (TOC) (Vijayraj and Achyuthan 2016). Moreover,

C/N ratio suggests that OM was largely produced by the

lake algae in the Kukkal Lake, while there is a mixed

resource of OM in the Berijam Lake (Vijayaraj and

Achyuthan 2016). Trace metal analysis of the Kodaikanal

Lake sediments indicated that the natural environment

surrounding the Kodaikanal Lake is severely contaminated

by heavy metals (Cd, Pb, Zn and Cu), and multivariate

statistics (discriminant analysis) revealed that the plots fall

scattered in the turbidite and eolian environment (Bala-

murugan et al. 2015). Further, the mercury contamination

status of the Vembanad Lake was classified as less con-

taminated when compared to other mercury-polluted areas

around the world (Mohan et al. 2014). However, the sur-

face sediments have the high concentration due to the

anthropogenic sources like agricultural runoff, small-scale

industries and fuel burning. Further, no systematic

geochemical analyses till date have been carried out on the

lake floor sediments that reflect the source area and plau-

sible causes for the contamination.

Yercaud fresh water lake is a popular hill resort in the

Shevaroys range of hills in the Eastern Ghat region of

southern India. It is also one of the major tourist attractions

in the state of Tami Nadu, India, which has been strongly

affected due to urban development. The lake receives toxic

metals and organic and inorganic pollutants from different

sources such as rock weathering, illegal construction

activities, automobile exhausts and painting of boat in

tourist season every year (Purushothaman et al. 2011). It is

serving as important venues for recreational activities. As

increasing numbers of tourists visit to escape the summer

heat in the plains and enjoy the peaceful mountain setting,

it stresses the limited resources in Yercaud town, with

respect to housing, transportation, food and drinking water

supply. This is evident from increasing levels of environ-

mental pollutants in the sediments and surface water in this

region (Chakrapani 2002; Das 2005).

Even though several studies have been carried out to

evaluate the quality and chemistry of sediments in some

important freshwater lake locations in India, only a few

studies are pertinent to the freshwater lake sediments of the

entire Indian region. Therefore, the present study assesses

the trace metal contamination (Fe, Mn, Cr, Cu, Ni, Co, Pb

and Zn) and sediment provenance in the Lake floor sedi-

ment samples from Yercaud Lake. The main objectives of

this study were to: (1) assess the concentration and spatial

distributions of selected trace metals (Fe, Mn, Cr, Cu, Ni,

Co, Pb and Zn) in surface sediments from Yercaud Lake,

South India, (2) determine the potential environmental risk

using multi-pollution indices such as enrichment factor

(EF), geoaccumulation index (Igeo), contamination factor

(CF) and pollution load index (PLI) and (3) identify the

nature and/or anthropogenic sources of these metals. It is

further predicted that this study would provide geochemi-

cal data related to the spatial distribution and contamina-

tion of the metals in the freshwater lakes, which would

provide essential information to support lacustrine envi-

ronmental control actions for the anthropogenic pollutants

in the natural ecosystem. In the present study, we also

compare the trace metal contamination of Yercaud Lake

with other high-altitude lakes in the Indian and other

regions (Table 5).

Materials and methods

Regional setting

Yercaud is located (11�1301500N and 77�2800700E) in the

Servarayan range (anglicized as ‘‘Shevaroys’’) of hills in
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the Eastern Ghats near Salem, Tamil Nadu. It is located at

an altitude of 1515 m from the above mean sea level

(Fig. 1) (Sakthivel et al. 2015). The town gets its name

from the lake located at its center: in Tamil ‘‘Yeri’’ means

‘‘lake’’ and ‘‘Kaadu’’ means ‘‘forest.’’ The lake is ‘‘horse-

shoe’’ shaped and has an effective area of 20.0 acres (8 ha).

The lake is also known as emerald lake, and it is the only

natural lake among all the hill stations in the southern part

of India. It is also called as the Jewel of the South and

‘‘Poor man’s Ooty’’ (Rajkumar et al. 2006). The geological

formation in this area comprises both basic and acid types

of charnockite bedrock of the Archaean age, weathered into

the rugged masses of hills. The Shevaroy range is exten-

sively covered with green grass and has no dense forest

cover. The area is under the influence of both the southwest

and northeast monsoons, but the northeast monsoon chiefly

contributes to the rainfall in the district (1500–2000 mm/a).

The climate of Yercaud is the moderate one with the

maximum temperature of 34 �C during summer (March to

May), and the minimum is 16 �C during the winter; it has a

maximum depth of 5.1 m and a minimum depth of 1.5 m

(Venkatachalapathy et al. 2014).

Sample collection and storage

Twenty-five surface sediment (0–15 cm, top layer) samples

were collected from Yercaud Lake, South India during

December 2015. The sediment samples were collected in

pre-cleaned zip-locked polythene bags by using a sedi-

ments snapper (Ø5 cm). The collected samples were placed

in an ice cooler and transported to the laboratory imme-

diately. Then, the samples were dried, ground, homoge-

nized and sieved through ASTM 230-lm nylon mesh for

further processing.

Analyses and quality control

Particle size (sand and mud) was determined with a particle

size analyzer (Malvern Mastersizer 2000) with a mea-

surement range of 0.02–2000 lm. The Mastersizer 2000

automatically determines size fractions with a measure-

ment precision\1%, and the repeated measurement error is

less than 2%. Moment measures were calculated using

GRADISTAT version 4 based on Folk (1974) nomencla-

ture. Carbonates in the collected sediments were measured

Fig. 1 Location map of the Yercaud Lake
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following the method of Loring and Rantala (1992).

Organic matter (OM) was estimated following the titration

method by Gaudette et al. (1974). For TTMs analysis, the

sediments were air-dried and disaggregated in an agate

mortar, before chemical treatment. For each sample, a

known quantity (1 g of sediment) was digested with a

concentrated solution of HClO4 (2 ml) and HF (10 ml) to

near dryness. Subsequently, a second addition of HClO4

(1 ml) and HF (10 ml) was prepared, and the mixture was

evaporated to near dryness. Finally, HClO4 alone was

added, and the sample was dried until white fumes

appeared. The residue was dissolved in concentrated HCl

and diluted to 25 ml (Tessier et al. 1979). The acid solution

was subsequently filtered using grade A filters, and anal-

yses of metals (Mn, Cr, Cu, Ni, Co, Pb, and Zn) were

performed by graphite furnace atomic absorption spec-

troscopy (GFAAS) PerkinElmer AA-700. The accuracy of

the analytical procedures in the present study was assessed

using the certified reference material MESS-1 (Table 1)

from the National Research Council of Canada (Sun-

dararajan and Srinivasalu 2010; Kalpana et al. 2016; Gopal

et al. 2016a, b).

Normalization of trace metal concentration

The trace element enrichment in the lacustrine sediments

was normalized to eliminate the influence of grain size and

mineral composition. Some types of extraordinarily unaf-

fected metals such as Al, Fe, Mg, Ti, Sc, Li and Cs have

been used to normalize the grain size effect for metal

concentrations in sediments (Schropp et al. 1990; Loring

1990; Herut et al. 1993; Grousset et al. 1995; Aloupi and

Angelidis 2001; Soto Jiménez et al. 2001; Wu et al. 2007;

Amin et al. 2009; Mil-Homens et al. 2009; Kim et al. 2010;

Bing et al. 2011; Gopal et al. 2016a, b). In the present

study, the results are compared with that of mean crust

values to identify the present level of enrichment in all

stations of Yercaud Lake. Iron has been chosen as nor-

malization element because of its origin being exclusively

lithospheric (Bloundi et al. 2009; Kalpana et al. 2016).

Indices of sediment pollution

Detecting the sources of trace metals is of particular

importance in environmental investigation. Pollution indi-

ces were used for the environmental assessment of Yercaud

Lake sediment. The geoaccumulation index (Müller 1981),

enrichment factors which were interpreted as suggested by

Bloundi et al. (2009), contamination factor and contami-

nation degree (Hakanson 1980) are used to assess heavy

metal contamination in sediment. Igeo, EF and CF are the

top most common tactics to assess the ecological risk by an

individual element, whereas PLI appraises the environ-

mental risk posed by mixed elements (Caeiro et al. 2005;

Li et al. 2012; Zhao et al. 2012; Cheng et al. 2013; Hou

et al. 2013; Wang et al. 2014a, b; Iqbal et al. 2016).

Index of geoaccumulation (Igeo)

The outstanding reciprocal technique for estimating the

enrichment of metal concentration above background is the

geoaccumulation index (Igeo). This index was introduced

by Müller (1981) in order to determine and define metal

contamination in sediments by comparing current concen-

trations with pre-industrial levels. The geoaccumulation

index (Igeo) was used by most of the researchers for trace

element studies in sediments (Jumbe and Nandini 2009;

Bing et al. 2011; Magesh et al. 2011; Hasan et al. 2013;

Hou et al. 2013; Zahra et al. 2014; Arunachalam et al.

2014; Kalpana et al. 2016; Gopal et al. 2016a, b).

Igeo ¼ log2 Cn=1:5Bn

where Cn is the measured concentration of examined ele-

ment in the sediment sample and Bn is the geochemical

background for the element which is either directly mea-

sured in pre-civilization (pre-industrial) reference sedi-

ments of the area or taken from the literature (average shale

value described by Taylor (1964). The factor 1.5 is intro-

duced to include possible variation of the background

values that are due to lithogenic variations (Chakravarty

and Patgiri 2009; Goher et al. 2014), as well as very small

anthropogenic influences (Qingjie and Jun 2008).

Table 1 Published and obtained analytical results of MESS-1

Elements MESS-1 Present study Recovery %

Fe 3.1 ± 0.38 2.95 95.16

Mn 513 ± 25 472 92.00

Cr 71 ± 1.1 69.8 98.30

Cu 25.11 ± 3.88 22.9 91.19

Ni 29.5 ± 2.7 28.3 95.93

Co 10.8 ± 1.9 9.9 91.66

Pb 34 ± 6.1 31.8 93.73

Zn 191 ± 17 173.3 90.73

Six classes of the geoaccumulation index was proposed Müller (1981)

Igeo value Igeo class Designation of sediment quality

[5 6 Extremely contaminated

4–5 5 Strongly to extremely contaminated

3–4 4 Strongly contaminated

2–3 3 Moderately to strongly contaminated

1–2 2 Moderately contaminated

0–1 1 Uncontaminated to moderately contaminated

0\ 0 Uncontaminated
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Enrichment factor (EF)

Enrichment factors (EFs) were measured to estimate the

abundance of trace metals in sediment. The enrichment

factor (EF) was based on the standardization of a tested

element against a reference elements (Müller 1981). The

reference elements may be Al (Chatterjee et al. 2007), Fe

and Ti (Zhang et al. 2007), Mn (Liu et al. 2005) or Li, Sc

and Zr (Blaser et al. 2000). Iron was chosen as a reference

element because of natural sources (1.5% vastly dominate

its input (Tippie 1984). Many authors used iron to nor-

malize heavy metal contaminants (Szefer et al. 1998;

Schiff and Weisberg 1999; Baptista Neto et al. 2000;

Mucha et al. 2003; Goher et al. 2014; Kalpana et al. 2016).

It was calculated according to the following formula:

EF ¼ ðM=FeÞ sample

ðM=FeÞ background

where EF is the enrichment factor, (M/Fe) sample is the

ratio of metal to Fe concentration of the sample, and (M/

Fe) background is the ratio of metals to Fe concentration of

a background. The EF values close to unity indicate crusted

origin; those less than 1.0 suggest a possible mobilization

or depletion of metals, whereas EF[ 1.0 indicates that the

element is of anthropogenic origin (Zsefer et al. 1996).

Five contamination categories are recognized and inter-

preted as suggested by Birth (2003). EF\ 1 indicates no

enrichment, EF\ 3 is minor enrichment, EF = 3–5 is

moderate enrichment, EF = 5–10 is moderately severe

enrichment, EF = 10–25 is severe enrichment,

EF = 25–50 is very severe enrichment, and EF[ 50 is

extremely severe enrichment, as shown in Fig. 5.

Contamination factor (CF)

The level of contamination of lake sediment or a sub-basin

by giving toxic substance (metals) suggested by Hakanson

(1980) is often expressed in terms of a contamination factor

and is calculated as follows.

CF ¼ Cmetal=Cbackground value

where C metal sample is the concentration of a given metal

in lake sediment and Cm background is the value of the

metal equal to the world surface rock average given by

Taylor (1964).

Pollution load index

Pollution load index (PLI) was used to evaluate the extent

of pollution by heavy metals in the environment. The range

and class are same as Igeo. PLI for a particular site has been

calculated following the method planned by Tomlinson

et al. (1980) as follows:

PLI ¼ ðCF1 � CF2 � CF3 � � � � � CFnÞ1=n

where n is the number of metals and CF is the contami-

nation factor.

The PLI value of[1 is polluted, whereas\1 indicates

no pollution (Harikumar et al. 2009). The world average

concentration of Mn (950 lg/g), Cr (100 lg/g), Cu (55 lg/
g), Ni (75 lg/g), Co (25 lg/g), Pb (12.5 lg/g) and Zn

(70 lg/g) reported for crustal average (Taylor 1964) was

considered as the background value.

Statistical analyses

Descriptive statistical analysis was carried out to know the

mean, maximum and minimum values. Additionally,

principal component analysis (PCA) is the most common

multivariate statistical method used in environmental

studies and is employed to extract a small number of latent

factors for analyzing relationships among the observed

variables (Caeiro et al. 2005). Pearson correlation analysis

and PCA were used to find the association among metals

and the sources of the metals, respectively, in the surface

sediments of the study area. The PCA was carried out on

the metal data of all surface sediments for source identifi-

cation using statistical package for social science (SPSS)

version 20. The factor analysis was also performed to

understand the variability among the different parameters

using varimax normalized values.

Results and discussion

The textural parameter (sand and mud), organic matter and

carbonate contents and TTM (Fe, Mn, Cr, Cu, Ni, Co, Pb

and Zn) concentrations are given in Table 2.

Sediment characteristics

Sand content varied from 66.14 to 9.58% with an overall

average of 32.97%. Likewise, the mud (silt ? clay) in the

sediments varied from 90.42 to 33.86% with an average of

67.03%. Particle size distribution of lake sediments indi-

cates that Yercaud Lake is rich in (silt ? clay) mud. Clo-

sely, all sand content is deposited in the shallow regions

parallel to the shorelines that are characterized by the high

sand content and also showing gradational difference lat-

erally from coarse fractions near the margin to finer frac-

tions more toward the deeper part of the lake. Most of the

clay and silt has been transported to the deepest parts of the
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lake. The textural classification of the Yercaud Lake sur-

face sediments shows a predominant occurrence of sandy

silt and silty sand following Shepard’s (1954) trilinear

diagram (Fig. 2). The spatial diagram shows decreasing

sand (feldspar ? quartz) content from the margins and is

negatively correlated with the increasing clay fraction at

the deeper part of the lake (Fig. 3).

The OM content varied from 8.7 to 3.0% with an

average of 6.3%. The concentrations of organic matter in

the fine-grained fraction of the sediments were often higher

than that in the sand-sized fractions (Tam and Wong 2000).

This indicates that the lake sediments receive high organic

matter from soil erosion and tourist activities (Pu-

rushothaman et al. 2011). The C/N ratio is an indicator of

changes in the source of organic matter. In general, the C/N

ratios from aquatic plants (freshwater phytoplankton) are

\10. A higher C/N ratio (10–20) indicates a mixture of

aquatic and terrestrial organic material (Mackie et al. 2005;
Fig. 2 Ternary plot showing relative percentage of sand, silt and clay

fractions of the Yercaud Lake surface sediments

Table 2 Sediment characteristics, organic matter, calcium carbonate, C/N ratio and trace element of surface sediments from Yercaud Lake

S.

no.

Sand% Mud% OM% CaCO3% C/N

ratio

Fe (lg/
g-1)

Mn (lg/
g-1)

Cr (lg/
g-1)

Cu (lg/
g-1)

Pb (lg/
g-1)

Zn (lg/
g-1)

Co (lg/
g-1)

Ni (lg/
g-1)

PLI

1 33.45 66.55 6.6 2.7 10.5 117,056 390 322.0 575.3 37.4 178.3 113.7 146.8 2.66

2 22.72 77.28 7.7 1.9 9.1 115,273 406 377.5 560.0 35.4 204.5 123.0 146.9 2.79

3 20.02 79.98 8.7 1.8 10.6 109,836 356 386.0 676.0 48.0 258.4 120.6 147.2 3.04

4 23.89 76.11 8.5 2.1 10.3 107,964 379 388.0 552.0 44.9 214.6 119.4 146.8 2.87

5 15.43 84.57 8.6 1.5 8.8 114,400 374 415.0 531.3 36.9 182.3 115.0 146.9 2.72

6 34.68 65.32 5.0 2.8 9.6 109,300 374 351.0 542.0 29.0 128.0 108.8 146.7 2.42

7 12.89 87.11 6.9 1.4 8.8 119,824 396 397.0 640.0 37.9 192.3 114.1 147.0 2.82

8 36.09 63.91 4.7 3.2 10.4 105,500 386 409.0 531.0 20.7 101.4 100.0 146.9 2.26

9 14.58 85.42 6.7 1.1 7.6 111,174 403 393.0 555.0 27.5 183.9 110.9 146.9 2.62

10 14.31 85.69 6.6 0.9 8.7 119,472 413 393.0 658.0 39.3 155.9 111.2 147.2 2.77

11 24.65 75.35 5.9 1.7 8.5 113,200 389 441.2 663.1 31.6 145.7 113.2 147.2 2.69

12 29.35 70.65 7.8 1.9 7.5 105,500 351 397.0 576.6 25.9 177.5 98.7 147.1 2.51

13 57.79 42.21 5.1 5.8 7.4 88,000 350 376.0 520.0 24.2 157.0 102.7 146.9 2.40

14 62.49 37.51 3.7 7.1 8.2 92,700 334 364.0 500.0 15.5 150.5 96.0 146.7 2.18

15 31.28 68.72 6.9 2.9 7.2 106,800 342 379.4 626.0 38.0 175.9 120.0 147.2 2.73

16 9.58 90.42 7.7 0.5 7.1 120,987 423 404.0 614.0 29.4 197.6 102.7 147.1 2.71

17 18.66 81.34 7.6 1.6 7.3 112,500 366 440.0 687.0 39.1 205.3 110.1 147.2 2.89

18 46.12 53.88 5.8 3.9 7.2 96,500 365 367.5 516.0 19.9 169.0 91.1 146.6 2.32

19 36.81 63.19 6.5 2.5 10.4 116,000 398 379.7 480.0 20.5 200.0 130.7 147.1 2.53

20 49.79 50.21 5.5 4.2 10.5 97,100 334 380.0 523.0 27.5 178.0 108.0 146.7 2.49

21 66.14 33.86 3.0 8.1 8.9 97,362 337 352.0 489.0 21.8 109.5 92.7 146.7 2.16

22 17.54 82.46 7.3 1.4 10.2 107,925 369 403.0 619.7 28.0 195.3 116.8 147.2 2.69

23 49.39 50.61 4.0 4.2 10.4 102,897 340 360.0 604.0 25.8 106.8 101.6 146.8 2.31

24 64.83 35.17 3.2 7.3 8.2 84,400 327 336.0 537.0 23.8 101.4 88.0 146.7 2.15

25 31.81 68.19 6.7 2.8 10.2 113,200 389 409.0 594.0 22.5 152.9 100.0 147.2 2.47

Min 9.58 33.86 3.0 0.5 7.1 84,400 327 322.0 480.0 15.5 101.4 88.0 146.6 2.15

Max 66.14 90.42 8.7 8.1 10.6 120,987 423 441.2 687.0 48.0 258.4 130.7 147.2 3.03

Avg 32.97 67.03 6.3 3.0 8.9 107,395 372 384.8 574.8 30.0 168.9 108.4 146.9 2.57
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Zong et al. 2006; Vijayaraj and Achyuthan 2015). C/N

ratio of the Yercaud Lake sediments range from 10.6 to 7.1

with an average of 8.9. Most of the C/N values are\10,

indicating that the organic matter is from the in-lake algal

production (Meyers and Ishiwatari 1993; Wang et al.

2014a). However, some samples show values higher than

10, suggesting mixed sources of OM (Meyers 1994;

Hedges 2002; Sollins et al. 1984). Carbonate content is low

Fig. 3 Spatial distributions of a sand, b mud (silt ? clay), c organic matter (OM), d calcium carbonate, e C/N ratio in the surface sediments

from the Yercaud Lake
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(0.5–8.1%) with an average of 3.0% and is related to the

phytoplankton blooms associated with annual lake water

mixing and nutrient availability (Lamb et al. 2002a, b).

Metal concentrations in the surface sediments

The overall concentration ranges and mean values of the

selected metals in the surface sediments were found as

follows: Fe, 84,400–120,987 (107,395); Mn, 327–423

(372); Cr, 322–441.2 (384.8); Cu, 480–687 (574); Pb,

15.5–48.0 (30.0); Zn 101.4–258.4 (168.9); Co, 88–130.7

(108.4); and Ni, 146.6–147.2 (146.9) lg/g-1. The metal

concentrations in the surface sediments were ranked in

decreasing order as follows: Fe[Cu[Cr[
Mn[Zn[Ni[Co[ Pb (sediments on the surface have

significantly high Cu, Cr and Ni concentrations) (Fig. 4a–

h). In the present study, nickel and chromium was observed

to be abnormally rich, probably leached from the adjoining

rock exposures containing large amounts of olivine,

pyroxenes, chromite, spinels, etc. All these minerals con-

tain Ni and Cr in appreciable amounts. Also in the case of

very strongly and deeply weathered soils of the tropical

areas with a humid climate, many elements are lixiviated

(e.g., Mg, Ca, Si), but others accumulate in situ (e.g., Cr,

Ni, Cu, Mn) and combine with the diverse iron oxide forms

(e.g., Nalovic and Quantin 1972; Anand and Gilkes 1987;

Becquer et al. 1995; Trolard et al. 1995). Similar obser-

vations were made on the basalts and basanites of the

French Massif Central (Soubrand-Colin et al. 2007) or of

the Réunion Island (Doelsch et al. 2006) and the serpen-

tinites in the Swiss Alps (Gasser et al. 1995).

Ecological risk assessment

The Igeo value\0 indicates uncontaminated, while the Igeo
value[5 represents the upper limit of the contamination. The

highest class 6 (very strong contamination) reflects 100-fold

enrichment of the metals relative to their background values

(Harikumar and Jisha 2010; Goher et al. 2014). The calcu-

lated index of geoaccumulation (Igeo) of the investigated

trace metals in the sediments of the Yercaud Lake and its

corresponding contamination intensity is illustrated in

Fig. 5. In the present study, Igeo values for Mn were found

lower than 0, indicating almost unpolluted; Fe, Pb and Zn

indicated unpolluted to moderately polluted; Cr and Co

indicated moderately polluted; and Cu indicated moderately

to strongly polluted sediment quality. Fe and Ni are indi-

cating unpolluted to moderately pollution at all sites; Pb is

moderately polluted at site S-1, 3, 4, 7, 10, 15 and 17; and Cu

exposed heavy pollution at site S-3, 10, 11 and 17. Overall,

the studied sediments were polluted by Cu, Cr and Co,

indicating that these metals might be included by anthro-

pogenic inputs in the lake sediments (Iqbal et al. 2016). The

main sources of Cu, Cr and Co in the study area is owing to

the discharge of industrial and municipal wastewaters,

agrochemicals, landfill leachates and geogenic material. In

contrast, mafic rock erosion is the dominant Cr source of lake

sediments (DVWK 1998; Wantzen et al. 2008).

The EF values of all studied metals were calculated to

evaluate anthropogenic influences on trace metals in the

surface sediments of the study area. The EF reflecting

metal accumulation for surface sediments is shown in

Fig. 3. The enrichment values\1 indicate that the metal is

completely derived from geological origin, but EF values

[1 propose that the metal is possibly sourced through

anthropogenic activities. In the present prediction, the

enrichment factor values of the high-altitude Yercaud Lake

indicated that Fe indicates\1, showing no enrichment; Cr,

Pb, Zn, Co and Ni were between 1 and 3, indicating a

minor enrichment, and Cu was between 5 and 10, revealing

moderately severe to severe enrichment at all locations. Cr,

Pb, Zn, Co and Ni revealed some enrichment at all sites,

but they were considered to be contributed by mixed

sources. No enrichment of Mn occurred at all sites, in spite

of good water circulation and aeration of bottom lake

waters during five months of the year. This is the case, for

example, no enrichment of Fe and Mn occurs in the Lake

Valencia sediments (Bifano and Mogollbn 1995).

Another method used to determine contamination levels

was the contamination factor (CF), which is the ratio of

metal concentration to the background metal concentration

of a given metal, which could be classified into four sets for

monitoring the pollution of one single metal over a period

of time (Turekian and Wedepohl 1961; Kükrer et al. 2015;

Han et al. 2015). It refers to the low degree (CF\ 1),

moderate degree (1 B CF\ 3), considerable degree

(3 B CF\ 6) and very high degree (CF C 6). On this

basis, the high-altitude Yercaud Lake has very high Cf

values for Cu; considerable Cf for Cr, Co; and moderate Cf

for Fe, Pb, Zn and Ni except Mn, which is found to be low

contaminated. Calculation of the average contamination

factor (Cu) indicates humid substances have high affinity

with copper, resulting in the formation of stable complexes

(Dahrazma and Mulligan 2007). To determine the envi-

ronmental quality of the sediments, pollution load index

(PLI) was used (Suresh et al. 2011; Kükrer et al. 2015). The

PLI value 1 represents the baseline for sediment, and val-

ues greater than 1 indicate higher contamination. In this

respect, as is clear from the PLI values in Table 1, the PLI

levels ranged from 2.15 to 3.03 with an average of 2.56.

The PLI value was found higher for all sites. It is possible

to state that in all stations, the contamination appears to be

higher in the surface sediments of the lake.
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Fig. 4 Spatial distributions of a Fe, b Mn, c Cr, d Cu, e Pb, f Zn, g Co and h Ni in the floor sediments of the Yercaud Lake
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Statistical analysis

Correlation matrix

The Pearson correlation coefficients of inter-element rela-

tionships provide valuable information on the sources in

the geoenvironment (Usha et al. 2014; Gopal et al.

2016a, b). Correlation matrix was suitable to confirm some

new associations between heavy metals. It was generated in

the present study using SPSS. In order to evaluate the

relationship between textural and chemical parameters

(TTMs), correlation matrix analysis was carried out for the

entire data set (Table 3). The correlation of the surface

sediments shows that all the trace metals are negatively

correlated with sand and CaCO3. Moreover, trace metals

have a high positive correlation with OM and mud frac-

tions. The inter-element relationship between elements

specifies a clear comparison with mud vs OM (r2 = 0.84),

Fe (r2 = 0.86), Mn (r2 = 0.74), Cr (r2 = 0.61), Cu

(r2 = 0.64), Pb (r2 = 0.64), Zn (r2 = 0.62), Co

(r2 = 0.61) and Ni (r2 = 0.65). Positive correlation of OM

vs Fe (r2 = 0.77), Mn (r2 = 0.50), Cr (r2 = 0.51), Pb

(r2 = 0.70), Zn (r2 = 0.86), Co (r2 = 0.66) and Ni

(r2 = 0.58) is also observed in the sediments. Fe exhibit-

s high positive correlation with Mn (r2=0.83), whereas

moderate correlation is found with other trace elements

such as Cu, Pb, Co and Ni (r2 = 0.51, 0.52, 0.64 and 0.58).

Cr is positively correlated with Cu and Ni and Cu–Pb, Ni

and Zn with Co.

Organic matter was positively correlated with trace

metals which reveals that they are attached to the organic-

rich clay particles in the sediments and has high fluvic/

humic acids which have a high metal-adsorbing capacity

(Mester et al. 1998; Hlavay et al. 2004; Kargar et al.

2013). Fe has a very strong correlation with other oxides

which have a higher affinity with most elements, espe-

cially for trace elements (Stumm and Morgan 1996), and

that the organic matter contents are important for con-

trolling factors in the abundance of trace metals (Rubio

et al. 2000; kalpana et al. 2016). The strong negative

values of carbonates with other TTMs suggest that they

act as diluents of the metals in the sediments and are also

recent in origin (Aloupi and Angelidis 2001). The

table presented that high positive correlation happens

between Fe and Mn (r2 = 0.83), Co (r2 = 0.96) and

Ni (r2 = 0.58). It means that these metals tend to accu-

mulate together. The significant positive correlation with

Fe indicates that the metals were derived from similar

sources and also moving together (Bhuiyan et al. 2009).

Though strong positive correlations among Fe and Mn

indicate that these two metals are the constituent of sed-

iments, and they originate mostly from geogenic origin

and not from anthropogenic process (Guo et al. 1983), Mn

does not show any significant correlation with other trace

metals, indicating its independent variables in the sedi-

ments (Selvam et al. 2012). In addition, significant cor-

relation between Cu and Ni and the close association of

this element confirm their common sink in the sediments

(Fianko et al. 2013).

Fig. 5 Box and whisker diagrams of a Igeo, b EF and c CF values of

the Yercaud Lake floor sediments
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Source apportionment

PCA was also applied to identify sources of the metals in

sediments. The relationships among the metals analyzed

based on the three principal components were illustrated in

three-dimensional (3D) space (Fig. 6; Table 4). Three

principal components (PC) were obtained with eigenvalue

greater than 1, explaining more than 84% of total variance.

Speciously, the result of PCA resembles well with the

correlation coefficients. PC1 explains the 30.15% of the

total variance and reveals high loading values for the mud

(silt ? clay), Fe and Mn (0.69, 0.80 and 0.94, respec-

tively), which are predominantly contributed by the geo-

genic processes, transportation activities, untreated urban

wastes and agricultural runoff. PC2 (29.7% of total vari-

ance) is the strong loading of Pb, Zn and Co with organic

matter, confirming that metals form organic complexes

with humic substances in surface sediments ((Lepane et al.

2007). Those complexes or organic matter in surface

sediments is often transformed by different biochemical

processes (Lepane et al. 2007), and PC3 grouped metals

such as Cr, Cu and Ni reveal 24.73% of the total variance.

Cr and Cu in PC3 originated from the natural sources such

as the catchment bed rock weathering (Lv et al. 2014). Ni

and Cr belong to the siderophile elements and are main

rock-forming elements, which are derived from terrigenous

detritus material transported by surface runoff (Krishna

et al. 2011). All three PCA explains 84.58% of the total

variance, indicating that the lithogenic factor dominates the

distribution of most part of the considered metals in the

study. Further, it is observed that Pb and Zn arise due to a

Table 3 Pearson (r) correlation coefficients for sediment texture and trace elemental analyses from Yercaud Lake surface sediments

Parameters Sand Mud OM CaCO3 Fe Mn Cr Cu Pb Zn Co Ni

Sand 1

Mud -1.0** 1

OM -.84** .84** 1

CaCO3 .96** -.96** -.84** 1

Fe -.86** .86** .67** -.85** 1

Mn -.74** .74** .50** -.74** .83** 1

Cr -.61** .61** .51** -.59** .43* .37 1

Cu -.64** .64** .47* -.60** .51** .26 .50* 1

Pb -.64** .64** .70** -.58** .52** .26 .21 .65** 1

Zn -.62** .62** .86** -.61** .47* .32 .31 .35 .62** 1

Co -.61** .61** .66** -.63** .64** .44* .25 .29 .62** .67** 1

Ni -.65** .65** .58** -.63** .58** .39 .67** .73** .39* .43* .48* 1

Bold numbers mark the high positive correlation

* Correlation is significant at the 0.05 level (2-tailed)

** Correlation is significant at the 0.01 level (2-tailed)

Fig. 6 Rotated loadings showing correlation among trace metals

Table 4 Principal component analysis loadings for selected metals

Parameters PC1 PC2 PC3

Sand -.69 -.49 -.49

Mud .69 .49 .49

OM .44 .74 .34

CaCO3 -.72 -.47 -.45

Fe .80 .37 .30

Mn .94 .12 .11

Cr .35 .02 .78

Cu .08 .35 .83

Pb .09 .83 .31

Zn .22 .85 .15

Co .39 .75 .07

Ni .27 .26 .80

Eigenvalue % 3.62 3.56 2.97

Variance % 30.15 29.70 24.73

Cumulative % 30.15 59.86 84.58

Bold numbers mark the high correlation coefficients
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confluence of sewage effluents, traffic and boat activities.

Probably these elements originated from agricultural

activities, sewage sludge, untreated domestic solid wastes,

traffic pollution and boating activities (Table 5).

Conclusions

In this study, spatial distribution of eight selected trace

metals (Fe, Mn, Cr, Cu, Ni, Co, Pb and Zn) in surface

sediments from the higher elevation Yercaud Lake, South

India, was examined. Then, potential ecological risk caused

by these metals was evaluated by calculating index of

geoaccumulation, enrichment factor, contamination factor

and pollution load index. Sources were identified with the

aid of multivariate statistical analyses such as principal

component analysis (PCA). The geogenic and anthro-

pogenic sources could be identified based on multivariate

and geostatistical analysis. The measured levels of the

studied metals followed the decreasing concentration

order: Fe[Cu[Cr[Mn[Zn[Ni[Co[ Pb. High

Cu content in the surface sediments, as revealed from the

all ecological parameters such as Igeo, EF, CF and PLI,

could be mainly due to anthropogenic factors along with

dispersion or lithogenic influx from the upper catchment.

Understanding the ecological risk valuation results, Cu, Cr

and Mn were identified as the priority pollutants of con-

cern, though Zn, Ni, Co and Pb could not be ignored as

they indicated some enrichment in all the sites. Multi-

variate statistical techniques (PCA) indicated that Cr and

Cu were partially added from anthropogenic sources.

However, Cr, Cu, Fe and Mn were mainly derived from the

natural erosion and non-point agricultural sources. Pb and

Zn were mainly originated from agricultural activities,

sewage sludge, untreated domestic solid wastes, traffic

pollution and boating activities. Moreover, selected metal

pollution was found relatively higher at all the sites, which

receive anthropogenic inputs from the nearby areas such as

villages, picnic points and other catchments. These findings

provide useful information about sediment quality in the

lake. Therefore, the remedial measures are to develop

strategies of contamination control and management with

the inclusive consideration of the entire area, which is

required for aquatic system/human health protection and

future restoration of the lake.
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Nalovic L and Quantin P (1972) Evolution géochimique de quelques
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