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Abstract The longitudinal dispersion coefficient is a key

element in determining the distribution and transmission of

pollution, especially when cross-sectional mixing is com-

pleted. However, the existing predictive techniques for this

purpose exhibit great amounts of uncertainty. The main

objective of this study is to present a more accurate model

for predicting longitudinal dispersion coefficient in natural

rivers and streams. Bayesian network (BN) approach was

considered in the modeling procedure. Two forms of input

variables including dimensional and dimensionless

parameters were examined to find the best model structure.

In order to increase the performance of the model, the

clustering method as a preprocessing data technique was

applied to categorize the data in separate groups with

similar characteristics. An expansive data set consisting of

149 field measurements was used for training and testing

steps of the developed models. Three performance evalu-

ation criteria were adopted for comparison of the results of

the different models. Comparison of the present results

with the artificial neural network (ANN) model and also

well-known existing equations showed the efficiency of the

present model. The performance of dimensionless BN

model 30% is more than dimensional ones in terms of the

root mean square error. The accuracy criterion was

increased from 70 to 83% by performing clustering anal-

ysis on the BN model. The BN-cluster model 43% is more

accurate than ANN model in terms of the accuracy crite-

rion. The results indicate that the BN-cluster model give

16% better results than the best available considered model

in terms of the accuracy criterion. The developed model

provides a suitable approach for predicting pollutant

transport in natural rivers.

Keywords Bayesian network � Clustering analysis �
Longitudinal dispersion coefficient � Natural stream

Introduction

Although the dispersion and mixing of pollutants take

place in all three dimensions (i.e., longitudinal, vertical and

lateral dimensions) of natural rivers and streams, the lon-

gitudinal dispersion is the dominant process. Accurate

estimation of the longitudinal dispersion coefficient (K) is

required in several applied hydraulic problems such as

environmental engineering, river engineering, estuaries

problems, intake designs and risk assessment of the injec-

tion of hazardous contaminants into river flows (Fischer

et al. 1979; Liu 1977; Deng et al. 2001; Azamathulla and

Wu 2011; Azamathulla and Ghani 2011; Sahay 2011;

Tutmez and Yuceer 2013; Altunkaynak 2016; Najafzadeh

and Tafarojnoruz 2016). The estimation of this coefficient

is complicated due to irregularities of natural channels in

shape and bed configuration and therefore in their
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hydraulic conditions. Quantifying these bathymetric

parameters is a challenging matter, where the related data

for many rivers are not available.

K can be estimated experimentally (e.g., Perucca et al.

2009; Wang and Huai 2016), theoretically (e.g., Deng et al.

2001, 2002; Seo and Baek 2004; Wang and Huai 2016) and

empirically (e.g., Seo and Cheong 1998; Swamee et al.

2000; Zeng and Huai 2014; Disley et al. 2015). A direct

estimation of the dispersion coefficient by experimental

means requires expensive and time-consuming tracer

studies and/or limits to rectangular flumes data (Etemad-

Shahidi and Taghipour 2012). The theoretical determina-

tion of K is also difficult due to the lack of the knowledge

of transverse profiles of both velocity and depth of the flow

(Deng et al. 2001). Hence, a large number of studies have

been focused on developing empirical models for the

estimation of K. Most of the predictive equations and

models are developed based on four easily measurable

variables including channel width (W), shear velocity (U�),
cross-sectional average velocity (U) and flow depth

(H) (e.g., Kashefipour and Falconer 2002; Seo and Cheong

1998). The results of previous predictive equations differ

and contain some amount of uncertainty, as will be shown.

In past few years, artificial intelligence techniques, such

as artificial neural network (ANN), adaptive neuro-fuzzy

inference system and genetic algorithm (GA) have shown

promising performance in predicting longitudinal disper-

sion (Tayfur 2009; Toprak and Cigizoglu 2008). However,

in some cases, the results showed significant variation.

Also, excluding great values of W/H and K [W/H[ 50 and

K[ 100 (m2/s)] introduced more disadvantage to the ANN

and most of the existing predictive equations. For example,

the root mean square error (RMSE) of ANN model of

Tayfur and Singh (2005) is 193.0 (m2/s) in test step, while

RMSE of this model is 19.3 when the experimental data

with K[ 100 are not included. As the longitudinal dis-

persion coefficient is a key element to determine the fate of

pollution in rivers, therefore, an appropriate estimation of

the coefficient has many applications in practical and

engineering problems. Also, the development of a more

accurate predictive model to cover the extreme values of K

is of great interest.

Recently, Bayesian networks (BNs) have been suc-

cessfully applied for hydrological processes including

uncertain nonlinear and complex relationship among vari-

ables. Farmani et al. (2009) applied an evolutionary

Bayesian belief network methodology for optimum man-

agement of groundwater contamination. They showed that

the BN approach can help when dealing with uncertainties

in decision making pertaining to human behavior. Xu et al.

(2006) conducted a research study which applied a Baye-

sian regularized back-propagation neural network model

for trend analysis, acidity and chemical composition of

precipitation in North Carolina using precipitation chem-

istry data. Spatiotemporal drought forecasting within

Bayesian networks has been carried out by Madadgar and

Moradkhani (2014). The study demonstrated that Bayesian

networks are suitable for probabilistic drought forecasting

and have potential to improve drought characterization in

different applications. Matheussen and Granmo (2015)

proposed a snow accumulation and melt model formulated

as a dynamic Bayesian network (DBN). They encoded

uncertainty explicitly and trained the DBN using Monte

Carlo analysis, carried out with a deterministic hydrology

model under a wide range of plausible parameter

configurations.

On the other hand, it was found that applying some data

preprocessing techniques (clustering, wavelet transforma-

tion, etc.) linked with the main models can improve the

efficiency of the forecasting (Alizadeh and Kavianpour

2015; Nourani et al. 2009). As the data applied in this study

vary in a wide range, therefore, applying the clustering

approach to recognize and group the subsets of the river

data with similar pattern can be helpful in the modeling

procedure. Moreover, the wavelet transform is applied to

investigate and de-noise the temporal variation of the data.

The purpose of clustering is to introduce different series of

data from a large data set and produce a brief representa-

tion of a system’s behavior.

The main objective of this study is to employ a

Bayesian network methodology to present a more accu-

rate model for predicting longitudinal dispersion coeffi-

cient in natural rivers and streams. In this regard, a wide

range of field data including channel width (W), shear

velocity (U*), cross-sectional average velocity (U) and

flow depth (H) were applied in the BN models. In order

to increase the accuracy, clustering analysis as a prepro-

cessing data technique was coupled with the BN model.

The performance of the BN models was finally compared

with those of the existing empirical equations and the

developed ANN model as well.

Concept and background

The pollution can be dispersed longitudinally, transversely

and vertically by advection and dispersion processes. Once

the cross-sectional mixing is completed, the longitudinal

dispersion becomes the most important process. In this

case, the one-dimensional (1D) dispersion equation is

widely used for unsteady non-uniform flow (Sahin 2014).

The general form of this equation, advection–diffusion

equation, can be described as (Taylor 1953);

oC

ot

� �
þ U

oC

ox

� �
¼ o

ox
K
oC

ox

� �
ð1Þ
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where C is the cross-sectional average concentration (kg/

m3); U is the cross-sectional average velocity (m/s); x is the

direction of the mean flow; t is time in seconds (s); and

K denotes the longitudinal dispersion coefficient (m2/s) in

the x direction.

Equation 1 holds only after the so-called initial period is

reached (Deng et al. 2001; Noori et al. 2011). Solutions of

this equation can be obtained with appropriate initial and

boundary conditions. However, the most challenging issue

is the estimation of the longitudinal dispersion coefficient,

which has highly nonlinear nature in natural rivers and

streams. Some of the most influencing parameters for

accurate estimation of the longitudinal dispersion coeffi-

cient are: density, viscosity, channel width, flow depth,

mean velocity, shear velocity, bed slope, bed roughness,

horizontal stream curvature (sinuosity) and bed shape

factor (Guymer 1998; Seo and Cheong 1998). In this

regard, many statistical models, analytical solutions and

experimental works have been developed to estimate K in

natural rivers.

Elder expanded Taylor’s method for an open channel of

infinite width (Elder 1959). Based on experimental mea-

surements and supposing a logarithmic distribution for the

velocity profile in the vertical direction, he suggested:

K ¼ 5:93HU� ð2Þ

where H is the depth of flow and U* is the bed shear

velocity. In this equation, the transverse variation in the

velocity profile was not taken under consideration. It leads

an underestimated prediction of K, because the transverse

shear is more important than the vertical one in most nat-

ural streams.

Afterward, Fischer (1975) and Seo and Cheong (1998)

presented the following equations, respectively:

K

HU�
¼ 0:011

U

U�

� �2
W

H

� �2

ð3Þ

K

HU�
¼ 5:915

U

U�

� �1:428
W

H

� �0:62

ð4Þ

Kashefipour and Falconer (2002) used 81 sets of field

data in USA and based on the dimensional and regression

analysis developed Eqs. (5) and (6):

K ¼ 10:612HU
U

U�

� �
ð5Þ

K ¼ 7:428þ 1:775
W

H

� �0:62
U�
U

� �0:572
" #

HU
U

U�

� �
ð6Þ

They suggested that for open-channel flows with W/H

greater and \50, Eqs. (5) and (6) can be applied for

practical applications, respectively.

Toprak and Cigizoglu (2008) demonstrated that an accu-

rate prediction of K can be obtained by using ANN models.

Using genetic algorithm, Sahay and Dutta (2009) proposed

Eq. (7) and Tayfur (2009) presented Eq. (8) for predicting K.

K

HU�
¼ 2

U

U�

� �1:25
W

H

� �0:96

ð7Þ

K ¼ 0:91Qþ 9:94 ð8Þ

in which Q is the flow discharge.

Etemad-Shahidi and Taghipour (2012) derived the fol-

lowing descriptions for longitudinal dispersion coefficient

based on model tree approach:

K

HU�
¼ 15:49

W

H

� �0:78
U

U�

� �0:11

; if
W

H
\ 30:6 ð9Þ

K

HU�
¼ 14:12

W

H

� �0:61
U

U�

� �0:85

; if
W

H
[ 30:6 ð10Þ

Li et al. (2013) employed differential evolution for

prediction of K in natural streams. The application revealed

that the proposed approach is better than other expressions.

The equation can be expressed as follows:

K

HU�
¼ 2:282

W

H

� �0:7613
U

U�

� �1:4713

ð11Þ

Zeng and Huai (2014) developed a new equation for

predicting K as:

K ¼ 5:4
W

H

� �0:7
U

U�

� �0:13

HU ð12Þ

They showed that Eq. (12) can predict a longitudinal

dispersion coefficient well, especially for rivers within

20\W/H\ 100.

Disley et al. (2015) applied field data of small, steep

streams in Ontario to develop a predictive equation for

longitudinal dispersion coefficient. Their predictive equa-

tion relates the longitudinal dispersion coefficient to

hydraulic and geometric parameters of the stream and the

Froude number. Using multiple regression analysis, they

presented the following equation:

K

HU�
¼ 3:563

Uffiffiffiffiffiffiffi
gH

p
� ��0:4117

W

H

� �0:6776
U

U�

� �1:0132

ð13Þ

Methodology

Bayesian network (BN)

A Bayesian network, which is probabilistic based, is a set

of nodes representing random variables and a set of links
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for connecting the nodes in an acyclic manner. The BN is a

powerful modeling tool for complex problems because it

can describe numerous relevant factors simultaneously and

express their relationship effectively and provides a

mechanism to incorporate many kinds of prior information

and expert knowledge into learning to solving problems

with many uncertainties (Antal et al. 2004; Leu and Bui

2016). In the BN, a link from A and B to C means that

variables A and B are the parent and C is the child. The

dependencies are quantified by conditional probabilities for

each node given its parents in the network. Bayesian net-

works can be used for two kinds of random variables:

continuous chance nodes with a continuous infinite state

space (Fig. 1a) and discrete chance nodes with a discrete

finite state space (Fig. 1b). For the discrete chance nodes,

the function describing how the node depends on its par-

ents is a conditional probability table.

In a BN analysis, for n number of mutually exclusive

parameters Xi (i = 1, 2,… n), and a given observed data Y,

the updated probability is computed by:

p XijYð Þ ¼ p YjXið Þ � p Xið ÞP
j p YjXj

� �
p Xj

� � ð14Þ

where p XijYð Þ demonstrates the posterior probability

occurrence of X given the condition that Y occurs, p(X)

denotes the prior probability occurrence of X, p(Y) denotes

the marginal (total) probability occurrence of Y and is

effectively constant since the obtained data are in hand, and

p YijXð Þ refers to the conditional probability occurrence of

Y given that X occurs too (often viewed in this sense as the

likelihood distribution) (Pearl 1988). Learning and infer-

ences can be drawn upon professional algorithm in the BN.

More details about the mathematical background of the BN

approach can be found in Jensen (2001) and Malekmo-

hammadi et al. (2009).

Artificial neural network (ANN)

Over the past decade, artificial neural networks have been

widely used to deal with complex and nonlinear prob-

lems, especially those with unknown relationship between

input variables and output parameter (Azid et al. 2014).

They were extensively used for hydrological modeling,

and it was demonstrated that they are superior over the

conventional regression-based models. Therefore, in this

study, they have been employed as an alternative to

compute longitudinal dispersion coefficient and to com-

pare the results with those of BN models. ANN is an

approximation function mapping inputs to outputs. A

typical network consists of three layers of neurons,

namely input, hidden and output, in which each neuron

acts as an independent computational element. Input layer

is defined as a layer of neurons receiving inputs (Ii)

directly from outside the network. Layer of a network that

is not connected to the network output (O) called hidden

layer and layer whose output is passed to the world

outside the network is output layer. In this study, the log-

sigmoid (logsig) transfer function was used to calculate

the layer’s output from the net input. Figure 2 shows a

schematic layout of ANN.

Different parameters can affect the accuracy of ANN

models such as number of hidden layers and hidden neu-

rons, training algorithm and data selection. In this study,

the Levenberg–Marquardt back-propagation algorithm

which is a second-order nonlinear optimization technique

has been used in training of the ANN. This algorithm is

usually faster and more reliable than any other back-

propagation techniques (Hagan and Menhaj 1994; Ham and

Kostanic 2001). The training data consist of a set of

Fig. 1 Bayesian networks applications: a the network with contin-

uous chance nodes, b the network with discrete chance nodes Fig. 2 Schematic layout of ANN
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N training samples (xs, ts), where s is the sample number, ts
is the target value, and xs is the N-dimensional input vector

for the Sth training sample and ys is the M-dimensional

output vector of the trained network for the Sth sample.

In this study, the best topology (architecture) of the

ANN used for modeling longitudinal dispersion coefficient

compromises of two input variables of W/H, U/U*, 8

neurons in the hidden layer and K=U�H as the target

variable.

The general performance of the ANN is measured by the

mean square error (MSE):

E ¼ 1

N

XN
S¼1

Es ¼
1

N

XN
S¼1

XN
i¼1

ts ið Þ � ys ið Þ½ �2 ð15Þ

Data clustering approach

Clustering is the task of grouping a set of objects in such away

that objects in the same group (called a cluster) are more

similar (in some sense or another) to eachother than to those in

other clusters. Different methods can be applied for data

clustering (e.g., k-means, fuzzy C-means and subtractive

clustering). In this study, k-means approach first used by

MacQueen (1967) was employed in order to cluster the input

and output data. It is easily implemented and understandable

and is popular for cluster analysis in data mining. The process

of clustering by k-means method is illustrated in Fig. 3.

Regarding Fig. 3, the method initializes with a number of

clusters and a center for each cluster. The next step is to take

each point belonging to a given data set and associate it to the

nearest center. Afterward, the procedure is repeated by re-

calculating new centroids in order to achieve the desired

criterion.

Given a set of observations (x1, x2, …, xn), where each

observation is a d-dimensional real vector, k-means clus-

tering aims to partition the n observations into k (Bn) sets

S = {S1, S2, …, Sk} to minimize the within-cluster sum of

squares (sum of distance functions of each point in the

cluster to the k center). In other words, its objective is to

find:

min
XK
i¼1

X
x2si

x� l2i ð16Þ

where li is the mean of points in Si.

Data and statistical analysis

In the present study, a wide range of field data set including

149 samples measured in different rivers (collected by

(Etemad-Shahidi and Taghipour 2012) was used for

applying cluster-based Bayesian network in the estimation

of the longitudinal dispersion coefficient. The parameters,

captured by monitoring process, contain geometric and

hydraulic characteristics such as channel width, channel

depth, average velocity, shear velocity and longitudinal

dispersion coefficient. These data include longitudinal

characteristics for different rivers which are reported by

different researchers. It is necessary to mentioned that the

dimensionless parameters were used to predict the longi-

tudinal dispersion coefficient.

Table 1 shows the statistical analysis of the data sets

including minimum (min) and maximum (max), average

(mean) and standard deviation (SD). Data to be used for

training step should be sufficiently large to cover the pos-

sible known variations of the important parameters in the

problem domain. An attempt was made to select data in a

way that the testing data follow the normal distribution of

training data. For training and testing steps, 120 and 29

data samples were, respectively, selected. Moreover, the

minimum and maximum values of the target variable were

used in the training set. Figures 4, 5 and 6 illustrate the

variations of the testing and training data with W/H, U/U*

and K=U�H, respectively.

Modeling strategy

To find the most accurate predictive BN model, two types

of BN models will be considered based on applying

dimensional and dimensionless parameters. These strate-

gies were carried out to examine how the input variables

can affect the model’s performances. In this way, three

modeling strategies will be examined. In the first strategy,

four parameters including W, H, U and U* were inserted as

input variables in the BN structure to predict dispersion

coefficient in dimensional form. Two other strategies wereFig. 3 Flowchart of the k-means method
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developed based on two dimensionless parameters of W/H

and U/U* for predicting dimensionless parameter of

K=U�H. One of them was developed based on clustering

Bayesian network, and the other one was established

without data clustering.

Figure 7 shows the structure of BN models for pre-

dicting dimensional and dimensionless dispersion coeffi-

cient. In Fig. 7a, b, by considering existing numeric data,

the continuous BN was applied while, in Fig. 7c, discrete

network was used as the data were in clusters 1–10 for each

node.

In the case of clustering approach, the numeric data

were divided into 10 clusters and these clusters were

introduced to the main model. The choice of 10 clusters

was determined through a trial and error procedure. In this

regard, different clusters were examined by k-means clus-

tering approach to provide the best results. In the cluster-

based BN model, the target value is computed using

mathematical expectation, E[X]:

E X½ � ¼
P10

i¼1 xipiP10
i¼1 pi

ð17Þ

where xi is the average of ith cluster and pi is the proba-

bility of the cluster.

Furthermore, an ANN model with the same input and

output variable was developed. The ANN model was

Fig. 4 Variations of training and testing data with W
H

Fig. 5 Variations of training and testing data with U
U�

Fig. 6 Variations of training and testing data with K
U�H

Table 1 Summary statistical analysis of the total, training and testing

data sets

Parameter Min Max Mean SD

Total data sets

W (m) 1.4 711.2 60.1 91.1

H (m) 0.14 19.94 1.55 2.12

U (m/s) 0.03 1.73 0.47 0.32

U� (m/s) 0.002 0.553 0.082 0.063

Kx (m
2/s) 0.2 891.9 73.5 137.7

W/H 2.2 403.8 47.5 47.1

U/U* 0.77 19.87 6.94 4.56

K=U�H 3.1 5500.0 745.7 947.6

Training data sets

W (m) 1.4 537.4 58.5 80.0

H (m) 0.14 8.90 1.51 1.60

U (m/s) 0.03 1.73 0.49 0.34

U� (m/s) 0.002 0.553 0.087 0.068

Kx (m
2/s) 0.2 891.9 79.9 150.4

W/H 2.2 403.8 47.1 50.3

U/U* 0.77 19.87 6.84 4.47

K=U�H 3.1 5500.0 700.5 884.8

Testing data sets

W (m) 10.0 711.2 66.2 127.0

H (m) 0.30 19.94 1.72 3.53

U (m/s) 0.10 0.68 0.37 0.17

U� (m/s) 0.006 0.170 0.063 0.031

Kx (m
2/s) 1.4 237.2 48.4 62.6

W=H 10.4 138.5 49.0 31.6

U=U� 1.21 19.06 7.35 4.93

K=U�H 48.7 5500.0 922.0 1151.4
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trained by Levenberg–Marquardt algorithm with 8 neurons

in the hidden layer, which were assigned through a trial and

error procedure. The data sets were normalized using the

following equation:

Q0
i ¼

Qi � Qmin

Qmax � Qmin

ð18Þ

where X0
i is the normalized data, xi is the observed value of

the variable, and xmax and xmin are the maximum and

minimum of the parameter, respectively.

In all BN and ANN models, 80% of the data were

applied for training while 20% of the data were used for

testing.

Performance evaluation criteria

The performance of different models may be evaluated

using the coefficient of determination (R2), the root mean

square error (RMSE), the discrepancy ratio (DR) and the

coefficient of efficiency (E) (Johnson and Omland 2004;

Barati 2011; Omole et al. 2013; Barati 2013; Barati et al.

2014a,b; Hosseini et al. 2016). Generally, the models’

predictions are optimum if R2, RMSE, DR and E are found

to be close to 1, 0, 0 and 1, respectively. Accuracy is

defined as the percentage of DR values that fall between

-0.3 and 0.3 (Kashefipour and Falconer 2002; Seo and

Cheong 1998). DR values greater than 0.3 (DR[ 0.3) and

smaller than -0.3 (DR\-0.3) indicate overestimation

and underestimation for the dispersion coefficient, respec-

tively. The above-mentioned indices (i.e., R2, RMSE, DR

and E) are described as follows:

R2 ¼
Pn

i¼1 ki measuredð Þ � �k measuredð Þ
� �

ki predictedð Þ � �k predictedð Þ
� �� �2

Pn
i¼1ðKxi measuredð Þ � �kx measuredð ÞÞ2

Pn
i¼1ðKxi predictedð Þ � �kx predictedð ÞÞ2

ð19Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Ki measuredð Þ � Ki predictedð Þ

� �2
n

s
ð20Þ

DR ¼ log
K predictedð Þ
K measuredð Þ

ð21Þ

E ¼ 1�
Pn

i¼1ðKi measuredð Þ � Ki predictedð ÞÞ2Pn
i¼1ðKi measuredð Þ � �k measuredð ÞÞ2

ð22Þ

where K and n, respectively, are the longitudinal dispersion

and the number of data. In Eq. (17), �k measuredð Þ and

�k predictedð Þ represent mean values of the measured and pre-

dicted longitudinal dispersion coefficient.

Results and discussion

In the present study, a model was introduced to increase the

efficiency of the existing estimating models for the longi-

tudinal dispersion coefficient (K) in natural rivers. In this

regard, different types of BN models were developed and

organized to assess the efficiency of the BN approach in

dimensional and dimensionless frameworks. The best

structure for the BN, an ANN model based on Levenberg–

Marquardt algorithm, was developed, and the performance

of BN models and the ANN model were assessed by R2,

RMSE and DR indices. The results obtained through test-

ing step are presented in Table 2. According to this table,

the best model performances were achieved by the cluster-

based BN model. It shows that the Bayesian network

models give a more accurate estimation of dispersion

Fig. 7 Modeling strategies: a BN for dimensional data, b BN for

dimensionless data c BN-cluster data of the discrete network
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coefficient compared with the ANN model. For example,

the accuracy of BN models with and without clustering

data (i.e., the BN-cluster and BN-dimensionless), respec-

tively, is 83 and 70%, while the accuracy of ANN model is

less than 50%, which is far less than BN models.

The results of the dimensional and dimensionless BN

models were compared in terms of RMSE, R2 and accuracy.

This evaluation shows that appropriate selection of the

input variables plays an important role in model perfor-

mance. Based on the results, input dimensional variables

(W ;H;U;U�Þ decrease the model performances, whereas

input dimensionless variables of W
H

and U
U�

significantly

improve the model accuracy. Table 2 also confirms that the

BN-clustering method improves the performance of the

main model about 13% and 0.22 in terms of accuracy and

R2, respectively. The model also decreases RMSE of the

main model by 5%. For the BN-cluster model, the observed

and predicted values of dispersion coefficient for testing

data set are presented in Fig. 8.

The BN-cluster model provides predictions closer to the

measured values of the longitudinal dispersion coefficient

in both low and average values of K. Moreover, its pre-

dictions of the extreme values are acceptable. The pro-

posed model predicts the extreme values of 177.7 and

227.6 about 107.42 and 224.67, respectively.

For further discussion about the accuracy of the devel-

oped model, the results are represented against W
H
and U

U�
in

Fig. 9a, b, respectively. It is concluded that the BN-cluster

model is more sensitive to U
U�

than W
H

(i.e., hydraulic

parameters than geometric parameters). The applied model

shows a good performance in Fig. 9a for W
H
\80 and also

W
H
[ 120. Good agreement between observed and predicted

values of the dispersion coefficient is shown in Fig. 9b

when U
U�

is\10, whereas for U
U�

[ 10 a reliable conclusion

cannot be extracted.

The capability and efficiency of the proposed model (the

BN-cluster) was also checked with the existing models

from previous studies. In this regard, the results of the

present study for the explained testing data were compared

with those of existing equations in Table 3. Generally, the

best accurate model is presented by lowest value of RMSE

(close to 0) and highest values of accuracy, coefficient of

efficiency (E) and R2. Considering all these performance

indicators, the superiority of the developed model (the BN-

cluster) over the other models is approved. At first it can be

seen in Table 3 that some existing models, such as Fischer

(1975) and Seo and Cheong (1998), have low accuracy,

and one can easily find out that these models are not

Fig. 8 Performance of BN-cluster model during testing step Fig. 9 Observed and predicted K
U�H

against a W
H
b U

U8

Table 2 Results of the different developed models during testing

step

Model RMSE R2 Accuracy (%)

BN-dimensional 1183.2 0.32 53

BN-dimensionless 836.6 0.555 70

ANN 893 0.428 47

BN-cluster 791.95 0.764 83
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capable to give acceptable results. However, other models

have promising results. The proposed model outperforms

the existing equations in terms of coefficient of efficiency

remarkably. The highest values of E are obtained from the

present model and Eqs. 9 and 10.

The ability of the predictive models is also compared

with the present model in terms of RMSE and R2 in

Figs. 10 and 11, respectively. The scatter plots are obtained

through the BN-cluster model and those of Kashefipour and

Falconer (2002), Etemad-Shahidi and Taghipour (2012),

Sahay and Dutta (2009) and Disley et al. (2015).

The present model has the highest values of the accu-

racy and R2 and the lowest value of RMSE. Regarding R2

values (see Fig. 11; Table 3), the BN-cluster is recognized

as the most accurate model. The highest value of R2 is

about 0.764, which represents a good correlation between

estimated and observed values. The model is then followed

by Etemad-Shahidi and Taghipour (2012) with

R2 = 0.5118. Therefore, the present model provides better

performance in terms of R2. The lowest value of the RMSE

is about 791.95 that is related to the BN-cluster model. It is

also followed by Etemad-Shahidi and Taghipour (2012)

with low value of RMSE = 838.7. The proposed models by

Kashefipour and Falconer (2002) and also Fischer (1975)

show relatively high values of RMSE for K
U�H

. The BN-

cluster model improves the accuracy of the existing models

from 16 to 56% in terms of the accuracy criterion.

To provide more details about the accuracy of the dif-

ferent models, DR value of the developed model and

existing models is compared as shown in Fig. 12. A largeFig. 10 RMSE of different models for testing data set

Table 3 Comparing the results

of this study with some well-

known equations

Model RMSE E R2 Accuracy (%)

Fischer (1975) 7432.36 -41.235 0.4458 36.6

Liu (1977) 1922.7 -1.826 0.3168 53.3

Seo and Cheong (1998) 1151.2 -0.013 0.48 43.3

Kashefipour and Falconer (2002) 1069.18 0.126 0.2619 56.6

Sahay and Dutta (2009) 1052.39 0.153 0.4988 43.3

Etemad-Shahidi and Taghipour (2012) 838.7 0.462 0.5118 70

Disley et al. (2015) 886.46 0.399 0.402 66.6

BN-cluster 791.95 0.521 0.764 83

Fig. 11 R2 of different models

for testing data

Environ Earth Sci (2017) 76:86 Page 9 of 11 86

123



number of estimated values of K
U�H

by the BN-cluster model

have DR values ranging from -0.3 to 0.3, which confirms

the accuracy of the proposed model for predicting disper-

sion coefficient. Moreover, it has roughly symmetric dis-

tribution of DR values. Sahay and Dutta (2009) show the

most frequency, out of the range -0.3 to 0.3, which

introduces the least accuracy in this comparison. In Disley

et al. (2015) and Sahay and Dutta (2009), positive skew-

ness can be observed that implies its overestimation.

Instead, Kashefipour and Falconer (2002) underestimate

the K
U�H

values overall.

Conclusion

Longitudinal dispersion coefficient is one of the most

important factors for surface water quality modeling. This

study presents a new approach of Bayesian network model

with application of cluster data to predict the longitudinal

dispersion coefficient in natural streams. To do this, a large

number of field data were clustered by k-means approach

and inserted as input and output variables for structural

learning of the probabilistic model (i.e., the BN model). To

assess the efficiency of the proposed model, separate ANN

model with the same input variables was developed.

Moreover, the efficiency of the cluster-based BN model

was compared with some of the existing equations for

dispersion coefficient. Results of this study revealed that

application of dimensionless parameters W
H
and U

U�
provides

more accurate predictions of K
U�H

by the BN model, com-

pared to dimensional parameters W ;H;U and U*. The BN

model including dimensionless input variables increases

the performance of the dimensional BN model in terms of

R2 from 0.32 to 0.555 and accuracy from 53 to 70%. Also,

RMSE of BN model using dimensional and dimensionless

input variables is 1183.2 and 836.6, respectively. It can

also be concluded that clustering data linked to the main

BN model significantly improves the model efficiency. The

results indicated that the most accurate model is the BN-

cluster model with highest values of R2 and accuracy

(0.764 and 83%) and lowest value of RMSE (791.95). The

model also greatly outperforms ANN model in terms of the

accuracy, R2 and RMSE.

A comparison between the BN-cluster model and the

existing equations for predicting dispersion coefficient

demonstrated that the present BN model is more accurate.

For the testing data, the BN model improves the accuracy

of the previous predictive models in the range of 13–46%.

The model minimally improved R2 of the previous models

about 0.25 which is a remarkable improvement. Also, the

minimum RMSE among previous tested models is related

to the present BN model. Briefly, the BN-cluster model

provides more accurate prediction of dispersion coefficient

than the existing models. Considering the coefficient of

efficiency (E), it can be derived that the BN model has the

highest value (E = 0.52) which indicates its superiority

over the predictive equations.

Generally, this work showed a conjunctive model of

clustering approach and Bayesian network can be suc-

cessfully applied for predicting dispersion coefficient in

natural streams. The proposed model gives acceptable pre-

dictions of dispersion coefficient for rivers with a wide

range of geometric and hydraulic characteristics. The

cluster-based BN model showed a great ability for pre-

dicting low and medium values of dispersion coefficient

with high correlation between measured and predicted

values. In future research, it is hoped that the procedure of

this study can be successfully applied for other problems in

the field of river and environmental engineering.
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