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Abstract Climate change is known as the long-term

average changes of weather conditions in an area with

significant effects on the ecosystem of the region. Climate

change is believed to have significant impacts on the

water basin and region, such as in a runoff and hydro-

logical system, erosion, environment as well as agricul-

ture. Climate change simulation and scenario design can

serve as a useful tool in reducing the effects of this phe-

nomenon. The objective of this study is to simulate cli-

mate change and design different scenarios in order to

evaluate the site-specific impacts of future climate change

on soil erosion at the Kasilian watershed in the north of

Iran employing seven downscaling scenarios. Hence, the

climate changes were downscaled based on A2 and B1

emission scenarios, using the Institut Pierre Simon

Laplace (IPCM4) with Long Ashton Research Station

Weather Generator model and three climate change sce-

narios, i.e., 10% increase in rainfall, 10% reduction in

rainfall and unchanged rainfall were employed by Sta-

tistical Downscaling Model for the periods of 2011–2030

and 2031–2050. Also, the Revised Universal Soil Loss

Equation (RUSLE) model was used in order to estimate

soil erosion in basis period (1991–2010) and in the sim-

ulated periods (2011–2030, 2031–2050) under effect of

climate change scenarios. The results showed that the

rainfall erosivity factor in the RUSLE model is directly

influenced by climate changes. The mean of soil erosion

was 21.82 (tons ha-1 year-1) in basis period, and there

was an increase of 10–35% for rainfall erosivity and

10–32% for soil loss during 2011–2030, compared with

the present climate. Simulated soil loss under the rainfall

erosivity during 2031–2050 would be 4–28 and 2–26% for

soil loss compared with those under seven downscaling

scenarios in the present climate. Thus, increase in soil

erosion will be definite in four future decades.

Keywords Rainfall erosivity � SDSM � LARS-WG �
RUSLE � Iran

Introduction

Globally, soil erosion is one of the most significant forms

of soil degradation (Portenga and Bierman 2011;

Alkharabsheh et al. 2013) due to the fact that adverse

influences of widespread soil erosion on soil degradation,

agricultural production, water quality, hydrological sys-

tems and environments have long been recognized as

severe problems for human sustainability (Lal 1998). Soil
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erosion can be evaluated from two issues, including: on-

site and off-site issues. On-site issues include a reduction in

the water and nutrient-holding capacity of soils, loss of

organic matter and a reduction in soil depth to support roots

and biota (Wardle et al. 2004; Pimentel 2006; Mullan

2013). The off-site issues are often more evident and

include loading and sedimentation of watercourses and

reservoirs and increases instream turbidity, all of which can

disturb aquatic ecosystems and upset the geomorphological

functioning of river systems (Shiono et al. 2013). Erosion

brings about deterioration of soil structure which decreases

the infiltration rate, thereby increasing runoff. This implies

that less water is available for plants (Pimentel 2006). In

the long-term, top soil can get lost; hence, fertility and

productivity could decrease (Lal 2001). Soil erosion is

influenced by several factors such as climate, land use and

topography with climate as one of the major factors of soil

erosion. Climate change is believed to have significant

impacts on the water basin and region, such as in a runoff

and hydrological system, erosion, environment and agri-

culture. Soil erosion also responds to the total amount of

rainfall along with the differences in rainfall intensity;

however, the dominant variable appears to be rainfall

intensity and energy rather than rainfall amount alone. One

study has predicted that for every 1% increase in total

rainfall, erosion rate would increase only by 0.85% if there

was no correspondent increase in rainfall intensity. On the

other hand, if both amount and intensity of rainfall were to

change simultaneously, it is predicted in a statistically

representative manner that erosion rate will increased by

1.7% for every 1% increase in total rainfall (Pruski and

Nearing 2002a). Precipitation change in the form of

intensity and amount of rainfall is one of the most direct

influences on runoff and soil erosion (Nearing et al. 2005;

Pruski and Nearing 2002b). Some studies have shown that

the rate of soil erosion quickly responds to any change in

rainfall such as intensity, duration and frequency of rainfall

or the rainfall seasonal patterns (Meusburger et al. 2012;

Serpa et al. 2015; Simonneaux et al. 2015). Climate change

leads to changes in climate variables such as precipitation,

temperatures, wind and solar radiation that these changes

affect soil erosion (Shiono et al. 2013). The most direct of

the impacts of climate change on soil erosion is the change

in rainfall erosivity (Favis-Mortlock and Guerra 1999;

Mullan et al. 2012). Atmospheric-Ocean General Circula-

tion Models (GCMs) is a major source of global climate for

present and future simulations using different scenarios of

climate change (IPCC 2001). Downscaling techniques are

employed to convert the coarse spatial resolution of the

GCMs output into a fine resolution. There are various

downscaling techniques for investigating future climate

change and estimation of climate parameters such as pre-

cipitation, temperature. Dibike and Coulibaly (2005) and

Hassan et al. (2014) compared LARS-WG1 and SDSM2

downscaling techniques with results showing that the

SDSM has a better performance when compared to LARS-

WG; however, SDSM is slightly underestimated for the

wet- and dry-spell lengths. Furthermore, findings of Dibike

and Coulibaly (2005) for maximum and minimum tem-

peratures illustrated that SDSM provides a slightly better

result when compared to LARS-WG. In the research of Liu

et al. (2011), SDSM and bilinear interpolation (delta)

methods were utilized to generate daily series in the Yel-

low River Basin. The results showed that SDSM is more

accurate for downscaling of climate parameters.

Researcher also explained that SDSM is not a suit-

able method for estimating the daily precipitation series

(Chu et al. 2008; Hessami et al. 2008; Liu et al. 2008).

Nearing (2001), Pruski and Nearing (2002a, b), Plangoen

and Babel (2014) applied the delta change method to

generate future precipitation, and results showed that this

model has enough accuracy as a downscaling technique.

Anumbers of studies have reported the potential impact of

climate change on soil erosion (Imeson and Lavee 1998;

Oneal et al. 2005; Bosco et al. 2009; Zhang et al. 2009;

Maeda et al. 2010; Mullan et al. 2012; Mullan 2013; Shiono

et al. 2013; Litschert et al. 2014). Given the potential of

climate change to increase soil erosion and its associated

adverse impacts, modeling future rates of erosion is a fun-

damental step in its assessment as a potential future envi-

ronmental problem. Prediction models have become

increasingly important tools in assessing soil erosion and are

the only practicable means in assessing the response of soil

erosion to future climate change (Lal 1998). To provide an

effective result for soil erosion hazard assessment and sim-

ulation of soil erosion risk in future, remote sensing (RS) and

geographical information system (GIS) technologies were

adopted and a numerical model was developed using

RUSLE3method. In the following, we computed soil loss for

a basis period (1991–2010) and for two future time periods

(2011–2030 and 2031–2050) for each of four sets of down-

scaled climate data corresponding to two Intergovernmental

Panel on Climate Change (IPCC) global emissions scenarios

(A2, B1) each modeled using one GCMs (HadCM3).

Materials and methods

Study area

Kasilian watershed is the section of Tallar catchment which

is located in the central region of north Iran. Surface area of

1 Long Ashton Research Station Weather Generator.
2 Statistical Downscaling Model.
3 Revised Universal Soil Loss Equation.
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the watershed is 342.86 km2, and its coordinates are 53�10–
53�260E and 35�10–36�320N (Fig. 1). The minimum and

maximum heights of the watershed are 286 and 3288.88 m

above sea level, respectively, and its average precipitation

equals 733.3 mm in semi-humid and cold climate. In terms

of Iranian geological classification, this watershed belongs

to central Alborz with its surface rocks belonging to the

first, second and third eras. The majority of this watershed

is covered with different forest species containing other

land uses such as farm, rural and agricultural uses. Its soil

is primarily of podzolic, brown forest and sedimentary

types. In recent years, a lot of rangeland and agricultural

lands were converted into residential areas due to favorable

climatic conditions.

Methods

In this study, future climate change scenarios were simu-

lated in order to evaluate their potential impacts on soil

erosion in Kasilian, Iran. To achieve this objective, data

were provided from rain gauge stations of Kasilian

watershed as well as calculating the rainfall erosivity index

in the basis period (1991–2010), and then the daily rainfall

data inputted into LARS-WG model along with the rainfall

data of two future periods (2011–2030, 2031–2050) were

generated based on A2 and B1 scenarios. In the next step,

based on the generated data, the rainfall erosivity index of

the next period is provided, and the zoning map of rainfall

erosivity in the basis and future periods was obtained and

compared. In this study, RUSLE model was employed to

estimate the average annual soil loss (Renard et al. 1997)

using ArcGIS 10.3. The following sections illustrate the

computation of the R, K, LS, C and P factors from pre-

cipitation data, soil surveys, a digital elevation model

(DEM) and land use maps. The spatial resolution of the

data was set at 30 m, which is consistent with the Landsat

thematic image. A flowchart describing the components of

the modeling framework is presented in Fig. 2, while the

main components involved in the study are shown in detail

below.

Downscaling

GCMs provide physically-based predictions of the way

climate might change as a result of increasing concentra-

tions of atmospheric CO2 and other trace gases. However,

Fig. 1 Location of Kasilian watershed
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they were not designed for climate change impact studies

and do not provide a direct estimation of hydrological

response to climate change (Liu et al. 2011). The GCM

outputs need to be converted into a reliable daily rainfall

series at the selected watershed scale (Dibike and Couli-

baly 2005). So-called downscaling techniques are usually

used to estimate local and regional climate information

extracted from atmospheric large data or output of global

circulation models (Wilby et al. 2002). Statistical down-

scaling relies on developing mathematical transfer func-

tions between observed large-scale predictor variables and

the surface environmental variable of interest (local-scale

predictands) for the present day and in a subsequent forcing

of these transfer functions for the future under the guidance

of general circulation models (Wilby et al. 2002). SDSM-

DC and LARS-WG methods are used to generate daily

series.

Statistical Downscaling Model (SDSM)

SDSM is a decision support tool for assessing local

climate change impacts using a robust statistical

downscaling technique. The SDSM uses a conditional

process to downscale precipitation. Local precipitation

amounts depend on wet-/dry-day occurrences, which in

turn depend on regional-scale predictors (Wilby et al.

Fig. 2 Research flowchart
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2002). SDSM is best described as a hybrid of the

stochastic weather generator and regression-based

methods. It mainly contains four parts: (1) identification

of predictions and predictors; (2) model calibration; (3)

weather generator; and (4) generation of future series of

climate variables (Liu et al. 2011).

LARS-WG

LARS-WG model is one of the most famous random data

generating models used for simulation of the rainfall

amounts, minimum and maximum temperatures and solar

radiation in a single location under the present and future

climate conditions (Semenov et al. 2010). This model is

consisted of three parts including calibration, evaluation

and generation or simulation of meteorological data of the

coming decades. The basic requirement of model in cali-

bration step is a file that specifies the behavior of the cli-

mate in the previous period. This file is prepared using the

daily data of climatic parameters in the study region

obtained from Water Resources Management Organization

in Mazandaran Province by considering a basis period to

perform the model.

Climate change scenarios

The rainfall data were obtained from 1991 to 2010 (basis

period) and inputted into the model, and then data evalu-

ation and generation of meteorological data were imple-

mented for two statistical periods of 2011–2030 and

2031–2050 (future period). After ensuring the accuracy of

six weather stations’ rainfall data and examining their

homogeneity using Pettit and SNHT4 test in the XLSTAT

software at probability level 95%, data were converted into

the related format while the LARS-WG and SDSM models

were calibrated for this period. To investigate the accuracy

of the calibrated model, the root-mean-square error

(RMSE) and mean difference (BIAS) were used as shown

in the following equation:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

Xi � Yið Þ2
r

ð1Þ

BIAS ¼
Pn

i¼1 Xi�Yið Þ
n

ð2Þ

where Xi and Yi are the values observed and estimated by

the model for each station and n is the total number of

evaluated samples (Hassan et al. 2014). After ensuring the

capability of LARS-WG and SDSM model in the proper

simulation of rainfall amounts in the basis period, this

model was simulated for statistical downscaling the IPCM4

global circulation model data to simulate the rainfall during

the next period to generate synthetic data over the next two

periods in each of the stations.

In the scenario making using SDSM model, the series of

observed daily weather and NCEP5 data set were employed,

and by utilizing large-scale atmospheric variables extracted

from GCM model, simulated climate scenarios were pro-

duced for present and future periods (Wilby and Harris

2006). In this part of the study, three scenarios, i.e., 10%

increase in precipitation, 10% reduction in precipitation and

unchanged precipitation for future, were used.

RUSLE model

The RUSLE is an empirical erosion model designed to

predict long-time average annual soil loss by runoff (Park

et al. 2011; Pradeep et al. 2015). The RUSLE represents

how climate, soil, topography and land use affect rill and

interrill soil erosion caused by raindrop impact and surface

runoff (Renard et al. 1997). Therefore, this paper uses the

RUSLE empirical model to predict annual loss. The

RUSLE can be expressed as (Renard et al. 1997)

A ¼ R� K � L� S� C � P ð3Þ

where A is the average soil loss caused by erosion

(tons ha-1 year-1), R is the rainfall erosivity factor, K is the

soil erodibility factor,L is the slope length factor, S is the slope

steepness factor, C is the cover and management practice

factor, and P is the conservation support practice factor.

Calculation of RUSLE parameters

Rainfall erosivity factor (R)

The rainfall factor is a numerical descriptor of the ability of

rainfall to erode soil (Vrieling et al. 2014;Nearing et al. 2015).

R factor in RUSLE model is considered as rainfall erosivity

index and defined based on maximum rainfall intensity, and

this factor is calculated with two parameters of total rainfall

kinetic energy with 30-min maximum rainfall (Eq. 4):

R ¼ 1

n

X

n

i¼1

X

m

k¼1

KE I30ð Þ
" #

ð4Þ

where R is rainfall erosivity (MJ mm ha-1 h-1 year-1),

KE is the total kinetic energy of each shower (MJ ha-1),

I30 is the maximum intensity of 30-min rainfall (mm h-1)

(Renard and Freimund 1994). Also, the kinetic energy of

each shower is calculated through Wischmeier and Smith

equation (1978) (Eq. 5):

KE ¼ 11:98þ 8:73 log10 Ið Þ: ð5Þ

4 Standard Normal Homogeneity Test. 5 National Centers for Environmental Prediction.
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There were only a limited number of rainfall register

stations in Kasilian watershed and its surrounding which

makes the calculation of rainfall erosivity difficult. There-

fore, in order to overcome this defect, themonthly and annual

average rainfall amounts were employed to estimate R factor

by Renard and Freimund (1994) equation resulting from

Wischmeier studies. Hence, after determining the desired

stations, themonthly and annual rainfall was achieved. In the

next step, Fournier index and R factor obtained for all rain

gauge stations in Kasilian watershed using Eq. 6.

F ¼
P12

i¼1 P
2
i

P12
i¼1 P

ð6Þ

where Pi is the average rainfall (mm) and p is the annual

average rainfall (mm).

Fournier index equation was calculated for stations with

rain gauge. In the next step, there was a relationship between

the values obtained from Fournier index and rainfall ero-

sivity index. There was also a similar relationship between

rainfall erosivity index values with 24-h rainfall and the

annual rainfall values, and finally among Fournier index,

24-h rainfall and the annual rainfall the best factor that was

able to make a relationship with rainfall erosivity index was

fitted on the other stations without rain gauge. Finally, the

rainfall erosivity map in Kasilian watershed was prepared

using the interpolation method in ArcGIS 10.3 software.

Soil erodibility factor (K)

The soil erodibility factor (K) describes the susceptibility

of soil to erosion by rainfall (Ward et al. 2009). The

K factor is related to soil texture, organic matter content,

permeability and other factors and is basically derived from

the soil type (Wischmeier et al. 1971). In this study,

K factor was calculated using equation that requires four

steps of calculation (Auerswald et al. 2014):

1. K1 ¼ 2:77� 10�5 � fsiþvfsa � 100� fclð Þð Þ1:14
for fsiþvfsa\70 %

K1 ¼ 1:77� 10�5 � fsiþvfsa � 100� fclð Þð Þ1:14
þ 0:0024� fsiþvfsa þ 0:16 for fsiþvfsa [ 70 %

2. K2 ¼ 12� fOMð Þ=10 for fOM\4 %

K2 ¼ 0:8 for fOM [ 4 %

3. K3 ¼ K1 � K2 þ 0:043� A� 2ð Þ þ 0:033� P� 3ð Þ
for K1 � K2 [ 0:2

K3 ¼ 0:091� 0:34� K1 � K2 þ 1:79� K1 � K2ð Þ2
þ 0:24� K1 � K2 � Aþ 0:033� P� 3ð Þ
for K1 � K2\0:2

4.
K ¼ K3 for frf\1:5 %

K ¼ K3 � 1:1� exp �0:024� frfð Þ � 0:06ð Þ
for frf [ 1:5 % ð7Þ

where fsiþvfsa: mass fraction (in%) of silt plus very fine sand

Si ? vfSa (2…100 lm) in the fine earth fraction, fcl: mass

fraction (in%) of clay (\2 lm) in the fine earth fraction,

fOM: mass fraction (in%) of organic matter in the fine earth

fraction, A: soil structure index (1…4) increasing from

very fine granular to blocky, platy or massive (for defini-

tion of the classes, see Wischmeier et al. 1971), C: per-

meability index (1…6) increasing from rapid to very slow

(for definition of the classes, see Wischmeier et al. 1971).

Slope length and steepness factor (LS)

The slope length factor L is defined as the distance from the

source of runoff to the point where deposition begins, or

runoff becomes focused into a defined channel. As slope

length increases, the overland flow and flow velocity also

increase steadily, resulting in greater erosion forces applied

to the soil surface (Ranzi et al. 2012). The equation of

Moore and Burch (1986), adopted for estimates of erosion

at the catchment scale, was used.

L ¼ 1:4 As=22:13½ �0:4 ð8Þ

S ¼ Sinb=0:0896½ �1:3 ð9Þ

where As is the area of plot per unit width and b is slope

angle, computed from the DEM.

P factor (erosion control practice factor)

P factor is the ratio of soil loss with a specific support

practice to the corresponding loss with upslope and

downslope cultivation (Renard et al. 1997). As there is no

significant support practice for land in Iran (and informa-

tion on subsurface drainage is not available), this factor is

assumed to be equal to 1 for Kasilian watersheds.

Cover management factor (C factor)

The land cover and management factor represent the

effects of vegetation, management and erosion control

Table 1 Evaluation in rainfall simulation of basis period

Station MBE RMSE R2

Darzi Kola 3.06 3.86 0.9643

Kaleh 4.22 6.55 0.9395

Rig Cheshmeh 9.3 11.3 0.8945

Sangdeh 3.89 5.97 0.9609

Shirgah 8.83 10.54 0.9127

Talar 6.73 7.51 0.9254
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practices on soil loss (Renard et al. 1997). The C factor

expresses the relation between erosion on bare soil and

erosion under cultivation and is based on plant cover,

production level and cropping techniques.

Simulation of soil erosion

After preparing the required factors for RUSLE model,

they were entered into ArcGIS 10.3 software and were

multiplied in Raster calculator. In order to simulate erosion

values, K, C, LS and P factors were assumed to be constant

for simulation period. In addition, to estimate rainfall

erosivity by the use of LARS-WG downscaling model and

two scenarios A2 and B1, precipitation values for the

periods of 2011–2030 and 2031–2050 were produced.

Employing SDSM-DC model, three scenarios were applied

and precipitation values for all three scenarios of the model

for the years 2011–2030 and 2031–2050 were prepared.

Subsequently, each of these values was inserted into

RUSLE model after being converted into rainfall erosivity

values.

Results and discussion

Calibration and validation of SDSM and LARS-WG

Results of LARS-WG model accuracy assessment in

rainfall simulation are shown in Table 1. According to this

table, the accuracy evaluation was assessed based on R2,

RMSE and BIAS indices for a 20-year period from 1991 to

2010 in six stations. Results indicated that there was an

agreement between the simulated and observed amounts

while low amounts of RMSE and BIAS and high amount of

R2 in different stations showed the same agreement. These

results indicate that LARS-WG model has reasonable

power in downscaling the rainfall data in IPCC4 model.

For illustrative purposes, the comparisons of monthly

mean of the simulated and observed rainfall are shown in

Fig. 3 for the study area. There are good matches between

monthly mean of the simulated and observed precipita-

tion. So, the mentioned model can be employed to gen-

erate the climatic data over the anticipated period. Ashraf

et al. (2010) also emphasized the appropriate ability of

IPCC4 model in small scaling of rainfall data in Iran.

Dibike and Coulibaly (2005), Hashmi et al. (2009) and

Hassan et al. (2014) also showed daily rainfall was well

simulated by the LARS-WG method. SDSM enables the

production of climate change time series at sites, for

which there are daily data for model calibration, as well as

archived GCM output to generate scenarios for future

decades. The recent Decision Centric (SDSM-DC)

version can also produce synthetic weather series and fill

gaps in observed meteorological data (Wilby et al. 2014).

The parameters established during the calibration process

between observation and simulation data were utilized for

validation. The mean daily precipitation, average wet- and

dry-spell lengths were employed as statistical perfor-

mance evaluation criteria. Furthermore, Fig. 4 shows

comparison of the downscaled and observation precipi-

tation during the validation period for Sangdeh station.

Results showed that the SDSM model is a useful tool for

generating daily weather data under different scenarios,

based on expert’s opinions in present and future periods.

Dibike and Coulibaly (2005), Khan et al. (2006), Xu et al.

(2009) and Hassan et al. (2014) also confirmed that SDSM

is a suitable model to precipitation downscaling. Gener-

ally, these models have shown enough accuracy in several

researches as expected Hassan et al. (2014), and Dibike

and Coulibaly (2005) explained that SDSM underesti-

mates for the wet- and dry-spell lengths throughout the

year. Therefore, SDSM and LARS-WG are suit-

able methods for estimating the mean daily precipitation

and wet-/dry-spell length, respectively. As earlier men-

tioned, there are various downscaling techniques avail-

able; however, the one that provides the most reliable

estimates of daily rainfall time series was not clearly

stated (Dibike and Coulibaly 2005).

Climate change scenarios

Regional changes in annual average rainfall in different

stations of LARS-WG scenarios are shown in Table 2. As

shown in the table, the maximum rainfall in the basis

period is related to the Shirgah station (1045 mm) while

the minimum rainfall is for Darzi Kola station (618 mm).

The comparison of mean rainfall in the basis period and

simulated period at difference stations shows in all sce-

narios the amount of rainfall was more than that of the

basis period. The results show the amount of rainfall will

increase 12% in A2 scenario and 14% in B1 scenario in

comparison to the basis period by the year 2030. The

results also indicate that there will be 4 and 7% increase in

rainfall in A2 and B1 scenario, respectively, by the year

2050 when compared to the basis period. Liu et al. (2011),

Plangoen and Babel (2014) also explained continued

increase in precipitation during the twenty-first century. In

order to investigate the role of different months of the year

in the amount of rainfall erosivity and its effect on erosion,

different months in two simulated periods and basis period

were compared using the mean of monthly rainfall in the

observed and simulated periods under A2 and B1 scenarios

of LARS-WG model (Fig. 5). The results showed that the

mean of monthly rainfall in both scenarios was more than
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that of basis period and September and December had the

maximum and minimum rainfall amount.

The result of climate change scenarios at SDSM-DC

model showed by applying the first scenario (10% increase

in precipitation) in the first period of stimulated future

climate, rainfall value will increase by 13% when com-

pared to basis period and also mean rainfall will increase

by 126 mm in study area. In the second scenario (10%

reduction in precipitation), the mean rainfall will reduce by

53 mm, and finally, in the third scenario (unchanged pre-

cipitation), the mean rainfall will increase by 48 mm. The

results of first and second simulated periods indicate if the

10% increases in precipitation or unchanged precipitation

exist, for both of the simulated scenarios, the amount of

annual rainfall will be more than that of the basis period.

However, if 10% reduction in precipitation exists, the

amount of annual rainfall will reduce in both the simulated

scenarios when compared to the basis period (Table 3).

Fig. 3 Comparison of the

observed and simulated mean

monthly precipitation using

LARS-WG in the basis period

(1991–2010)
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Fig. 4 Validation results of

SDSM downscaling for

precipitation for Sangdeh

station

Table 2 Mean annual

precipitations under LARS-WG

scenarios (mm)

Station 1991–2010 A2 B1

2011–2030 2031–2050 2011–2030 2031–2050

Darzi Kola 618 690 594 703 630

Kaleh 686 708 676 733 699

Rig Cheshmeh 752 1074 1024 1105 1043

Sangdeh 846 897 829 923 851

Shirgah 1045 1044 954 1074 991

Talar 987 1112 1045 1078 1061

Mean 822 921 854 936 879
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Annual soil loss in the basis period

Model input parameters were derived using remote sensing

data and field survey and integrated in GIS environment to

compute average annual soil loss and assess the soil ero-

sion risk in Kasilian watershed. The five-parameter layers

were all converted into a grid with 30 9 30 m cells in a

uniform coordinate system. The GIS input layers were then

multiplied, as described by the RUSLE, to estimate annual

soil loss on a pixel-by-pixel basis, and the spatial distri-

bution of the soil erosion in the study area was obtained.

The input maps of R factor of the whole watershed were

interpolated employing a spline interpolation through GIS

(Fig. 6). From Fig. 6, it can be seen that erosivity values

are reduced from northwest to southeast depending on

precipitation characteristics. The minimum and maximum

R value for the study area was 179 and

272 MJ mm ha-1 h-1 year-1 in basis period. K values

ranged from 0.32 to 0.44, and the map of K values was

generated to illustrate spatial distribution of erodibility

(Fig. 6). A topography map with a spatial resolution of

30 m was used to develop a map of the slope length and

slope steepness factor (LS) by using (8) and (9). The

highest LS value for the Kasilian watershed was calculated

as 54.235. C value is provided using land use map 2011

(Fig. 6), and the maximum and minimum amounts of

C value are for rangeland and forest, respectively. P factor

values are assumed as 1 for the watershed, because only a

very small area has conservation practices. As seen in

Fig. 6, average annual soil loss is between 0 and

1022 tons h-1 year-1.

In line with the studies, the results of rain erosion

intensity showed that in areas where rainfall erosivity was

more than other points, the risk of soil erosion in the area

has increased equally. Rain erosion rates are reduced from

the northwest to the southeast of watershed, which is

related to the rainfall reduction as well as rainfall uneven

spatial distribution in the watershed. The increase in slope

length led to increased power water flow and transmission

of the erosion force in higher levels of soil and the
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Fig. 5 Comparison in the mean

of rainfall under the LARS-WG

scenarios in basis and simulated

period

Table 3 Mean annual precipitations under SDSM-DC scenarios (mm)

Station 1991–2010 10% increase in precipitation Unchanged precipitation 10% decrease in precipitation

2011–2030 2031–2050 2011–2030 2031–2050 2011–2030 2031–2050

Darzi Kola 618 738 627 624 620 604 593

Kaleh 686 760 722 707 694 615 599

Rig Cheshmeh 752 825 783 799 782 712 684

Sangdeh 846 980 905 900 873 802 763

Shirgah 1045 1087 1076 998 965 890 874

Talar 987 1282 1241 1177 1169 972 955

Mean 822 945 892 867 850 769 745
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amount of erosion is increased (Ranzi et al. 2012). The

results are in agreement with the results of many studies

such as Prasannakumar et al. (2012), Ranzi et al. (2012)

based on the direct role of slop length to increase the

erosion rate. The results showed that vegetation cover is

the most important obstacle against erosion and the

increased erosion through converting each land use into

residential representing the effects caused by human

intervention. Soil erodibility map showed that in the areas

with loam texture, the erosion rate was higher than the

other areas and the areas with clay loam texture have

lower erosion rate. In general, there is a close relationship

between the aggregates stability and erodibility factor, so

that the erosion resistance increases by decreasing the

diameter (Giglo et al. 2014; Stanchi et al. 2015). There-

fore, by increasing the clay content, the adhesive force

between soil particles is enhanced, permeability and

hydraulic conductivity of the soil are decreased, and the

shear force is increased to carry the soil. On the other

hand, in some areas of watershed where bare soils faced

with severe weathering, the K value was higher than other

areas. The final map of soil erosion risk in the basis

period showed that most of the surfaces of the study area

surface were in poor and low erosion level because many

parts of the Kasilian watershed were in forest areas with

appropriate vegetation cover. The vicinity of villages and

pastures with fields for dry farming that were later

abandoned, along with land use changes, especially from

forest to residential, as well as conversion of dense forests

into semi-dense forests and forest into pasture, were at

high risk and very high erosion level. The weighing map

of soil loss rate shows that the soil loss rate in Kasilian

Fig. 6 Input of RUSLE model in study area
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Fig. 7 Rainfall erosivity map in future period
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watershed is between 0 and 1022 tons ha-1 year-1 in

which the highest soil loss rate is in the pastures in

vicinity of villages as well as the areas with poor vege-

tation cover.

Annual soil loss in the future period

To simulate soil erosion in future period, all climate

change scenarios were applied on the rainfall erosivity.

Thereafter, rainfall erosivity zonation maps were pre-

pared for all future climate scenarios (Fig. 7). The

results showed that the 10% increase in rainfall scenario

in the SDSM-DC model has the most erosivity between

all the scenarios and in all of the rainfall erosivity maps,

and erosivity value in future period has increased in

comparison to basis period that these results are in line

with the results of studies Zhang et al. (2009), Litschert

et al. (2014) and Plangoen and Babel (2014) in rainfall

erosivity increase. In fact, the results showed that

changes in rainfall erosivity index are totally related to

rise and fall of annual rainfall value. In addition, results

indicated that between different levels of rainfall ero-

sivity, there will be increase in rainfall erosivity in terms

of type of scenario during the future period. So that with

10% increase in rainfall trend, rainfall erosivity value

will increase by 35% and even if rainfall trends decrease

by 10%, the erosivity will also increase by 11%, too. On

the other hand, if the trend of precipitations does not

change, rainfall erosivity will increase by 24% in the

study area, and thus, increase in rainfall erosivity trend

will be unavoidable for future period. Zhang et al.

(2009) in China with A2 and B1 scenarios have esti-

mated 20% increase in rainfall erosivity in three periods

of 2020, 2050 and 2080. Also, Segura et al. (2014) in the

USA and Plangoen and Babel (2014) in Thailand have

predicted 11 and 14% increase in rainfall erosivity in

future. Spatial changes in rainfall erosivity showed that

rainfall erosivity boundary will change in future years

and will move toward high areas. Nearing et al. (2005)

and Diodato and Bellocchi (2007) have confirmed the

trend of increase in rainfall erosivity in the high areas.

Orographic rainfalls and changes due to population

increase and land use change are among the main rea-

sons for rainfall changes that directly affect the rainfall

erosivity (Bonacina 1945).

In the next step, by multiplying all the simulated rainfall

erosivity maps in the inputs of RUSLE model, soil loss

value was obtained for 2011–2030 and 2031–2050 periods.

Furthermore, soil erosion scenarios were calculated based

on ten climate change scenarios in Table 4.

According to the maximum and minimum erosion

condition in erosion hazard map (Fig. 8), the mean of each

erosion scenario with the mean of erosion in basis period is

shown in Fig. 9. As it can be seen in this figure, 10%

increase in rainfall scenario has the most significant soil

loss value in the all of climate change scenarios in 2030.

Also, soil erosion under the influence of climate change

scenarios in SDSM-DC model is much more than LARS-

WG model. The results showed that soil erosion value in

basis period was lower than all scenarios of climate change

for 2030 and 2050. So that, according to scenarios 7 and 8,

if rainfall changes trend is constant, soil erosion value will

increase in future years in comparison to basis period, and

therefore, the increase in soil erosion will be definite in the

future. Bosco et al. (2009) and Plangoen and Babel (2014)

also estimated the increase in erosion in the coming dec-

ades. Given this potential for climate change to increase

soil erosion rates and its impacts, modeling future erosion

rates is a crucial step in assessing the potential future of

agricultural and environmental problems that may accom-

pany increasing erosion rates.

Conclusion

Soil loss was predicted to increase from the period of

1991–2010 to 2011–2050 according to a series of simula-

tions utilizing the RUSLE erosion model with LARS-WG

and SDSM-DC downscaling models. The climate changes

have had an important impact on the rainfall erosivity.

Table 4 Type of soil erosion scenario in study area

Type of soil erosion scenario Scenario cod

A2 scenario for 2011–2030 1

B1 scenario for 2011–2030 2

A2 scenario for 2031–2050 3

B1 scenario for 2031–2050 4

10% increase in rainfall for 2011–2030 5

10% increase in rainfall for 2031–2050 6

Unchanged of rainfall for 2011–2030 7

Unchanged of rainfall for 2031–2050 8

10% decrease in rainfall for 2011–2030 9

10% decrease in rainfall for 2031–2050 10
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Fig. 8 Simulation of soil erosion map under the influence of climate change scenarios
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With every change in climate scenarios, change in rainfall

erosivity can also be expected. With a 1% increase in

rainfall erosivity, soil erosion value will increase from 0.8

to 1%. Therefore, the results have demonstrated that all soil

erosion scenarios were more than soil erosion of the basis

period. Even if there is no change in rainfall trend until

2030 and 2051, soil erosion will increase by 35 and 23%,

respectively, and thus, increase in soil erosion will be

definite in future.
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