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Abstract Distributed hydrological models are increasingly

used to describe the spatiotemporal dynamics of water and

sediment fluxes within basins. In data-scarce regions like

Ethiopia, oftentimes, discharge or sediment load data are

not readily available and therefore researchers have to rely

on input data from global models with lower resolution and

accuracy. In this study, we evaluated a model parameter

transfer from a 100 hectare (ha) large subwatershed

(Minchet) to a 4800 ha catchment in the highlands of

Ethiopia using the Soil and Water Assessment Tool

(SWAT). The Minchet catchment has long-lasting time

series on discharge and sediment load dating back to 1984,

which were used to calibrate the subcatchment before

(a) validating the Minchet subcatchment and (b) through

parameter transfer validating the entire Gerda watershed

without prior calibration. Uncertainty analysis was carried

out with the Sequential Uncertainty Fitting-2 (SUFI-2) with

SWAT-Cup and ArcSWAT2012. We used a similarity

approach, where the complete set of model parameters is

transposed from a donor catchment that is very similar

regarding physiographic attributes (in terms of landuse,

soils, geology and rainfall patterns). For calibration and

validation, the Nash-Sutcliff model efficiency, the Root

Mean Square Error-observations Standard Deviation Ratio

(RSR) and the Percent Bias (PBIAS) indicator for model

performance ratings during calibration and validation

periods were applied. Goodness of fit and the degree to

which the calibrated model accounted for the uncertainties

were assessed with the P-factor and the R-factor of the

SUFI-2 algorithm. Results show that calibration and vali-

dation for streamflow performed very good for the sub-

catchment as well as for the entire catchment using model

parameter transfer. For sediment loads, calibration per-

formed better than validation and parameter transfer yiel-

ded satisfactory results, which suggests that the SWAT

model can be used to adequately simulate monthly

streamflow and sediment load in the Gerda catchment

through model parameter transfer only.

Keywords Streamflow � Sediment load � SWAT � SUFI-2 �
Uncertainty analysis � Model parameter transfer � Ethiopia

Introduction

Key aspects of regional hydrological assessments are accu-

rate and reliable predictions of water fluxes and state vari-

ables such as runoff, evapotranspiration, groundwater

recharge and sediment loads in watersheds. Distributed

hydrological models are increasingly being used for this

purpose, relying to a greater extent on computing power and

remotely sensed information (Kumar et al. 2013). The spa-

tial distribution of hydrological variables simulated with

thosemodels is achieved by accounting for spatial variability

of typical physical characteristics like topography, land

use/land cover, soil types and meteorological variables such

as temperature and precipitation. Recurrent challenges in

modelling medium to large scale watersheds (102–105 km2)

are typically overparameterization, parameter non-identifi-

ability, non-transferability of parameters across calibration
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scales and across spatial scales and locations and last but not

least, increasing computing time (Beven 1993; Haddeland

2002; Samaniego et al. 2010; Kumar et al. 2013). Because

distributed hydrological models are spatially complex and

deal with large numbers of unknown parameters, parame-

terization techniques have to be applied. The most common

technique is based on the hydrological response unit (HRU),

in which complexity is reduced through cell grouping of

homogeneous units, using basin physical characteristics

(Beven 1993; Abbaspour et al. 2007b; Arnold et al. 2012;

Kumar et al. 2013). Other major challenges when applying

distributed hydrological models are the non-transferability

of model parameters through spatial resolution and trans-

ferability of parameters across scale and space. Several

studies have shown that shifting model parameters across

calibration scale generates bias in simulation of water fluxes

and state variables (Haddeland 2002; Liang et al. 2004;

Samaniego et al. 2010). Similarly, discrepancies occur when

parameters are transferred across locations (Merz and

Blöschl 2004; Samaniego et al. 2010; Smith et al. 2012;

Singh et al. 2012). However, relatively few researchers have

attempted tomodel parameter transfer so far and none, to our

knowledge, have ever tried it in Ethiopia.

There have been numerous studies conducted in the

Ethiopian highlands on modelling discharge and soil ero-

sion with SWAT (Ndomba et al. 2008; Mekonnen et al.

2009; Setegn et al. 2010; Easton et al. 2010; Betrie et al.

2011; Notter et al. 2012; Yesuf et al. 2016; Lemann et al.

2016) to cite an incomplete list only. All of them focused

on modelling with limited measured data, and none did

attempt the model parameter transfer for lack of appro-

priate opportunities. The setup in this study is probably

quite unique and non-existent in Ethiopia.

Several studies, outside of Ethiopia, focussed on tem-

poral transfers of model parameters (Bingner et al. 1997;

Liew and Garbrecht 2003; Abbaspour et al. 2007b; Chau-

bey et al. 2010; Sheshukov et al. 2011; Douglas-Mankin

et al. 2013; Seo et al. 2014) and others more on a spatial

transfer (Vandewiele and Elias 1995; Santhi et al. 2001;

Merz and Blöschl 2004; Parajuli et al. 2009; He et al.

2011; Kumar et al. 2013).

For example, Merz and Blöschl (2004) examined the

performance of various methods of regionalizing parame-

ters of a conceptual catchment model in 308 Austrian

catchments. They concluded that the methods based on

spatial proximity performed better than those based on

physiographic catchment attributes. Similarly, Kumar et al.

(2013) concluded that the similarity approach, where a

complete set of parameters is transposed from a donor

catchment that is most similar in physiographic terms,

performed best. Kokkonen et al. (2003) transferred the

complete parameter set from the catchment outlet, while

McIntyre (2004) defined the most similar catchment in

terms of area, precipitation and baseflow and Parajka et al.

(2005) used the mean for elevation, stream network density

and lake index to define similarity.

The aim of the present study is to analyse the effects of

this parameter transfer technique on the simulation of water

fluxes and sediment loads at multiple modelling scales and

locations. We specifically investigate the model parameter

transfer from one subcatchment to the entire watershed for

sediment load and streamflow modelling.

Methodology

Study area

The Gerda watershed is located in the central Ethiopian

Highlands of the Amhara Regional State (see Fig. 1;

Table 3 for details). It is situated approximately 45 km

northwest of Debre Markos and 230 km northwest of

Addis Abeba and covers a drainage area of about

4860.4 ha. The watershed is characterized by gently slop-

ing to undulating hills at the top of the catchment, a rugged

and dissected topography with steep slopes in the middle,

and a gently sloping bottom part. Elevations range from

1980 to 2600 m a.s.l. The Minchet river, referred to as the

Gerda river downstream, flows in a south-westerly direc-

tion to the outflow at Yechereka. Climate is dominated by a

unimodal rainfall regime with a long rainy season from

June to September (Kremt) and a long dry season from

October to May. The average annual precipitation is

1690 mm, and the mean annual temperature is 16 �C. Local
land use is dominated by smallholder rain-fed farming

systems, emphasizing grain production, ox-ploughing and

uncontrolled grazing practices (SCRP 2000). The Gerda

watershed has undergone no significant development or

changes since the early 1980s and no mechanization has

occurred.

SWAT model configuration

The Soil and Water Assessment Tool (SWAT2012 rev.

620) was used to assess streamflow and sediment load

prediction uncertainty through the ArcSWAT interface

(Version 2012.10_1.14). SWAT is a physically based

river basin or watershed-modelling tool, which is capable

of continuous simulation over long time periods.

The SWAT model divides the watershed into subbasins

for better representation of the spatial heterogeneity. The

subbasins are further discretized into hydrological response

units (HRUs), which are a unique combination of soil

types, landuse types and slope. For every single HRU, the

soil water content, surface runoff, crop growth including

management practice and sediment yield are compiled and
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then aggregated to the subbasin level by a weighted aver-

age. For climate, SWAT calculates a centroid for each

subbasin and uses the station nearest to that centroid.

Runoff is predicted separately for each HRU and routed at

subbasin level to obtain total runoff figures (Neitsch et al.

2011). Surface runoff is estimated using a modified SCS

curve number method, which estimates amount of runoff

based on local landuse, soil type, and antecedent moisture

condition. Watershed concentration time is estimated using

Manning’s formula for both overland and channel flows.

Soil profiles are divided into multiple layers, which influ-

ence soil water processes like plant water uptake, later flow

and percolation to lower layers as well as infiltration and

evaporation. Potential evapotranspiration can be modelled

with the Penman-Monteith, the PriestleyTaylor, or the

Hargreaves method (Neitsch et al. 2011), depending on

data availability.

In this study, surface runoff was estimated using the

Natural Resources Conservation Service Curve Number

(SCS-CN) method (USDA-SCS 1972). Sediment loss for

each HRU was calculated through the Modified Universal

Soil Loss Equation (MUSLE), and routing in channels was

estimated using stream power (Williams 1969). The Har-

greaves method (Hargreaves and Za 1985) was used to

estimate potential evapotranspiration, and the water bal-

ance in the watershed was simulated using Neitsches

equation (Neitsch et al. 2011). Finally, sediment deposition

in channels was calculated using fall velocity (Arnold et al.

2012). All equations and ensuing descriptions of elements

can be found in SWAT theoretical documentation Version

2009 (Neitsch et al. 2011).

Model parametrization

A high-resolution (5m� 5m) digital elevation model

(DEM) from the Advanced Land Observing Satellite Dai-

chi [Alos of the Japan Aerospace Exploration Agency

(JAXA)] was used to set up the SWAT model. Subbasin

partitioning and stream networks were computed auto-

matically through the ArcSWAT interface with the manual

configuration of the outlet feature classes to include the

Minchet catchment as a calibration feature at the top of the

Gerda watershed (see Fig. 1, for details). A drainage area

of 100 ha was chosen as a threshold for delineation of the
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catchment as they approximately correspond to the Min-

chet subcatchment size.

Data on agricultural practices were obtained from the

Water and Land Resource Centre [WLRC, formerly the

Soil Conservation Research Programme (SCRP)] and from

the authors’ fieldwork and interviews conducted in 2008,

2012 and 2014. The land use data were adapted from a land

use map with a field-scale resolution and nine land use

categories, which was recorded in 2014 (WLRC 2016).

Tillage was implemented using heat units, and the results

were cross-checked with the observed seasonal incidence

and adapted as necessary based on planting and harvesting

dates from field interviews (Ludi 2004; Roth 2010). In

addition, the traditional Ethiopian ploughing tool called

Maresha was added to the ArcSWAT management data-

base. The Maresha was assigned a tillage depth of 20 cm

and mixing efficiency of 0.3 (Temesgen et al. 2008; Dile

and Srinivasan 2014).

The physical and chemical parameterization of the soil

maps was adapted from the WLRC soil report (Belay

2014) and, where WLRC data were missing, from the

doctoral dissertation of Zeleke (2000), from the SCRPs

Soil Conservation Research Report 27 for the Minchet

catchment (Kejela 1995), and from Hurni (1985). The

land use and soil data contained 19 soil and 12 land use

classes (see Fig. 2 for details) The model setup com-

prised 2349 HRUs within 12 subbasins. The model was

created using a zero per cent threshold, meaning all

HRUs were accounted for in modelling. Daily precipi-

tation records combined with minimum and maximum

temperature records for the Minchet watershed were used

to run the model. Weather station data from Yechereka

were added for the years 2013 and 2014. Solar radiation,

potential evapotranspiration and wind speed were gen-

erated by the ArcSWAT weather generator. Storm-based

sediment concentrations measured at the Minchet and the

Yechereka outlets were used for model calibration and

validation. Flow observations were available for the

entire year, while sediment data were only available

during rainfall events. The sediment concentration in the

Gerda watershed is measured only during the rainy

season, which is from June to October and assumed to

be negligible during the remaining months. This is a

realistic assumption given the extremely low sediment

concentration during the dry season (Easton et al. 2010;

Betrie et al. 2011).
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Model evaluation

The ArcSWAT model was run on a daily time step for a

period of 31 years (1984–2014), including a warm-up

period of two years. The model was calibrated using

SUFI -2 in the SWAT-Cup (Version 5.1.6.2), using the

objective function ‘bR2’, where the coefficient of deter-

mination R2 is multiplied by the coefficient of the regres-

sion line between measured and simulated data (Abbaspour

et al. 2015). Through this function, discrepancies between

magnitudes of the two signals as well as their dynamics are

accounted for.

bR2 ¼
� jbjR2 if jbj\1

jbj�1
R2 if jbj[ 1

ð1Þ

The threshold value of the objective function was set to 0.6,

which is the minimum applicable value according to

Faramarzi et al. (2013) and Schuol et al. (2008). The

measured data were divided into two periods for calibration

and validation. The calibration and validation periods were

selected based on the availability of data and based on

equally distributed years with similar amplitudes and sea-

sonal occurrences of rainfall and discharge. Due to a pro-

longed gap in the Minchet catchment discharge data from

SCRP/WLRC after the year 2000, the calibration period

was set from 1984 to 2000 (without 1999) and the vali-

dation period was set from 2010 to 2014. Calibration was

done for the Minchet catchment only. Subsequently, the

model parameter ranges were transferred to the entire

catchment, where discharge and sediment loads were val-

idated with measured discharge and sediment load data

from the outlet at Gerda.

In this study model, evaluation was first performed fol-

lowing the calibration technique by Abbaspour (2015) and

Arnold et al. (2012) for P-factor and R-factor before con-

sidering model performance ratings suggested by Moriasi

et al. (2007) for commonly applied statistical parameters:

(1) the Nash-Sutcliffe efficiency (NSE), (2) the ratio of the

root-mean-square error to the standard deviation of mea-

sured data (RSR), and (3) the percent bias (PBIAS). When

using SUFI-2, the first evaluation aims at reaching reason-

able results for P-factor and R-factor. The P-factor is the

percentage of observed data enveloped by the modelling

results—called 95 per cent prediction uncertainty, or

95PPU—while the R-factor is the relative thickness of the

95PPU envelope. Suggested values for the P-factor are

[0.70 for discharge and an R-factor around 1 (Abbaspour

et al. 2015); if the measured data are of high quality, then

the P-factor should be[0.80 and R-factor\1. According to

Schuol et al. (2008) for less stringent model quality

requirements, the P-factor can be[0.60 and R-factor\1.3.

The NSE ranges from �1 (negative infinity) to 1, with

1 representing perfect concordance of modelled to

observed data, 0 representing balanced accuracy, and

observations below zero representing unacceptable perfor-

mance Nash and Sutcliffe (1970).

NSE ¼ 1�
Pn

i¼1ðQi
obs � Qi

simÞ
2

Pn
i¼1ðQi

obs � Qmean
obs Þ2

ð2Þ

where Qi
obs and Qi

sim are the observed and simulated data at

the ith time step, respectively. Qmean
obs is the average of the

observed data, and n is the total number of observations.

RSR ¼ RMSE

STDEVobs

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðQi

obs � Qi
simÞ

2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðQi
obs � QmeanÞ2

q ð3Þ

The RSR is a standardized RMSE, which is calculated from

the ratio of the RMSE and the standard deviation of mea-

sured data ðSTDEVobsÞ. RSR incorporates the benefits of

error index statistics and includes a scaling factor. RSR

varies from the optimal value of 0, which indicates zero

RMSE or residual variation, which indicates perfect model

simulation to a large positive value Moriasi et al. (2007).

PBIAS ¼
Pn

i¼1ðQi
obs � Qi

simÞ � 100Pn
i¼1ðQi

obsÞ
ð4Þ

The PBIAS measures the average tendency of the simu-

lated values to be larger or smaller than their observed

counterparts. The optimal value of PBIAS is zero. A pos-

itive PBIAS value indicates the model is underpredicting

measured values, whereas negative values indicate over-

prediction of measured values.

Moriasi et al. (2007) defined model performance ratings

for evaluation divided into unsatisfactory, satisfactory,

good and very good. For this study, we applied these rec-

ommendations strictly for hydrology and sediment loss.

A model can be considered as calibrated if there are

significant NS, RSR or PBIAS between the best simulation

and the measured data for a calibration and a test (vali-

dation) data set, while P-factor and R-factor are within

defined ranges (Abbaspour et al. 2007a; Moriasi et al.

2007).

Results and discussion

Sensitivity analysis and calibration

A sensitivity analysis for seventeen streamflow and sedi-

ment load variables was carried out in a first step of cali-

bration. These variables were gathered from several articles

(Abbaspour et al. 2007a, 2015; Talebizadeh et al. 2010;
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Arnold et al. 2012) and separated into two categories. The

first category contained variables that only affect hydrol-

ogy, and the second category contained variables that

affect both hydrology and sediment load. First the

hydrology was calibrated to a satisfactory level before

integrating sediment loss variables. In a second step, sed-

iment loss was then calibrated together with the hydrology

but the hydrological parameters were kept within the pre-

viously calibrated ranges. Both calibrations were per-

formed in SWAT-Cup using SUFI-2 and were run with 500

iterations each. Final results of calibrated parameter ranges

are presented in Table 1. Parameters were ranked accord-

ing to their respective sensitivities. The curve number

(CN2) followed by the groundwater revap coefficient

(GW REVAP) and the deep aquifer percolation fraction

(SOL AWC) were most sensitive for the hydrology.

Measured and simulated results were correlated at the

outlet of the Minchet catchment (Subbasin 1), while vali-

dation was carried out at the outlet of the Minchet catch-

ment and at the outlet of the entire catchment at Gerda

(Subbasin 11). The calibrated model uncertainty assess-

ment was determined through P-factor and R-factor

quantification. The model was able to explain 88% of the

observations within a very narrow 95PPU band of 0.57

(Table 2).

Statistical performance for the calibration of hydrology

in the Minchet catchment quantified by RSR (0.29), NSE

(0.92) and PBIAS (�14:9) wasvery good, although PBIAS

indicated a slight overprediction. Measured and simulated

hydrographs were plotted for visual comparison including

calibration and validation periods for Minchet and Gerda

and visual distribution of the 95PPU band (see Figs. 3, 7

for details) (Fig. 4).

The hydrograph of the individual years (Fig. 5) shows

that streamflow is adequately represented for each year and

that, except for some minimal over-predictions, amplitudes

and seasonal incidences were very well reflected (Table 3).

Sediment loss calibration performed fairly well with

satisfactory results. The model could explain 45% of the

observations within a reasonable 95PPU band (1.04), while

statistical parameters yielded satisfactory results for RSR

(0.65), NSE (0.57) and good results for PBIAS (10.1).

PBIAS indicated a minor under-prediction of sediment loss

modelling. The visual interpretation of sediment

Table 1 Streamflow and sediment load parameter ranges for calibration

Variable Parameter name Definition Fitted parameter

range

Sensitivity

ranking

Discharge a__CN2.mgt* Curve number Number 1

v__GW_REVAP.gw Groundwater ‘‘revap’’ coefficient 0.02 to 0.2 2

v__RCHRG_DP.gw Deep aquifer percolation fraction 0 to 1 3

v__SOL_AWC(1).sol Available water capacity of the soil layer 0.85 to 1 4

v__GW_DELAY.gw Groundwater delay (days) 0 to 500 5

v__ESCO.hru Soil evaporation compensation factor 0.33 to 0.49 6

v__SURLAG.bsn Surface runoff lag time 0.05 to 24 7

v__REVAPMN.gs Threshold depth of water in the shallow aquifer for

‘‘revap’’ to occur (mm)

Number 8

v__GWQMN.gw** Threshold depth of water in the shallow aquifer required

for return flow to occur

Number 9

Sediment a__SLSUBBSN.hru Average slope length 0 to 6 25 to 37

a__HRU_SLP.hru Average slope steepness -0.2 to 0.3 -0.015 to -0.009

a__USLE_K(1).sol USLE equation soil erodibility (K) factor -0.34 to 0.2 -0.16 to -0.14

v__CH_COV1.rte Channel erodibility factor -0.05 to 0.6 -0.035 to 0.015

v__SPEXP.bsn Exponent parameter for calculating sediment

reentrained in channel sediment routing

1 to 1.5 1.24 to 1.35

a__USLE_C.plant.dat Min value of USLE C factor applicable to the land

cover/plant

0.001 to 0.37 0.001 to 0.1

a__USLE_P.mgt USLE equation support practice -1.5 to -0.5 -0.5 to 0

v__PRF_BSN.bsn Peak rate adjustment factor for sediment routing in the

main channel

0 to 2 0.5 to 1

v__SPCON.bsn Maximum amount of sediment that can be reentrained

during channel sediment routing

0.0001 to 0.01 0.004 to 0.01

* a__ means a given value is added to the existing parameter value

** v__ means the existing parameter value is to be replaced by a given value
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calibration in the Minchet catchment showed a satisfactory

overall agreement. The model generally slightly under-

predicted the sediment load and generated some minor

unexplained peaks (see Figs. 6, 8, for details).

The calibrated parameter ranges for hydrology and

sediment loss were later used for the validation of the

model for (1) the Minchet catchment and for (2) the

uncalibrated Gerda catchment at the outlet downstream

(see Fig. 1, for details).

Validation of streamflow and sediment load

Hydrological and sediment load responses

during validation period

The calibrated parameter ranges were applied to the vali-

dation period from 2010 to 2014 in SWAT-Cup. Hydrol-

ogy validation for the Minchet catchment performed very

satisfactorily with 73% of all observation explained by the

model with a very narrow 95PPU band (0.45). Statistical

parameters were very good considering Moriasi’s perfor-

mance ratings (2007). RSR (0.32), NSE (0.90) and PBIAS

(�13:7) were better than for calibration. This result could

be in relation with differing general conditions between the

calibration and the validation period, which could lead to

differences in performance rating results for the respective

periods as proposed by Zhang et al. (2008).

The sediment validation for the period from 2010 to

2014 for the Minchet catchment bracketed 42% of all

observations with a 95PPU band of 1.09. Statistical

parameters were good with RSR (0.59), NSE (0.65) and

PBIAS (�19:5). These results were slightly less efficient

than the ones achieved bySetegn et al. (2010) with very

good RSR (0.29) and NSE (0.79) but with a less accurate

PBIAS (0.30).

The hydrograph of this validation period (see Fig. 3)

shows a close agreement for streamflow and for sediment

loss. The main discrepancies arise for the peaks during the

main rainy season, and for the duration and the extent of

the dry season. Increased uncertainty, shown through larger

Table 2 Calibration results for discharge and sediment loss

modelling

Performance rating Calibration Validation

Minchet Gerda Minchet Gerda

Discharge

P-factor 0.88 – 0.73 0.68

R-factor 0.57 – 0.45 0.71

RSR 0.29 – 0.32 0.45

NSE 0.92 – 0.90 0.79

PBIAS -14.9 – -13.7 -42.3

Sediment loss

P-factor 0.45 – 0.47 0.58

R-factor 1.04 - 1.09 1.28

RSR 0.65 – 0.59 0.73

NSE 0.57 – 0.65 0.47

PBIAS 10.1 – -19.5 -6.0

Gerda catchment was validated only. Bold characters indicate above

satisfactory threshold
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95PPU bands, follows the same logic and mainly arises at

peak and low-flow levels (Table 4).

Hydrological and sediment loss validation

for parameter transferred catchment

Validation was also carried out for the entire Gerda

catchment as to find out if a model parameter transfer from

a catchment within a larger catchment is applicable and can

be successfully achieved. For this, the calibrated parameter

ranges from the Minchet catchment calibration were used

to validate the model in the entire Gerda catchment, which

is forty-six times larger. The hydrology validation yielded

very good results in the performance rating proposed by

Moriasi et al. (2007). With an R-factor showing that 68%

of all observations could be explained with the model with

a 95PPU band of 0.71 and very good RSR (0.45) and NSE

(0.79), the model validation was all in all satisfactory. Only

PBIAS (�42:9) showed an unsatisfactory result, which can

be explained with the fact that 2013 and 2014 were two

extremes of climatic years. 2013 had very high rainfall

events with the highest annual rainfall in the Minchet

catchment recorded, while 2014 was a very low-rainfall

year. Knowing these facts, the validation of the model in

the Gerda catchment through model parameter transfer

only, yielded very good results.

Catchment water balance and general results

Besides comparing the statistical parameters, which

showed a close agreement for streamflow and sediment

loss, we chose to monitor the water balance for the

catchment. The movement of water through the contin-

uum of the soil, the vegetation and the atmosphere is

important to understand annual variability of water bal-

ance components (Neitsch et al. 2011) and is important

to understand if a model is realistically moving the water

components in a catchment. Water balance distribution

represented as components averaged over the entire

simulation period divided into calibration, and validation

is shown in Table 5. The table includes precipitation

(PCP), initial soil water content (SW), evapotranspiration

(ET), surface runoff (SURQ), lateral flow (LATQ),

groundwater (GWQ), percolation (PERC), water yield

(WYLD) and sediment yield (SEDYLD). Simulated

annual average baseflow to total discharge ratio was

0.77, while the annual average baseflow to total flow

ratio obtained through digital filter methods from

observed discharge averaged to 0.71 (?8.4%). Stream-

flow-to-precipitation ratio from model output resulted

in a ratio of 0.56, while the comparison of mea-

sured streamflow-to-precipitation ratio showed 0.6

(�6:6%).

Ju
n

Ju
l

A
ug

Se
p

O
ct

N
ov

D
ec Ja
n

Fe
b

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

Se
p

O
ct

N
ov

D
ec

Ju
n

Ju
l

A
ug

Se
p

O
ct

N
ov

D
ec Ja
n

Fe
b

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

Se
p

O
ct

N
ov

D
ec

0

1

2

3

4

5

6

7

D
is

ch
ar

ge
 [m

3/
s]

Se
di

m
en

t l
oa

d 
[t

]

0

20000

40000

60000

80000

100000

120000

140000

160000 Sediment load

Observed Simulated 95 PPU

SimulatedObserved 95 PPU

Fig. 4 Validation results for model parameter transfer to the Gerda catchment. On top the streamflow validation and at the bottom the sediment

load validation
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We compared the modelled sediment yield results for

Minchet catchment to WLRC compiled sediment yield

results and to other studies (Bosshardt 1997; Setegn et al.

2010; Guzman et al. 2013; Lemann et al. 2016), which

show reported mean annual sediment yields from 19:3 to

29:5 ha�1 y�1 and resulting in an overall mean annual sed-

iment yield of 26:12 ha�1 y�1 for the period of 1984–1993.

The long-term mean annual measured sediment yield from

the WLRC grab samples for our study from 1984 to 2014 is

20:65 ha�1 y�1 while the SWATmodelled annual mean was

18:8 ha�1 y�1ð�8:95%Þ.
We then compared the modelled sediment yield results

for the entire Gerda catchment to WLRC measured data.

The SWAT modelled annual sediment yield was

27:07 ha�1 y�1, while the measured amount resulted in a

mean annual sediment yield of 30:35 ha�1 y�1ð�8:7%Þ.
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Fig. 5 Year by year calibration and validation results for streamflow in the Minchet catchment
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Conclusions

The overall aim of this study was to evaluate the SWAT

model performance (1) in the Minchet catchment and (2) to

evaluate a possible model parameter transfer from a

subcatchment to a substantially larger watershed through

validation alone. The results showed that the SWAT model

could, with a high agreement, catch the amount and the

variations for both streamflow and sediment loss in the

Minchet subcatchment. Monthly and annual mean discharge

Table 3 Description of study

sites and main characteristics

SCRP (2000)

Minchet Gerda

Year of construction 1983 2012

Location 10.678�N 10.597�N
37.530�E 37.420�E

Size 113.4 ha 4860.4 ha

Altitudinal range 2406–2506 masl 1980–2506 masl

Mean annual temperature 16 �C –

Mean annual rainfall 1690 mm –

Mean annual discharge 610–867 mm –

Mean annual sediment loss 25.2 t/ha –

Farming system Rainfed, smallholder, ox-plough farming
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Fig. 6 Year by year calibration and validation results for sediment load in the Minchet catchment
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and sediment loss were easily reproduced, while the catch-

ment water balance was highly accurate and realistic.

Overall, the results of the SUFI-2 calibration with bR2

objective function in the Minchet subcatchment and the

Gerda catchment produced reasonable outcomes for cali-

bration and validation as well as for uncertainty analysis.

The model parameter transfer from the calibrated sub-

catchment to the uncalibrated watershed resulted in rea-

sonable goodness of fit ratings for hydrology and just

below the satisfactory threshold for sediment without any

prior calibration.

The results showed that the SWAT model was able to

capture streamflow amounts and streamflow variability for

both catchments major deviations and optimized parameter

ranges produced better results at the monitoring site of the

calibrated watershed.

The applied SUFI-2 optimization scheme produced

reasonable outcomes for calibration, uncertainty analysis
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and validation of the SWAT model. This means that the

model calibrated in the subwatershed could be used to

model the entire watershed through model parameter

transfer within a reasonable deviation of under 10% for

both streamflow and sediment loss.
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