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Abstract A landslide susceptibility map is an essential

tool for land-use spatial planning and management in

mountain areas. However, a classification system used for

readability determines the final appearance of the map and

may therefore influence the decision-making tasks adopted.

The present paper addresses the spatial comparison and the

accuracy assessment of some well-known classification

methods applied to a susceptibility map that was based on a

discriminant statistical model in an area in the Eastern

Pyrenees. A number of statistical approaches (Spearman’s

correlation, kappa index, factorial and cluster analyses and

landslide density index) for map comparison were per-

formed to quantify the information provided by the usual

image analysis. The results showed the reliability and

consistency of the kappa index against Spearman’s corre-

lation as accuracy measures to assess the spatial agreement

between maps. Inferential tests between unweighted and

linear weighted kappa results showed that all the maps

were more reliable in classifying areas of highest suscep-

tibility and less reliable in classifying areas of low to

moderate susceptibility. The spatial variability detected

and quantified by factorial and cluster analyses showed that

the maps classified by quantile and natural break methods

were the closest whereas those classified by landslide

percentage and equal interval methods displayed the

greatest differences. The difference image analysis showed

that the five classified maps only matched 9 % of the area.

This area corresponded to the steeper slopes and the steeper

watershed angle with forestless and sunny slopes at low

altitudes. This means that the five maps coincide in iden-

tifying and classifying the most dangerous areas. The equal

interval map overestimated the susceptibility of the study

area, and the landslide percentage map was considered to

be a very optimistic model. The spatial pattern of the

quantile and natural break maps was very similar, but the

latter was more consistent and predicted potential land-

slides more efficiently and reliably in the study area.

Keywords Landslides susceptibility maps � GIS � Kappa
index � Discriminant analysis

Introduction

Landslide susceptibility maps (LSMs) are essential tools

for land-use spatial planning in mountain environments.

These maps are built with predictive models based on

complex and sophisticated mathematical methods (dis-

criminant, logistic regression, neural network, etc.) using

large databases on landslide influencing parameters. The

main reason for displaying the susceptibility data carto-

graphically is to facilitate the spatial patterns taking care to

depict as accurately as possible the underlying distribution

of data (Cromley and Mrozinski 1997). An ideal classifi-

cation system seeks to strike a balance between the

underlying data and the simplification of the continuous

susceptibility values that reveal intrinsic spatial patterns.

There are different methods of classifying the susceptibility
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that enable us to simplify the information and to facilitate

comprehension. These methods divide the susceptibility

histogram, obtained from the map, into different classes.

However, the classification systems have an inherent

weakness, i.e., the aggregation of data in one of the classes

may have an adverse effect on the apparent results

depending on the criteria used when preparing maps. By

altering the boundary between classes, very different-

looking maps can be created (Evans 1977). Hence, the

overall accuracy of the classified map determines the

reliability of the data for any application (Liu et al. 2007).

The consequences should be analyzed carefully since the

classification can play a major role in decision-making

tasks (Kiang 2003). Meaningful and consistent measures of

map accuracy are necessary to evaluate the suitability of

the map for their particular application. However, there are

few published papers about landslide susceptibility

assessment that provide information on the different clas-

sification methods. Measures should therefore be adopted

to analyze the weakness of a particular classification

strategy (Powell et al. 2004) or to compare two or more

classification techniques (Foody 2004).

A number of approaches have been developed to test the

accuracy of landslide spatial prediction maps (Congalton

1991; Stehman and Czaplewski 1998; Smits et al. 1999) that

can be used to assess the classification maps. The ‘‘error

matrix’’ (also known as confusionmatrix, confusion table and

contingency table) is central to most measures of thematic

map accuracy (Story and Congalton 1986; Smits et al. 1999;

Foody 2004; Powell et al. 2004; Gupta et al. 2008). Once a

prediction threshold has been adopted by the mathematical

model, the binary prediction (failed/unfailed) can be com-

pared with the landslide observed. This allows the construc-

tion of the error or confusion matrix that shows the number of

correctly and incorrectlypredicted observations.But landslide

susceptibility maps normally classify areas into different

degrees of potential landslide, defining areas, for instance, as

having very high (VHS), high (HS), moderate (MS), low (LS)

and very low (VLS) landslide susceptibility, which are ren-

dered onanordinal scale.This approachhas beenoften used to

assess the concordance of binary maps. In this study, it has

been used to investigate the match of the landslide suscepti-

bility levels based on different classification systems. At it is

clear from the Safeland Project comparison results, there is no

standard classification system in Europe. The Safeland report

ofWorkPackage 2.1 about ‘‘Harmonization and development

of procedures for quantifying landslide hazard’’ provides a

detailed comparison of landslide mapping among several

European countries (Safeland 2010).

In order to classify susceptibility data, common classi-

fication schemes provided for software package or created

manually to generate classes can be used. However, when

predicted values obtained from a mathematical model are

transposed to a map with classes by different classification

systems, the predictive maps, originally with the same

predictive power, do not have the same meaning. Hence, in

order to shed light on this issue, a set of landslide sus-

ceptibility maps (LSMs) developed from the same dataset

by discriminant analysis (Baeza and Corominas 2001)

using different classification systems were built. These

LSMs were compared and their similarities, differences,

efficacy and consistency were assessed. Subsequently, the

map that best matched the information in the study area

was chosen. In addition to the confusion matrix, Spear-

man’s coefficient, the kappa statistic, landslide relative

density index and an analysis of spatial image between

maps were also performed to measure the classification

agreement among the maps. The multivariate techniques

such as factorial and cluster analyses proved very useful to

evaluate the spatial proximity between maps, comple-

menting and reinforcing the aforementioned approaches.

Study area

La Pobla de Lillet occupies an area of 40 Km2 in the

Eastern Pyrenees, Spain (Fig. 1).

The altitude above sea level, computed by a digital

elevation model (DEM) of 15 m regular grid, ranges from

814 to 1.645 m. The maximum slope gradient is 65� with a

mean value of 23.6�. Lithologies in the study area are

composed of sandstones, limestones, marls and flysch

formations from Devonic to middle Eocene. These geo-

logical formations belong to a series of east–west thrusts

dipping toward the north (Muñoz et al. 1986). The land-

slide triggering factor in the region is rainfall. High-in-

tensity rains of short duration triggered debris flows and

shallow slides in November 1982 with rainfall reaching

340 mm in 48 h (Corominas and Alonso 1990; Corominas

and Baeza 1992). Landslide distribution was controlled by

lithology and the geomorphological and hydrological

characteristics of the slopes. Most slope failures were

developed on colluvial deposits and occasionally on

underlying weathered clayey formations with a thickness

not exceeding 1 m. They were attributed to steep forestless

slopes, preferentially ranging between 30� and 35�. On

slopes greater than 45�, the absence of failures was due to

the rock formations. The contribution of water through

catchment areas exceeded 1000 m3 with a mean angle

ranging between 25� and 30� helped to generate many

landslides in the study area. The significance of these

parameters with respect to slope stability in the study area

is discussed in Baeza and Corominas (2001) and Santacana

et al. (2003). The failures considered in this study are

shallow landslides with small mobilized volumes (less than

10,000 m3) and do not exceed two meters in depth.
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Data source and landslide susceptibility map

The comparison and evaluation of different classification

systems were carried out on a landslide susceptibility map

generated by a discriminant model using the database by

Santacana et al. (2003). This approach was used to assess

the landslide susceptibility with parameters that provided

indicators of the geomorphological evolution of the slope

and valuable information for stability analysis. These

parameters were derived directly from a digital elevation

model (DEM) of 15 m regular grid supplied by the Car-

tographic Institute of Catalonia. The DEM was generated

from a triangulated irregular network (TIN) using the

topographic information at 1:5000 scale. Landslide inven-

tory and thickness of the surficial formation were obtained

from aerial photograph interpretation at 1:22,000,

orthophotographs at 1:5,000 scale and field work. They

were subsequently digitized and then converted into raster

format for the analysis. The method of selecting these

variables and their significance are discussed in earlier

works by Baeza and Corominas (2001) and Hürlimann and

Baeza (2002). The diagnosis, validation and model evalu-

ation of the discriminant function obtained in the study area

are extensively described and analyzed in Baeza et al.

(2010). Table 1 shows the variables and the main statistics

of the discriminant function used to elaborate the LSMs

with different classification systems.

There is a great deal of the literature on the different

approaches that assess the susceptibility (e.g., logistic

regression versus neural networks) or terrain units used

in the mathematical model (e.g., pixel versus slope unit).

All these approaches use classification systems to cate-

gorize the data in order to build the susceptibility map.

The studies focus on the predicted susceptibility classi-

fication which translates into the reliability and accuracy

of the models. However, in no case is the classification

system applied to define the susceptibility levels ana-

lyzed. Classification involves a loss of information or a

different redistribution of the data depending on the

method applied. The articles by Coulson (1987) and

Evans (1977) provide detailed overviews of the classi-

fication methods that are commonly employed. It is

therefore important to determine the manner in which

the classification affects the distribution of the suscep-

tibility and its reliability with respect to other possible

classification methods in the study area.

Fig. 1 Geographical location

and landslide inventory of the

study area

Table 1 Coefficients and

statistical parameters of the

discriminant model used to

build the LSMs

Variables Function coefficient Statistics

Standard Unstandard

Discriminant analysis

Height -0.512 -0.003 Eigenvalue 0.652

Mean watershed angle 0.241 0.021 Canon. corr. 0.628

Sinusoidal slope angle 0.684 4.060 Wilks-k 0.605

Slope aspect (0–180) 0.256 0.005 v2 140.282

Thickness of surf. dep. 0.405 0.556 Significance 0.000

Constant -2.536
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The method adopted in the literature to divide the sus-

ceptibility histogram into different categories is in many

cases based on expert criteria (Dai and Lee 2002; Ohlma-

cher and Davis 2003; Van Den Eeckhaut et al. 2006) and

does not take into account the real underlying data. It is

necessary to explore data and obtain knowledge of their

statistical distribution before applying any method of

classification (Foote and Crum 2014). In this way, this

categorization of data cannot be automated or statistically

tested (Ayalew and Yamagishi 2005). At present, the car-

tographic representation in large regions needs an auto-

matic and objective process. Automatic classification

methods are increasingly being integrated into the geo-

graphical information system (GIS). Hence, in the present

study, five classification methods were used to build five

LSMs. These maps were divided into five categories (very

low, low, moderate, high and very high). These categories

were considered sufficient to reveal any existing spatial

patterns in the dataset and facilitate map interpretation

(Armstrong et al. 2003; Foote and Crum 2014).

Four of these classification systems are automatic and

integrated in a GIS (ArcGis software):

Equal interval (EI) The range of susceptibility values is

divided into equal-sized intervals.

Natural break (NB) Classes are based on natural group-

ings inherent in the data and boundaries are determined

statistically where there are relatively large jumps in the

susceptibility data values.

Quantile (Q) This is equivalent to equal coverage area,

assigning the same number of cells in each class. In this

case, the range of possible susceptibility values is divided

into unequal-sized intervals. This classification scheme is

well suited to linearly distributed data.

Standard deviation (SD) This shows the degree of devi-

ation of pixel values from the mean; class breaks are then

created using these values. Subsequently, adding or sub-

tracting half deviation from the mean value of the data was

used to define the susceptibility levels.

An additional classification method is a user-defined or

manual classification system employing expert criteria:

Landslide percentage (LP) Based on the percentage of

observed landslides in the area, as in the case of the

aforementioned systems, five levels of landslide suscepti-

bility were defined but in this case in accordance with the

percentage of predefined landslides: very low (\1 %

landslides), low (1–5 %), moderate (5–15 %), high

(15–30 %), and very high ([30 %).

The resulting landslide susceptibility maps (LSMs) are

shown in Fig. 2.

Comparative analysis of classification maps
and results

Only when the goodness of fitting data and the prediction

of capability of the susceptibility model defined by the

mathematical function are confirmed, can the cartographic

representation of the landslide susceptibility be performed.

If these conditions are not met, it makes no sense to build

the maps. Note that the set of LSMs developed from the

same dataset using different classification methods show a

normal distribution of discriminant values with the same

predictive ability in origin (Fig. 2). Thereafter, a quanti-

tative comparative analysis of the five LSMs was carried

out to complement the common visual evaluation of the

maps. This comparative evaluation allows us to identify

quantitatively which maps are similar and which best

define the landslide susceptibility of the study area.

Different approaches were adopted to measure the

classification agreement and compare the LSMs: Spear-

man’s rank correlation coefficient; kappa index; factor and

cluster analyses; landslide density analysis (R index); and

rank difference analysis.

Spearman’s rank correlation coefficient

First of all, a nonparametric measure of statistical depen-

dence between ranked variables (normality and homo-

geneity of variance assumptions are not satisfied) was

calculated (Corder and Foreman 2009). This coefficient

was used as a first evaluation of the statistical significance

of the difference in the susceptibility classification between

each pair of LSMs. The coefficient ranged from -1 to ?1.

The closer the index is to ?1 or -1, the stronger the

probable correlation. A perfect positive correlation is ?1

and a perfect negative correlation is -1. This correlation

could translate into a similar overall classification between

maps. Table 2a shows that all classification systems have

high correlations with values exceeding 0.85. The EI map

differs from the other maps showing lower values of cor-

relation (0.85–0.88). The correlation between the remain-

ing maps ranges from 0.92 to 0.95. Table 2b shows the

correlation only between cells with landslides, yielding

values lower than those of the all the data sample.

The foregoing results suggest a fairly strong relationship

between the LSMs. However, this statistic does not take

into account the spatial location of each cell, i.e., the

number of cells classified as high susceptibility could be

the same for both maps but they could be located in dif-

ferent areas of the map. This index should therefore only be

taken as indicative of an overall agreement in relation to

the classification area covering. As regards the landslide

cells, the agreement between the maps may be inconsistent
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Fig. 2 Landslide susceptibility

maps with five susceptibility

levels using different

classification system: a equal

interval—EI; b natural break—

NB; c quantile—Q; d standard

deviation—SD; e landslide

percentage—LP
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because the sample size of failed cells (270) is much lower

than that of unfailed cells (177,362). In this type of

statistic, the reliability of the results is related to sample

size. The greater the amount of data collected, the more

reliable the results (Poli and Sterlacchini 2007).

Unweighted and linear weighted kappa index

The kappa index was calculated to complete the informa-

tion obtained by Spearman’s coefficient. This statistical

index is considered a more robust measure than a simple

observed proportion of agreement calculation since it also

takes into account the proportion of agreement expected by

chance. Kappa has a range from -1 to ?1 with larger

values indicating better concordance. The kappa statistic

Fig. 2 continued

Table 2 Results of Spearman’s rank correlation between maps using

(a) all the data and (b) only failed cells

NB Q LP Stand dev. (SD)

(a) Spearman’s rank correlation coefficient (all the data)

Equal interval (EI) 0.888 0.888 0.859 0.855

Natural break (NB) 0.954 0.957 0.920

Quantile (Q) 0.954 0.922

Landslide percentage (LP) 0.940

(b) Spearman’s rank correlation coefficient (failed cells)

Equal interval (EI) 0.557 0.573 0.711 0.789

Natural break (NB) 0.968 0.824 0.543

Quantile (Q) 0.842 0.555

Landslide percentage (LP) 0.634

Significance level 0.01
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can be expressed in the following conceptual terms (Landis

and Koch 1977):

Kappa ¼ ðd � qÞ
ðN � qÞ ð1Þ

where d (observed agreement) is the proportion of cells in

agreement, q is the proportion of agreement expected by

chance and N is the total observations.

To compute this index, the error matrix (Begueria 2006)

was prepared for each pair of LSMs. The procedure pro-

vides a series of statistical tests and measures of association

for double-sorting tables that allow us to evaluate the sta-

tistical significance of the kappa value and therefore the

similarity between maps.

First, an unweighted kappa was evaluated. This index is

now widely used in the literature (Guzzetti et al. 2006; Van

den Eeckhaut 2006; Thiery et al. 2007; Sterlacchini et al.

2008) for the comparison of susceptibility models. In

Table 3a, most kappa (K) values below 0.4 suggest that the

LSMs are not as similar as revealed by Spearman’s coef-

ficients, with some exceptions. The standard error (se) is

also tabulated as a reliability measure of the study.

Table 3 Unweighted kappa

(K) and kappa with linear

weighting (KLW) between LSMs

for (a) all the data and (b) only

failed cells

NB Q LP Stand dev. (SD)

(a) Unweighted kappa (K) and kappa with linear weighting (KLW) for pairs of tests (all the data)

Equal interval (EI) K = 0.41

se = 0.002

KLW = 0.61

se = 0.001

K = 0.19

se = 0.001

KLW = 0.44

se = 0.001

K = 0.04

se = 0.001

KLW = 0.27

se = 0.001

K = 0.23

se = 0.002

KLW = 0.48

se = 0.001

Natural break (NB) K = 0.57

se = 0.001

KLW = 0.77

se = 0.001

K = 0.08

se = 0.001

KLW = 0.49

se = 0.001

K = 0.57

se = 0.002

KLW = 0.74

se = 0.001

Quantile (Q) K = 0.40

se = 0.002

KLW = 0.70

se = 0.001

K = 0.47

se = 0.002

KLW = 0.70

se = 0.001

Landslide percentage (LP) K = 0.16

se = 0.001

KLW = 0.53

se = 0.001

(b) Unweighted kappa (K) and kappa with linear weighting (KLW) for pairs of tests (failed cells)

Equal interval (EI) K = 0.41

se = 0.055

KLW = 0.46

se = 0.047

K = 0.39

se = 0.055

KLW = 0.46

se = 0.042

K = 0.43

se = 0.051

KLW = 0.51

se = 0.030

K = 0.66

se = 0.043

KLW = 0.69

se = 0.035

Natural break (NB) K = 0.88

se = 0.036

KLW = 0.90

se = 0.023

K = 0.36

se = 0.066

KLW = 0.56

se = 0.029

K = 0.25

se = 0.051

KLW = 0.35

se = 0.042

Quantile (Q) K = 0.43

se = 0.062

KLW = 0.64

se = 0.032

K = 0.30

se = 0.050

KLW = 0.41

se = 0.045

Landslide percentage (LP) K = 0.33

se = 0.047

KLW = 0.48

se = 0.035

Significance level 0.05

Numbers in bold express more than moderate agreement by Landis and Koch (1977)

se standard error

Environ Earth Sci (2016) 75:1318 Page 7 of 17 1318

123



According the scale defined by Landis and Koch (1977),

which qualitatively expresses the force of the agreement

based on the kappa index, the classification of the LSMs for

the whole area rarely reaches a ‘‘moderate’’ agreement

(0.4–0.6). Note that the LP map with very low kappa values

is different from other maps. The global match increases

when only the failed cells are taken into account, as shown

in Table 3b. LP improves the kappa values, while the SD

map worsens the global index when failed cells are used.

This seems reasonable since the rating system of LP takes

into account only landslide frequency, while SD uses the

standard deviation of all the data. In line with the results of

the kappa index, the Q map and the NB map are the ones

that show the best agreement (0.57) when all the data of the

map are used. They reach almost perfect agreement (0.88)

when only landslide data are employed.

In the previous analysis, all disagreement is treated

equally as total disagreement. However, the levels of sus-

ceptibility are ordered—level 2 represents greater probabil-

ity to fail than level 1, level 3 represents greater probability

to fail than level 2, and so on. It is therefore important to take

into account not only absolute concordances but also relative

concordances (Cohen 1968). The use of either index

(weighted or unweighted) may indicate a different efficiency

and reliability of the susceptibility map and hence its role in

hazard and risk management. Thus, when categories are

ordered, it is recommendable to use weighted kappa and

assign different weights to categories so that different levels

of agreement can contribute to the value of kappa. Different

weights can be used, but in the present study the kappa with

linear weighting was calculated (Fleiss et al. 2003). The

kappa value penalizes linearly the disagreement between

maps from the smallest to the largest. Table 3a (all the data)

shows an overall improvement in weighted kappa over the

unweighted kappa although relationships between maps still

have the same trend. Some LSMs reach ‘‘good’’ agreement

with values higher than 0.7. The weighted kappa values with

respect to the unweighted kappa values show an average

increase of 185 % for all the data, while this is only 28 % for

failed cell data.

In order to account for the difference statistically

between weighted and unweighted kappa for each sample

(all the data and failed data), spatial software for related

sample was used. When comparing mean values and the

standard deviation of each sample at a confidence level of

95 % (Table 4), a statistical significance level of 5 % was

found between the mean weighted and unweighted kappa

values for the whole sample, whereas (p value = 0.004)

this was not the case (p value = 0.207) for the failed

sample (Foody 2004). Accordingly, the disagreement

between susceptibility classification levels (one or more

ranks) for failed cells is less than that for the remaining

cells. The type of kappa used for the sample of failed cells

has less influence than using the sample of unfailed cells,

i.e., the reliability of classification of the LSMs is greater

for high susceptibility levels (failed cells). The reliability

of unfailed cell classification is low. This means that all

maps identify and delimit correctly the areas of highest

susceptibility.

Factor and cluster analyses

The spatial location of the cell values in the map was not

considered in earlier statistical approaches. In the present

study, the detection of structure data provided by the factor

analysis is used to analyze and plot their spatial distribution

(Liu et al. 2007). Hence, examination of the underlying

relationships between the different LSMs defined as vari-

ables with five susceptibility classes—very low, low,

medium, high and very high—allows us to quantify the

spatial similarity between the maps.

Two analyses were conducted, one with complete data

of the map (failed and unfailed cells) and another one with

landslides (failed cells). The scores of the rotated compo-

nent matrix (Varimax procedure) and their graphical rep-

resentation on the scatter plot are shown in Table 5 and

Fig. 3a, respectively. The initial variance explained for the

first two components with respect to the total variance in all

variables is higher than 93 % in both analyses. This value

reflects a close similarity between the LSMs. Using the

complete data (whole cells) of the map, the first component

correlates more with NB, Q and LP and the second com-

ponent with EI. SD with lower and similar values in both

components becomes independent when a third component

is extracted. The same structure of the LSMs arises when

cells with only landslide (failed cells) are analyzed. SD is

prominent and is much closer to EI in the second compo-

nent. As regards the spatial rotated plots, LP and EI are the

maps that have the greatest differences and Q and NB are

the closest. SD behaves like an unstable variable depending

on the sample. SD is closer to EI when only landslides are

analyzed and closer to Q and NB when the complete map is

analyzed.

Table 4 Statistical descriptives (minimum, maximum, mean and

standard deviation values) for all and failed sample using unweighted

and weighted kappa

Statistical descriptives (N = 10)

Min. Max. Mean SD

Un. kappa (as) 0.04 0.57 0.3120 0.19663

Un. kappa (fs) 0.05 0.88 0.4440 0.18846

W. kappa (as) 0.27 0.77 0.5730 0.15889

W. kappa (fs) 0.35 0.90 0.5460 0.16071

as all sample, fs failed sample
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A hierarchical cluster analysis (HCA) is an exploratory

tool (Sterlacchini et al. 2008) that reveals natural groupings

within a dataset. This analysis complements the results of

the factor analysis, providing a classification tree which

links the most similar LSMs progressively until all the

maps are joined. Using the nearest neighbor as the cluster

method, a hierarchical graph of the cluster solution in a

dendrogram form is shown in Fig. 3b.

Maps are listed along the left vertical axis, and the

horizontal axis shows the distance between LSMs when

they are joined. In both datasets (all the data and land-

slides), the HCA confirms the factorial results. When all

the data (failed and unfailed cells) are analyzed, the first

cluster consists of NB and SD followed by Q which has the

smallest distance. Subsequently, EI is joined to the cluster.

Given the distance of LP from the junction, it is this map

that presents the biggest difference with respect to the other

maps. As regards failed cells, NB and Q are the closest.

Another cluster with EI and SD is created at a considerable

distance from the first cluster. LP finally joins the first

cluster (NB, Q). Hence, two different groups of LSMs

appear in the same way as landslide density was also

analyzed by the ‘‘relative landslide density index R’’

(Baeza and Corominas 2001) defined as follows:

R ¼ ni=NiP
ni=Ni

� �

� 100 ð2Þ

where ni is the number of cells with failures within a

susceptibility level and Ni is the total number of cells of

this level. It may therefore be expected that slope failures

will appear in cells with higher discriminant scores (from

moderate to extremely high susceptibility levels).

The landslide frequency for each susceptibility level is

displayed in Fig. 4a. The frequency reaches 92 % of

landslides classified into very high and high levels for all

LSMs except for LP with 84 %. The results of LP are

obviously different from the others because susceptibility

levels were manually predefined. Only NB and Q attain

80 % of landslides classified in a very high level. However,

these values vary considerably when frequency is evalu-

ated with respect to the coverage area (Fig. 4b) for each

level. The R index distribution (Fig. 4c) for the LSMs

displays a progressive increase, concentrating mainly on

the highest susceptibility level. The R index of the different

susceptibility levels proved to be fairly similar for NB, EI

and Q (81–85 %) with lower values for SD and LP

(66–76 %). The distribution of the cells with failures

(landslides) in these levels indicates that the susceptibility

levels are more consistent using the natural break, equal

interval and quantile classification systems.

Image analysis

The close agreement displayed by Spearman’s coefficient

substantially decreased when the proportion of agreement

expected by chance (kappa index) was taken into account.

The spatial structure by factorial and cluster analyses

confirmed the dissimilarities between the maps. Despite the

fact that these statistical approaches allow us to determine

quantitatively which LSMs are the closest, the visualization

of the spatial location of the differences and similarities is

not possible. The spatial distribution of the susceptibility

levels in each cell enables us to determine the most accu-

rate map with landslides and where the maps match. This

would allow us to delimit the spatial risk better.

LSMs in Fig. 2 show a well-defined pattern for the

distribution of the susceptibility zones. All the maps reflect

a horizontal zoning, influenced by the geological structure,

which divides the area into two susceptibility zones: north

and south. The south zone is basically more susceptible

than the north zone, and the visual differences between the

LSMs are mainly restricted to the distribution of the

Table 5 Rotated factor matrix

with weights over 0.7 in bold

for all the data and failed cells

Component All the data Failed cells

Total Variance (%) Cumulative (%) Total Variance (%) Cumulative (%)

Initial eigenvalues

1 4.588 91.769 91.769 4.023 80.469 80.469

2 0.195 3.897 95.666 0.632 12.633 93.101

1 2 1 2

Rotated component matrix

EI 0.475 0.871 0.323 0.899

NB 0.757 0.616 0.925 0.332

Q 0.813 0.545 0.916 0.355

SD 0.696 0.662 0.406 0.848

LP 0.877 0.444 0.841 0.468

Numbers in bold express factor loadings over 0.7
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susceptibility levels in these two zones. A visual analysis

shows a marked increase in the coverage area assigned as a

very low susceptibility level from EI (0.4 %), NB (7.2 %),

SD (7.5 %), Q (20.1 %) to LP (28.9 %) maps in the north

zone. The high susceptibility in the South area is, however,

restricted. It is therefore possible to refer to EI as the most

conservative or pessimistic model and to LP as the liberal

or optimistic model. The remaining models (NB, SD, Q)

reveal intermediate trends.

In order to visualize the spatial match and mismatch of

the five maps at a stroke, a procedure was implemented

with GIS, extracting the susceptibility value of each cell.

As a result, Fig. 5 displays the areas where some LSMs are

in agreement with the susceptibility level classification. It

shows that the overall agreement between all LSMs is only

9.1 % of the coverage area. When only failed cells are

considered, the agreement reaches 44.5 % of the covered

area.

Analyzing the variables that define the discriminant

prediction function, the mean values are higher in the areas

where LSMs match than in the areas where they do not

match with the exception of the height variable. LSMs

agree in areas with higher slopes (Xmatch ¼ 57� vs.

Xnotmatch ¼ 39�), higher watershed angles (Xmatch ¼ 27� vs.
Xnotmatch ¼ 15�) and south-facing slopes (Xmatch ¼ 123 vs.

Xnotmatch ¼ 98) in lower elevation areas (Xmatch ¼ 1073 vs.
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Fig. 3 a Spatial representation in two components by factorial analysis of the LSMs: using failed and unfailed sample (on the left) and using

only failed sample (on the right). b Results of the hierarchical cluster analysis for failed sample (landslides) and whole sample
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Xnotmatch ¼ 1237 m). This means that the agreement

between the maps is primarily in very high susceptibility

levels and that they differ in classifying very low, low, and

moderate susceptibility areas as shown in Fig. 6. In this

figure, the mean values of the continuous variable of the

discriminant function for each LSM are displayed. The

figure clearly shows the disagreement between the maps

from low to moderate susceptibility levels. For each vari-

able, EI has the lowest mean values and LP the highest

ones for very low, low, and moderate levels. As regards the

height variable, EI and LP behave in an inverse way to that

explained above. EI has the highest mean values and LP

the lowest for these levels. This figure again illustrates the

very conservative nature of EI versus the liberal LP. As for

the intermediate trends, there is agreement between NB

and SD for low to moderate levels and between NB and Q

for high and very high levels.

Despite the disagreement between the maps, it should be

noted that the maximum rank of differences between LSMs

is two susceptibility levels (red color), which accounts for

33.9 % of the area largely in the north zone (Fig. 7). More

than half of the map (57 %) differs only in one level of

susceptibility. This difference mainly concerns the central

and southern areas of the map. Although this area is the

most susceptible to failure, it is where the LSMs differ the

least in the susceptibility level classification.

The map in Fig. 8 shows areas where the models agree.

Only combinations of LSMs that are represented by more

than 9 % of the area are displayed. Note that in this figure,

when four LSMs are in agreement, LP is removed. Thus,

LP is the map that differs most from the other maps,

whereas NB and SD always appear together in all combi-

nations, indicating their similarity in spatial classification.

In the light of the above results, EI and LP were

removed from the following analysis because they did not

adequately reflect the reality of the landslide susceptibility

of the study area. EI shows a very pessimistic character,

overestimating the susceptibility of the area. The opposite

happens with LP, which is considered to be a very opti-

mistic model, underestimating the susceptibility of a large

part of the area. EI and LP are the two extreme classifi-

cation models of the five LSMs analyzed.

Therefore, the NB, SD and Q susceptibility maps were

compared in detail by difference image analysis. The maps

were generated by subtracting the cell value (susceptibility

level) of one LSM from the other. Thus, the final image can

display the spatial distribution of the maximum difference

between maps (Fig. 9). This figure also shows the distri-

bution of the highest value of susceptibility level for each

map in the area. There is only one level of difference

between these maps.

Figure 9a displays the difference between NB and Q.

The graph shows the agreement differentiating between

unfailed and failed cells. The disagreement between cell

types is evident. The percentage of unfailed cells that

match is 65.2 %, whereas that of failed cells is 95.9 %,

classifying most of the latter at the highest susceptibility

levels (NB 95.9 %; Q 94.4 % see Fig. 4). The maximum

difference is, in any case, only one level. Light blue zones

show the distribution of the highest susceptibility level for

NB. An uneven distribution of the light blue zone is shown,

concentrating on the northern area of the map. NB over-

estimates the susceptibility of this zone with respect to Q.

This suggests that NB is the most pessimistic or conser-

vative of the two models in this area. Both maps show

greater disagreement in areas where there is a lower

Fig. 4 Landslide frequency (a); coverage area (b) and R index (c) for
the NB, EI, Q; SD and LP susceptibility maps
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frequency of landslides, namely in areas with a lower

susceptibility.

Figure 9b displays the rank difference between NB and

SD. The distribution of the highest susceptibility levels is

inverse to the one shown above. NB reveals a higher sus-

ceptibility in the southern area than SD. The two maps

show agreement in 67.4 % of unfailed cells, but only in

55.6 % of failed cells. The latter disagreement is due to the

landslide classification in Fig. 4a. NB classifies 81.11 % of

landslides in very high susceptibility, whereas SD only

40.74 %. NB is more conservative in the southern area than

SD. However, this conservative nature of NB is more

realistic than SD. NB reflects greater instability through the

landslide frequency in the south, which is not reflected in

SD.

The rank difference between Q and SD in Fig. 9c shows

a low matching of landslides susceptibility zones

throughout the area. Only 58 % match and 42 % cells

exhibit a difference of one rank. This one-rank difference is

distributed as follows: 22 % of the area is higher suscep-

tibility for SD and 20 % for Q. Although the distribution

area is almost equal, the north–south pattern is also very

marked here. The susceptibility in the northern area is

overestimated by SD and the southern area by Q. Then, Q

better reflects the most susceptible zone of the area.

Discussion

Based on Spearman’s rank correlation coefficient, as a first

nonparametric measure of statistic dependence between

maps, the five LSMs proved to be very similar

(0.85–0.95), with a small difference of EI with respect to

the remaining maps. This correlation value was reduced

when chance was taken into account by the kappa statistic.

Kappa was defined in both unweighted and weighted

(linear) forms. Despite the fact that the former coefficient

is more usual in the literature, the latter is more accurate

because the susceptibility level is an ordinal variable.

Although the agreement calculated by the weighted kappa

values was clearly different for unfailed and failed cells

(‘‘good’’ and ‘‘almost perfect,’’ respectively), these data

cannot be compared owing to the prevalence of the

unfailed data over the failed data (the greater the agree-

ment between the maps, the smaller the sample). To

resolve this problem, an inferential test between

unweighted and weighted kappa was very useful. The

mean value showed significant differences when the

unfailed sample (p value = 0.004) was analyzed but not in

the case of the failed sample (p value = 0.207) for a fixed

significance level of 5 % (a = 0.05). These findings con-

firm that LSMs are more reliable in classifying areas of

the highest susceptibility level than areas of low to mod-

erate susceptibility level.

Factorial and cluster analyses were performed to display

graphically the similarity by distance between LSMs. They

enable us to group similar maps considering the variance of

spatial data for each map. The rotated spatial plots showed

the greatest differences between EI and LP when all the

data were analyzed. Q and NB were the closest and SD was

the most unstable map depending on the sample data. SD

proved to be more conservative when classifying failed

cells with the result that it approached EI. Hierarchical

cluster analysis provides a classification tree that links the

most similar LSMs progressively, confirming the factorial

results.

Prior to the image analysis, an evaluation of the classi-

fication of the susceptibility level was carried out by

Fig. 5 Spatial agreement of the

five landslide susceptibility

maps. Color legend indicates

where two or more LSMs match
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calculating the R index (landslide density analysis). The R

index showed a consistent distribution given the greater

frequency at the highest levels of the failed cells in the

susceptibility levels for all LSMs. LP showed the worst

classification followed by SD. As regards the coverage area

for each level, the study area was more stable (very low

and low susceptibility) for LP (58.08 %) than for the other

maps. The most unstable model of the area was EI

(7.58 %). If a model is biased in favor of safety, the above

results confirm the optimistic or liberal nature of LP with

respect to the pessimistic or conservative nature of EI in the

study area.

Despite accuracy statistical measures, the analysis of

image difference of LSMs is still very useful and highly

revealing. All LSMs highlight the importance of the north–

south orientation of the slopes owing to the geological

structure (series of east–west thrusts) of the zone, showing

a marked susceptibility pattern. However, the five LSMs

only agree in 9 % of the area when classifying the sus-

ceptibility. This agreement is centered in the south–

southwest where landslides are more frequent. These areas

mainly correspond to levels of high and very high sus-

ceptibility. They are characterized by steeper slopes, stee-

per watershed angles, with bare slopes exposed to the sun

at lower altitudes than areas where the LSMs disagree.

They disagree basically in the northern area with suscep-

tibility levels between very low and moderate. In these

areas, EI is the most conservative map with the lowest

mean values of susceptibility, whereas LP is the most

liberal map with the highest values.

After rejecting the two most extreme models (one

overestimates—EI—and the other underestimates—LP—

the susceptibility) in the study area, intermediate models

(NB, Q and SD) were compared by difference image

analysis. This analysis is made by subtracting cell sus-

ceptibility value of one LSM from the other. The results

show that the maximum difference between the three

maps is only one level with an unequal distribution

agreement. SD is furthest from the others with the

highest disagreement in the failed cell classification

(\58 %). This map underestimates the susceptibility in

southern area with respect to NB and Q. On the other

hand, the susceptibility in the south is reflected in a very

similar way by NB and Q, reaching an agreement clas-

sification of 96 % for the failed cells. The disagreement

is somewhat higher (65 %) for the remaining cells. This

value is mainly in the north, where Q is more optimistic

but not as realistic as NB. The reason for this is that Q

does not consider the manner in which the data are

distributed, thereby minimizing the intermediate sus-

ceptibility values of the function domain.
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Fig. 6 Mean values of slope angle, watershed angle, height and slope

aspect for each susceptibility level for the five LSMs
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Conclusions

Mapping landslide susceptible areas is essential for land-

use spatial planning and management decision making in

mountain environments. Landslide susceptibility is gener-

ated by mathematical models whose reliability must be

confirmed. Then, classification systems are applied to

predicted susceptibility values to obtain a landslide sus-

ceptibility map that is easy to interpret. However, the

classification involves a loss of information that depends

on the criteria adopted when building maps, which may

seriously impair the apparent results. Hence, this study

sought to compare statistically and rigorously five landslide

susceptibility maps at La Pobla de Lillet (Spain) obtained

by different classification systems (equal interval, natural

breaks, standard deviation, quantile and landslide percent-

age) in order to assess their similarities, differences, and

their efficacy and consistency in the study area. The five

maps ranked the predicted values of a discriminant model

whose predictability and reliability had been confirmed in

Baeza and Corominas (2001). A number of approaches

(Spearman’s correlation, kappa indexes, factorial and

cluster analyses, landslide density index) to the comparison

of map classification were used to complete and substan-

tiate the usual image analysis of the maps.

The implementation of statistical measures consistent

with the type of ordinal data (susceptibility levels) for

analysis should be noted. Moreover, factors that can

influence the magnitude of these measures (prevalence,

bias and no independent ratings) were considered for a

Fig. 7 Spatial distribution of

the maximum difference of the

susceptibility levels between the

five LSMs

Fig. 8 Spatial agreement

between some of the LSMs.

Only the combinations higher

than 9 % of the covered area

have been displayed
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correct interpretation of the results. Hence, nonparametric

approaches with more statistical power provided measures

of reliability in this study.

To sum up, the present study shows that despite using

the same mathematical model with the identical prediction

rate, the spatial agreement of these classification maps is

not consistent and their spatial pattern is considerably

different. Thus, several statistical measures and spatial

image analysis highlight the similarities and differences

between the maps. The agreement between the maps was

shown to be different. However, the accuracy of suscepti-

bility levels increases only when the most susceptible areas

are taken into account. This may be seen as a positive

result, given that a high accuracy for the higher susceptible

Fig. 9 Difference image between a NB and Q; b NB and SD; c Q and

SD. Full matching cell (no difference) in susceptibility level in the

two LSM is displayed in gray; one level difference can be displayed

in light blue or dark blue. Light blue zones correspond to higher

susceptibility level for the first map in legend and dark blue zones

(only in the Q and SD map) for the second map
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levels avoids the problem of identifying and classifying

these dangerous areas. Notwithstanding, the over- or

underestimation of the susceptibility in very low, low and

moderate levels can have important implications for land

management. The optimal map should be able to predict

most of the potential landslides efficiently and reliably in

the study area. Hence, the equal interval classification map

(EI) could be regarded as excessively pessimistic (a large

number of study cells are given high hazard susceptibility

levels), while the landslide percentage map (LP) could be

excessively optimistic (a large number of the study cells

are given low hazard susceptibility levels). The former map

may imply the loss of a potentially safe space, or even the

uselessness of investments made for prevention in areas

that could represent no danger. The latter map could lead to

loss of life or the destruction of infrastructure as a result of

incorrect classification of hazardous areas. LP is also a

user-defined classification that is more difficult for the

reader to interpret and is therefore harder to justify. Current

automatic classification systems should therefore be used

in place of a user-defined classification.

Of the three remaining LSMs, SD should be removed

given that it does not achieve as good a landslide classifi-

cation as other maps according to the R index. Finally, the

spatial patterns of Q and NB are very similar, but Q is not

as consistent as NB in relation to data distribution. As a

result of this and given its easy implementation with

respect to the other classification systems, NB is the most

suitable classification map for modeling landslide suscep-

tibility in the study area.

In the light of our findings, the particular classification

strategy clearly determines the appearance of the landslide

susceptibility map. The different maps obtained do not

have the same meaning and may influence decision mak-

ing. Hence, different classification systems should be

analyzed and the one that best fits the structure of the

landslide data in the study area should be adopted and

adjusted to the needs of the end-user.
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