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Abstract Rapid urbanization leads to rapid land use/cover

change that can cause a severe deterioration of living

environment in urban areas. Although numerous research

projects have explored land use/cover change and the

urbanization process with remote sensing data, only a few

have focused on the analysis of their temporal and spatial

variations in a visualized method using sub-pixel imaging

techniques. In this study, Wuhan, the largest developing

city in Central China, was chosen as the experimental

region. Six scenes from Landsat images were selected,

covering a lengthy period. To solve the problem of mixed

pixels in urban areas, the spectrum of each image was

selected individually and multiple endmember spectral

mixture analysis (MESMA), a sub-pixel imaging soft

classification technique, was applied. The land-use

dynamic and time-series land-cover fractional maps were

produced to evaluate the land use/cover change situation.

Next, the land-cover change intensity was calculated and

the dominant land-cover change intensity is proposed as a

virtualized method of analyzing the urbanization process

during each period covered by the Landsat images. The

results of the study demonstrate that the land-cover cate-

gories and fractional information were effectively acquired

following the implementation of MESMA. This informa-

tion shows that the built-up areas in Wuhan have expanded

at an average rate of 4.36 % rate in the last 20 years. The

urbanization process has resulted in the transformation of

the natural landscape to anthropogenic urban built-up

areas. It is surprised that these transformations have not

been smooth. In addition, the urbanization process exhibits

different patterns during each period.

Keywords Remote sensing � Sub-pixel classification �
Multiple endmember spectral mixture analysis � Land
use/cover change � Urbanization

Introduction

In the past 20 years, land use/cover change has become

the core domain and focus of frontier projects investi-

gating global change (Chen 1997). The process of

urbanization transforms the natural landscape to anthro-

pogenic urban land use, leading to changes in the physical

characteristics of the surface of the transformed areas

(Huang et al. 2015). For instance, urban areas are devel-

oped through the alteration of other land-cover types,

including forests, vegetated areas, lake areas and agri-

cultural fields. In particular, the urbanization rate in China

is the highest among Asian countries (Montgomery 2008).

According to the United Nations (2012), it is projected

that China’s urban population will reach more than one

billion by 2050. This massive population and rapid urban

growth are likely to cause both significant changes in land

use and land cover and severe environmental deterioration

(Weng and Quattrochi 2007). These changes will also

cause a loss of agricultural land, increasing the risk of soil

and water pollution and regional climate change (Chen

et al. 2011a, b). As a result, there is an increasing need to

map and monitor urban land use/cover change and

urbanization process.
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In recent years, satellite remote sensing techniques have

been widely used because of their comprehensive and

regular coverage (Zhao et al. 2003). Because of the com-

plexity of urban surfaces, medium- or coarse-resolution

sensors cannot detect urban features such as urban build-

ings and infrastructure directly within the sensor’s field of

view (Alan et al. 1986). In these situations, the sensors

actually measure reflections from the terrain surface with

proportional weighting according to the contributions of

the features covered by each pixel instead of recording the

intensity of a single feature; thus, they generate mixed

pixels. Mixed pixels have long been recognized as a

problem that influences the effective use of remotely

sensed data in urban land use/cover change classifications

(Cracknall 1998; Fisher 1997; Niu et al. 2014). Traditional

classification methods, such as maximum likelihood clas-

sifiers, will inappropriately categorize the pixel as a single

land type, thus affecting the accuracy of the classification.

Spectral mixture analysis (SMA) has been developed to

solve this problem. A spectral mixture model is a physi-

cally based model in which a mixed spectrum is modeled

as a combination of pure spectra, called endmembers

(Adams et al. 1993). Linear SMA derives the fractional

contribution of endmember materials by modeling image

spectra as a linear combination of endmembers, leading to

more accurate and reliable classifications. SMA is widely

used to solve the mixed-pixel problem in land-cover clas-

sifications, especially in urban areas. Small et al.

(2001, 2002) use linear SMA to study the variations of

urban vegetation in time and space, whereas Lu and Weng

(2006) use SMA to extract a city’s impervious surface with

an accuracy of 83.78 %.

However, SMA has limitations. It does not account for

spectral variations present within the same material given

that it permits only one endmember per material (Dennison

and Robert 2003). In other words, the pixels can only be

modeled by stationary spectral combination. Roberts et al.

(1998) propose multiple endmember spectral mixture

analysis (MESMA) based on SMA. This method dynami-

cally adjusts the number of endmembers in processing each

mixed pixel. Theoretically, MESMA can handle an

unlimited number of endmember spectra. It evaluates and

selects the best endmember spectra from all possible

combinations for each pixel (Rosso et al. 2005). MESMA

has been applied to map urban land cover at the sub-pixel

level and describe urban material distributions (Powell

et al. 2007; Powell and Roberts 2010; Rashed et al. 2003;

Michishita et al. 2012b). These studies show that MESMA

can be applied to remotely sensed data with robust results

for remotely sensed data.

Although previous research has explored land use/cover

change and urban extent using MESMA, only a few studies

have analyzed their temporal and spatial variation using

long time-series remote sensing data in a visualized

method. Moreover, it is very difficult to build a public

spectral library for long-time-range data because the

atmosphere situations are different for each acquisition of

images. This study uses MESMA to acquire land-cover

categories and fractional information over the 20 years of

the research period. Wuhan, the largest developing city in

Central China, was chosen as the experimental region. The

spectra of each image were selected individually to avoid

the influence of atmospheric effects. After MESMA,

modeling information and fraction information were com-

bined to analyze land use/cover change situations. Next,

time-series land-cover fractional maps were drawn to

explore the urbanization process in relation to land-cover

change in a visualized manner. Finally, land-cover change

intensity (LCCI) is calculated and the dominant LCCI

(DLCCI) was extracted to summarize the pattern of

Wuhan’s urbanization process.

Description of the study area

Wuhan, the capital of Hubei Province, is located in the east

of Jianghan Plain at the intersection point of the Yangtze

River and the Han River (1138410E*1158050E,
298500N*318220N). It is composed of three towns—

Wuchang, HanKou and Hanyang—and covers an area of

8494.41 km2. It has a subtropical monsoon climate with

four seasons, adequate illumination and abundant rainfall.

Wuhan is a flat, watery land that is crisscrossed by rivers

and lakes. It is the most flourishing city in central China

and has a population of 8.217 million. According to the

Wuhan Municipal Bureau of Statistics (2012), Wuhan’s

gross domestic product reached 905.127 billion yuan in

2013, nearly 40 times that in 1991. The city’s rapid eco-

nomic growth and huge population imply an urban explo-

sion over the last 20 years.

The city of Wuhan now has seven main districts and six

rural districts. This study focuses on the seven main dis-

tricts because it includes the majority of the urban areas

(Fig. 1).

Materials and methods

Data and preprocessing

Five Landsat-5 Thematic Mapper (TM) images and one

Landsat-8 Operational Land Imager (OLI) image, provided

by International Scientific & Technical Data Mirror Site

(http://www.gscloud.cn), were used in this study (Table 1).

These image products were carefully selected using

appropriate time intervals to limit seasonal variations.
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The data preprocessing procedure is shown in Fig. 2

(top of the rectangle). These images are all level 1T

products that have already been corrected for radiation

and geometry. The 1991 image was used as the reference

for the registration to ensure that all images have

consistent geometric characteristics. The nearest-neighbor

resample method was used in this step, and the root mean

square error (RMSE) in the transformations of the

remaining scenes to the reference was limited to within

0.5 pixels. Then, a vector file was generated through

vectorization to resize the six time-series images. All of

these steps were performed using the ENVI 5.0 software

platform. The entire flow chart for this study is shown in

Fig. 2.

Multiple endmember spectral mixture analysis

Linear spectral mixture model

The SMA decomposes mixed pixels as a combination of

estimates of the pure spectra of land components, which

Table 1 Landsat images used in this study

Satellite Orbit Time

Landsat 5 P123r039 1991.10.23

1996.10.04

2000.10.31

2005.09.11

2009.09.06

Landsat 8 P123r039 2013.10.03

Fig. 1 Location of the study area a the location of Wuhan area in China; b, c the study area in Wuhan
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are the endmembers (Zhao et al. 2003). A common linear

spectral model defines the pixel reflectance as a combina-

tion of endmembers’ reflectance and their proportion in the

pixel area. It can be expressed as follows:

Rik ¼
XN

1

fiXqik þ ek ð1Þ

XN

1

fi ¼ 1 ð2Þ

Here, Rik is the reflectance of pixel i in band k and N is

the number of endmembers. qik indicates the reflectance of
each endmembers, and ek is the residual error. fi is the

fraction of each endmember that is commonly constrained

by Eq. (2). The result is assessed using the root mean

square error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
k¼1 e

2
k

M

s

ð3Þ

where M is the band of the sensor. High RMSE indicates a

poor estimate of endmembers.

The linear model separates and extracts the fractional

spectral endmembers in the mixed pixels and determines its

residual error in the image. The linear SMA has a definite

physical meaning, which should lead to higher accuracy

and is widely used in various applications for different

landscapes. However, it fails to account for the existence of

materials that are not included in endmembers. It also does

not account for spectral variations in the same material

because it permits only one endmember per material.

MESMA addresses these concerns by allowing end-

members to vary on a per-pixel basis (Roberts et al.

Fig. 2 Flow chart for this study
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1998, 1999). Thus, the optimal endmembers are deter-

mined by three criteria: fraction, RMSE and the residuals

for contiguous bands. An appropriate threshold of these

three criteria should be set to produce the optimal candi-

date. The steps are shown at the middle of Fig. 2 (middle of

the rectangle) and are explained in the following section.

Endmember extraction

Endmember extraction, which is a key step in SMA and

MESMA, can be derived from an image or from field

reflectance spectra. In practice, image-based endmember

selection methods are frequently used because they readily

obtain and represent the spectra measured on the same

scale as the image data. Thus, the endmembers are

extracted from the six time-series images used in this

study.

The extracted endmembers must represent the ground

material accurately and comprehensively (Dennison and

Robert 2003). There are two challenges related to building

a spectral library of mixed pixels. First, the spectral library

should be sufficiently large to represent the variation in

ground material. Second, with an increasing number of

endmembers, the efficiency of calculation decreases

(Michishita et al. 2012a). Therefore, we refer to the con-

cept proposed by Ridd, who assumes that the spectral

signature of land cover in urban environments is a linear

combination of three components: vegetation, impervious

surface and soil (Ridd 1995). Considering the land-cover

characteristics of Wuhan, after several trials, four cate-

gories of endmembers are defined: (1) water; (2) green

vegetation; (3) built-up area; and (4) bare land. The defi-

nitions of these categories in Wuhan are as follows:

1. Water (W) means all types of water area, such as

rivers, lakes, paddy fields and fisheries.

2. Green vegetation (GV) means chlorophyllous

vegetation.

3. Built-up area (BU) contains buildings, roads and every

manmade imperious surface.

4. Bare land (BL) contains non-surface coverage such as

soil and some incomplete built-up areas.

In this research, endmember extraction was performed

in 2 steps: region selection and spectral library develop-

ment. The regions are extracted from the image data

through visual interpretation, and the spectral library is

developed. Each region contains a set of spectra that are

categorized based on endmember definitions. The number

of regions (spectra) in each endmember is based on the

complexity of ground features. After this step, six original

spectral libraries are individually built.

Optimal spectra selection

Optimal spectra are chosen from the extracted endmember

spectra using the endmember average RMSE (EAR), which

was proposed by Dennison and Roberts in (2003). The

equation can be expressed as follows:

EARAi;A ¼
Pn

j¼1 RMSEAi;Aj

n� 1
ð4Þ

where A is the endmember class, Ai and Aj are the modeled

spectra class, n is the number of spectra in class. The term

n - 1 accounts for the endmember modeling, which pro-

duces a zero RMSE. EAR is calculated for each end-

member spectrum as the average of the RMSE from a set of

models, including the endmember spectrum, to unmix the

other spectra in the same endmember land-cover class.

Although EAR does not represent the purity of an end-

member, it allows one to choose the appropriate end-

member in the unmixing process. The spectrum in the class

with lowest EAR was considered as the optimal end-

member spectrum that best represented that class. The

optimal endmember spectra in different time series are

shown in Table 2.

Spectral unmixing

Two-endmember models were applied in this study

because (1) a large number of endmember models may

cause spectral confusion, (2) the number of model

improvements may yield a lower RMSE but may not sig-

nificantly change the endmember fraction and (3) more

endmember models will result in a decreasing computa-

tional efficient. Photometric shade (SHD) was added as the

endmember to account for the variation in illumination.

According to previous studies (Dennison and Roberts

2003; Roberts et al. 1998; Townshend et al. 2000;

Michishita et al. 2012a), the fractions of 1.05 maximum

and -0.05 minimum are constrained. The additional range

Table 2 Number of optimal endmember spectra in different time

series

Year Endmember spectra number

Vegetation Bare land Built-up area Water Total

1991 8 2 5 3 18

1996 6 2 5 3 16

2000 5 1 5 2 13

2005 5 1 7 2 15

2009 6 1 7 3 17

2013 5 1 7 2 15
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of 5 % was incorporated to take noise-oriented modeling

errors into account (Rashed et al. 2003). The RMSE of

each pixel is constrained to less than 0.025. A pixel was left

unmodeled (Unm) when no model met the constraints.

Results and analysis

Accuracy assessment

Due to the lack of fractional reference data, the accuracy

assessment could not be conducted in this research. How-

ever, the pixel level confusion matrix can be calculated.

Thus, we combine the model into four ground feature

categories and 500 pixels are selected randomly in each

category and in each year. These pixels obey the same rules

as the endmember extraction and are equally distributed in

the corresponding image. The confusion matrices, the

overall accuracy and the Kappa coefficient are shown in

Table 3.

Although green vegetation and water areas are classified

with high accuracy, bare land is classified with relatively

low accuracy. In the research, bare land is defined as non-

surface coverage such as soil and some incomplete built-up

areas. There is some confusion in the built-up areas and

bare land, which according to image interpretation is

mostly distributed on the edges between urban and rural

areas.

The Kappa coefficients of the six images are 0.76, 0.87,

0.73, 0.86, 0.74 and 0.68, which are not as high as some

published classification algorithms but are still considered

acceptable for the following reasons. First, the four ground

feature categories were combined by the unmixed model.

For example, eighteen models were generated for 1991

(Table 2). In other words, we actually classified eighteen

categories. The Landsat spectral resolution is insufficient to

support a very high accuracy in such classification cate-

gories. Second, a huge area was chosen in this research

(nearly 811 km2). This area surely contained tremendous

variations of land-cover types, potentially leading to con-

fusion. Third, the result satisfies the demands of our

research. The land cover’s change tendency is clear from

this accuracy.

Land-cover area change analysis

The land-use dynamics are determined to reveal the land-

cover change, which can be expressed as

Av ¼
Ae � As

As

� 1

T
� 100 % ð5Þ

where AV is the land-cover rate of change, Ae and As rep-

resent the same land-cover area in 2 image epochs. It

Table 3 Confusion matrix and accuracy coefficient of each year

Category Unm BU GV W BL Total

1991a

Unmodel 0 0 0 0 63 63

BU 0 376 0 9 28 413

GV 0 97 500 0 113 710

W 0 13 0 491 20 524

BL 0 14 0 0 276 290

Total 0 500 500 500 500 2000

1996b

Unmodel 0 0 0 0 1 1

BU 0 440 4 0 117 567

GV 0 2 495 13 4 514

W 0 0 0 487 0 487

BL 0 58 1 0 378 437

Total 0 500 500 500 500 2000

Unmodel 0 0 0 0 1 1

2000c

Unmodel 0 0 0 0 10 10

BU 0 394 0 0 270 664

GV 0 1 481 2 1 485

W 0 20 0 498 0 518

BL 0 85 19 0 219 323

Total 0 500 500 500 500 2000

2005d

Unmodel 0 2 0 0 0 2

BU 0 495 35 8 128 666

GV 0 0 459 3 19 481

W 0 0 0 489 0 489

BL 0 3 6 0 353 362

Total 0 500 500 500 500 2000

2009e

Unmodel 0 0 0 0 0 0

BU 0 444 3 0 308 755

GV 0 1 496 0 18 515

W 0 0 0 500 0 500

BL 0 55 1 0 174 230

Total 0 500 500 500 500 2000

2013f

Unmodel 0 0 0 0 0 0

BU 0 444 3 0 308 755

GV 0 1 496 0 18 515

W 0 0 0 500 0 500

BL 0 55 1 0 174 230

Total 0 500 500 500 500 2000

a Overall accuracy = (1643/2000) = 82.15 %; Kappa coefficient =

0.76
b Overall accuracy = (1800/2000) = 90.00 %; Kappa coefficient =

0.87
c Overall accuracy = (1592/2000) = 79.60 %; Kappa coefficient =

0.73
d Overall accuracy = (1796/2000) = 89.80 %; Kappa coefficient =

0.86
e Overall accuracy = (1614/2000) = 80.70 %; Kappa coefficient =

0.74
f Overall accuracy = (1506/2000) = 75.30 %; Kappa coefficient =

0.68
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equals the fraction multiply by a pixel of the representative

area of 900 square meters. T denotes the time interval. In

addition, water bodies are not affected by fractional rep-

resentation, so each water body pixel represents 900 square

meters.

Tables 4 and 5 show the land use/cover change condi-

tion in Wuhan from 1991 to 2013:

1. Built-up areas show rapid growth from 1991 to 2013 at

an average rate of 4.36 %. Vegetation, water body and

bare land decreased at average rates of -2.33, -1.1

and -3.45 %, respectively, over the same period.

From an area perspective, built-up areas nearly dou-

bled and green vegetation were reduced to half from

1991 to 2013. Water areas decreased by 56.99 km2,

which is nearly one-quarter of its original area at the

beginning of the period.

2. Built-up areas changed most rapidly from 1996 to 2000

at an average rate of 6.82 %. This rate slowed in the

following years and even became negative in 2005 to

2009. From 2009 to 2013, the rate then resumed its

positive trend. This high overall rate of change for

built-up areas demonstrates the rapid urban develop-

ment that has occurred in Wuhan over the last

20 years.

3. Vegetation areas decreased over the whole period,

especially from 2009 to 2013. However, vegetation

areas slightly increased from 2005 to 2009. Built-up

and green vegetation areas experienced abnormal

conditions from 2005 to 2009 where their tendencies

are in the opposite direction from the rest of time

series. In particular, the correlation between the rates

of change for built-up areas and green vegetation areas

is significantly positive.

4. Water bodies showed a decreasing tendency over the

20 years under study. However, they increased slightly

from 1996 to 2000. The most severe variation in water

areas primarily occurred during the first 15 years

(1991–2005). The rate of decrease then slowed to

7.76 km2 from 2009 to 2013 inclusive.

5. The variation in bare land fluctuated. In each period,

the amount of bare land changed significantly from

increasing or decreasing, especially from 1991 to 1996

and from 2009 to 2013. Our definition of bare land

includes soil and incomplete built-up areas. Therefore,

the urbanization process might have influenced these

results and led to confusion in the extent of variations

in bare land.

The key result of land use/cover change in Wuhan is the

transformation of the natural landscape to anthropogenic

urban built-up areas. However, this transformation did not

occur smoothly. The trend for water areas from 1996 to

2000 ran contrary to the rest of the period and from 2005 to

2009, the rate of growth in built-up areas became negative,

whereas that for green vegetation areas turned positive,

which were also both opposite to the general trend.

Built-up area change and transfer analysis

To analyze the growth in built-up areas, time-series land-

cover fraction (LCF) maps are generated (Fig. 3). The

built-up areas from the 2013 image are extracted and

masked over the other fractional maps. In these maps, red

Table 4 Area of different land covers of Wuhan from 1991 to 2013

Category Area(Km2)

1991 1996 2000 2005 2009 2013

BU 201.98 218.07 277.52 350.52 326.78 395.60

GV 463.73 377.03 314.58 302.89 326.99 225.72

W 234.94 181.74 220.12 205.95 185.71 177.95

BL 48.91 146.42 102.47 78.41 100.65 11.78

Table 5 Variation of land-use dynamic of Wuhan from 1991 to 2013

Category Land-use dynamic

1991–1996 1996–2000 2000–2005 2005–2009 2009–2013 1991–2013

BU (%) 1.59 6.82 5.26 -1.69 5.20 4.36

GV (%) -3.74 -4.14 -0.74 1.99 -7.74 -2.33

W (%) -4.53 5.28 -1.29 -2.46 -1.04 -1.10

BL (%) 39.87 -7.50 -4.70 7.09 -22.07 -3.45
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is assigned to built-up areas, green to green vegetation

areas, blue to water areas and gray to bare land areas,

respectively. The green vegetation areas, water areas and

bare land areas were finally transformed into built-up areas

in 2013. Pixels with high fractions have brighter tones and

lower fractions have darker tones.

The LCF maps reveal the following:

1. Spatially, the expansion of built-up areas extended

outward from the geographic center of Wuhan, which

is the intersection of the Han River and the Yangtze

River. The three towns in Wuhan showed different

Fig. 3 Time-series land-cover fraction map: a–f for different years. Red is assigned to BU, green to GV, blue to water and gray to bare land,

respectively. Pixels with high fraction have brighter tones and lower fraction have darker tones

1214 Page 8 of 12 Environ Earth Sci (2016) 75:1214

123



patterns of urban growth. The built-up area of Hankou

was based in the old town and developed layer by layer

in an arc. In Hanyang, the built-up area developed at a

slow rate, primarily along the south of the Yangtze

River and west of the Han River. The built-up areas in

the old towns of Wuchang and Qingshan were slowly

connected before 2000. Later, there was an expansion

of economic development areas to the east of Wuhan.

2. Lake areas, which were encroached upon by built-up

areas, primarily existed before 2005. Compared Fig. 3c

with Fig. 3d, the blue area suddenly disappeared. This

comparison reveals the deteriorating situation with

respect to the lakes over only a five-year period. After

then, these situations were prevented with effective

government supervision. We also note that in the top

left of Fig. 3c, some blue areas appeared. According to

the government’s policy, some cultivated fields were

forced to become fishery areas, which explains why the

water areas showed an abnormal increase during this

time series.

In particular, the red areas in these maps turned bright

from Fig. 3a–f, which indicates that the fraction of built-up

areas declined in these years, especially in the city center.

Urbanization process analysis

To understand the urbanization process in Wuhan, research

by Michishita (2012b) is referenced to calculate the LCCI

and to extract the dominant LCCI (DLCCI). LCCI was

used to derive the average change in the area of each land-

cover classification per day in each pixel between two

observation dates of remotely sensed data. It is calculated

using the following equation:

LCCI ¼ LCFt1 � LCFt2

Dt
� A ð6Þ

where LCFt1 and LCFt2 are two TM observation dates. Dt
is the number of interval days between the two observation

dates, and A is a pixel of the representative area, that is,

900 square meters.

Based on the concept of LCCI, two mechanisms of

urban growth are defined: urban new land development and

urban redevelopment. New land development means that

another land-cover classification became built-up area that

has high LCCI in both the built-up area and other land-

cover types. Urban redevelopment refers to the recon-

struction of a built-up area without a transfer of land-cover

classification. Therefore, it has a high LCCI in the built-up

area and a relatively low LCCI in other land-cover types.

The land-cover change intensity during each period is

shown in Table 6, which reveals that in 1996–2000, veg-

etation and water bodies varied greatly, similar to built-up

areas. The same situation occurred from 1991 to 1996 and

from 2009 to 2013. These three periods can be classified as

urban development. From 1996 to 2000, green vegetation

and water body areas varied relatively more slowly, but

there was still a high LCCI for built-up areas. This period

can be classified as urban redevelopment. From 2005 to

2009, built-up areas showed an abnormal, negative change.

We believe that the existing built-up areas, especially on

the urban fringe, were likely misclassified as bare land

because of unbuilt construction.

DLCCI extraction for BU and GV can be expressed

through the following equation:

Vegetation :

DLCCIGV ;p ¼ Min LCCIGV ;P1; LCCIGV ;P2. . .LCCIGV ;Pn;
� ��� ��;P

� �

ð7Þ
Built� up area :

DLCCIBU;p ¼ Max LCCIBU;P1;LCCIBU;P2. . .LCCIBU;Pn;
� ��� ��;P

� �

ð8Þ

P1, P2…Pn represent time series, and P is the point in time

at which the absolute LCCI value reached its maximum.

We export the maximum LCCI in built-up areas and the

minimum LCCI in vegetation areas to determine the most

extreme variation in the time series. Based on our images

and the LCCI values, 5 time categories and 3 intensity

categories are defined. The DLCCI provides a general

illustration of the period during which the urbanization

process reached its relatively high rate.

According to Fig. 4, from 1991 to 1996, vegetation

areas decreased in a circular pattern around the old area of

Wuhan (Circle 3). Comparing circle 1 and circle 3, built-up

areas did not fill this gap immediately but instead devel-

oped slowly in a near-circular pattern in the following

years. This development pattern gradually became negli-

gible and finally stopped. Then, the inner-city areas began

to experience redevelopment and reconstruction. The built-

up area intensity did not change drastically, but expanded

throughout a broad area outside the old town, including, for

example, the Optics Valley area, the Wuhan Railway

Table 6 Variation of land-cover intensity

Time Average LCCI (m2/day)

Built-up

area

Green

vegetation

Water

body

Bare

land

1991–1996 0.03 -0.11 -0.15 0.29

1996–2000 0.12 -0.12 0.11 -0.20

2000–2005 0.10 -0.02 -0.04 -0.15

2005–2009 -0.04 0.04 -0.07 0.13

2009–2013 0.09 -0.25 -0.03 -0.53
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Station area and the Yanxi Lake area (Circle 2), all of

which are referenced on the Wuhan electronic map. It is

clear that the increase in built-up areas and decrease in

vegetation areas were very consistent.

As shown above, Wuhan’s urbanization process occur-

red in several steps from 1991 to 2013. It began at its

geographic center with a circular pattern of expansion.

Before 2000, the separate districts were gradually con-

nected. In the next 4 years, reconstruction took over. Then,

some built-up areas were developed rapidly outside of the

old town. This urbanization process clearly changed

Wuhan’s natural landscape. Water areas, which decreased

rapidly in the early years, have become carefully protected

and were no longer destroyed after 2005. However,

urbanization caused a substantial loss of agricultural land,

especially in the later years.

Discussion

Endmember extraction

In previous studies, endmembers have been derived from

an image or from an existing spectral library. In this study,

the endmembers were primarily chosen through the visual

interpretation of images. Some high-resolution Google

Earth maps were also referenced. We characterized the

different ground features in both TM images and Google

Earth maps and chose the region of interest. Because

Google Maps did not exist before 2000 and the TM images

capture different data, it was impossible for us to ensure the

purity of spectra of the whole region. In the following step,

the appropriate endmembers are chosen and optimized.

However, this process still influences the accuracy assess-

ment, especially for some easily confused land objects.

Some different image transformation approaches can be

used to transform the multispectral images into a new

image feature space. Next, the endmembers can be derived

from the extremes of this space by assuming that they

represent the purest pixels in the images. For example,

Lu and Weng (2006) uses the minimum noise-fraction

procedure to select four endmembers: high-albedo, low-

albedo, vegetation and soil. Nevertheless, the endmembers

could not match the exact ground features and the proce-

dure is not suitable to analyze complex land-cover changes

in detail.

Another possible advantage is that endmembers’ spectra

are collected individually from six time images. It is very

difficult to build a public spectral library for long-time-

range data because of the different atmospheric situations,

and the land surface in Wuhan rapidly changed over the

twenty-year period. The strategy based on individually

selecting ground materials leads to a more accurate

assessment, especially in built-up areas. In addition, the

combined endmember spectra ignore atmospheric effects

between epoch images, which, as documented in previous

research (Song et al. 2001), are extremely difficult to

completely remove. However, we must combine the cate-

gories after spectral unmixing for further comparison and

analysis using this collection method. Thus, a unified

judgment cannot be established in the following step; it is

necessary to optimize these methods in further research.

Unmixing result and accuracy assessment

A two-endmember model is used in this study to unmix the

pixels in six temporal images. Based on some constraints,

several units are categorized as unmodeled pixels. As

shown in Table 7, the unmixing results are acceptable. The

most successfully modeled image is from 2000, for which

modeling achieved 99.83 %.

In addition, the 2013 image is referred to because its

successful proportional modeling is lower than for the

other five periods. We found that most of the unmodeled

pixels are concentrated in the newly built industrial zone.

Several experiments were attempted to extract more

Fig. 4 DLCCI of urban and vegetation area
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endmember spectra in these areas, but they ultimately

failed because they could cause spectral confusion and thus

decrease the accuracy of classification in other areas.

Because of the lack of reference data, an accuracy

assessment could not be conducted in this research. Thus, a

compromise method is chosen. Confusion matrices are

calculated to conduct an accuracy assessment in the same

manner as a hard classification method. The useful refer-

ence data should be available for a future study to conduct

an accuracy assessment at the fractional level.

Conclusion

In this research, multiple endmember spectral mixture

analysis (MESMA) was used to solve the mixed-pixel

problem in Wuhan’s urban area. Six endmember spectra

libraries were built individually, and a two-endmember

model was used to unmix the pixels. Then, the land use/-

cover change and urbanization process in the Wuhan area

from 1991 to 2013 were analyzed. Our conclusions are as

follows:

1. By extracting the endmembers and unmixing the pixels

in the images with two-endmember models, the land-

cover type and fractional information are successfully

acquired. Then, we combine these data to generate a

time-series LCF map and a DLCCI map to analyze

Wuhan’s urbanization pattern in a visualized way.

2. The Wuhan urban area experienced extensive devel-

opment from 1991 to 2013. Built-up areas showed

rapid growth from 1991 to 2013 at a rate of 4.36 %,

with the fastest rate occurring from 1996 to 2000, at

6.82 %. Then, the speed of development slowed and

became negative from 2005 to 2009. However, it

became positive again from 2009 to 2013. The rate

increased at the expense of a decrease in vegetation

areas and inner-city lakes. However, the green vege-

tation and water areas did not decrease smoothly. The

trend of variation in water areas from 1996 to 2000 ran

contrary to that of the rest of the period, whereas from

2005 to 2009, the trend for green vegetation areas

turned positive.

3. The urbanization process is strongly related to time

and space. Before 2000, the urban growth pattern

emphasized new land development, centralized and

extending out from the geographic center of Wuhan.

Urban growth developed at a relatively slow rate in a

nearly circular pattern. The three towns of Wuhan

showed different rates of spatial urbanization. From

2000 to 2005, the inner city focused more on urban

redevelopment. On this basis, the built-up areas

expanded outside of the old town, especially from

2009 to 2013. The increasing intensity during this

period was nearly the same as in the early years, but

the size of the area was much more extensive. This

pattern is highly consistent with that decrease in

vegetation areas.
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