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Abstract The main objective of this study is to propose

and verify a novel ensemble methodology that could

improve prediction performances of landslide susceptibility

models. The proposed methodology is based on the func-

tional tree classifier and three current state-of-the art

machine learning ensemble frameworks, Bagging, Ada-

Boost, and MultiBoost. According to current literature,

these methods have been rarely used for the modeling of

rainfall-induced landslides. The corridor of the National

Road 32 (Vietnam) was selected as a case study. In the first

stage, the landslide inventory map with 262 landslide

polygons that occurred during the last 20 years was con-

structed and then was randomly partitioned into a ratio of

70/30 for training and validating the models. Second, ten

landslide conditioning factors were prepared such as slope,

aspect, relief amplitude, topographic wetness index, topo-

graphic shape, distance to roads, distance to rivers, distance

to faults, lithology, and rainfall. The model performance

was assessed and compared using the receiver operating

characteristic and statistical evaluation measures. Overall,

the FT with Bagging model has the highest prediction

capability (AUC = 0.917), followed by the FT with Mul-

tiBoost model (AUC = 0.910), the FT model

(AUC = 0.898), and the FT with AdaBoost model

(AUC = 0.882). Compared with those derived from pop-

ular methods such as J48 decision trees and artificial neural

networks, the performance of the FT with Bagging model

is better. Therefore, it can be concluded that the FT with

Bagging is promising and could be used as an alternative in

landslide susceptibility assessment. The result in this study

is useful for land use planning and decision making in

landslide prone areas.

Keywords Landslide � GIS � Functional trees � AdaBoost �
MultiBoost � Bagging � Vietnam

Introduction

During the recent decades, assessment of landslide-sus-

ceptible zones has become one of the most discussed topics

in literature because prediction of landslide events is par-

ticularly difficult due to the complex natures of landslides

(Tien Bui et al. 2016e). Consequently, various methods and

techniques have been proposed for landslide modeling and

they can be classified into three main groups such as
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physical-based, statistical, and soft computing methods.

Since physical-based methods are not suitable for large

areas, statistical and soft computing methods have received

huge attention. In the statistical methods, bivariate analysis

(Suzen and Doyuran 2004; Yalcin et al. 2011), multivariate

analysis (Chung et al. 1995; Suzen and Doyuran 2004) and

logistic regression (Costanzo et al. 2014; Felicisimo et al.

2013; Kavzoglu et al. 2015; Lee et al. 2014; Pradhan and

Lee 2010; Tien Bui et al. 2011) are considered to be the

most suitable methods for landslide susceptibility assess-

ment on medium and regional scales. However, prediction

capability of these landslide models is still not satisfied;

therefore, data mining methods have been proposed (Tien

Bui et al. 2016e).

Data mining, which is a branch of applied artificial

intelligence, is defined as the exploration of observational

datasets to find internal relationships and represent the

data in understandable ways (Mennis and Guo 2009).

They include multiple steps such as data selection and

preprocessing, transformation, incorporation of prior

knowledge, analysis with computational algorithms,

interpretation and evaluation of the results (Fayyad et al.

1996). Literature review shows that data mining is suit-

able to deal with nonlinear real-world problems with high

accuracy, including landslide modeling (Hoang and Tien

Bui 2016; Hoang et al. 2016; Tien Bui et al. 2016a; Were

et al. 2015).

Among data mining methods and techniques, neuro-

fuzzy (Pradhan et al. 2010; Tien Bui et al. 2012d), artificial

neural networks (Gomez and Kavzoglu 2005; Hong et al.

2015b; Lee et al. 2003; Tien Bui et al. 2012c; Yilmaz

2009), and support vector machines (Kavzoglu et al. 2014;

Yao et al. 2008) may be the most widely used. Several

studies have compared the prediction performance of these

methods with conventional methods and concluded that the

performance of data mining models is better than that of

conventional methods (Cheng and Hoang 2015; Pham et al.

2015, 2016a; Pradhan 2013; Tien Bui et al. 2012a, 2013a;

Were et al. 2015; Yilmaz 2009).

The recent developments of geographic information

systems (GIS) technology in combination with soft com-

puting tools (such as in Weka, R programming, and

MATLAB) have provided new and powerful techniques for

landslide modeling (Tien Bui et al. 2016e) such as rule-

based systems, probabilistic reasoning, decision tables, J48

decision trees, logistic model trees, and functional trees

(Kumar et al. 2012). The main advantage of these methods

is that they provide not only a more transparent calculation

in the modeling process but also better accuracy (Hong

et al. 2015a; Park and Lee 2014; Pham et al. 2016b; Tien

Bui et al. 2014; Tsangaratos and Ilia 2015). Therefore,

exploration of new methods and techniques for landslide

modeling are highly necessary (Tien Bui et al. 2012e). This

is because a few percentage of increment of the spatial

accuracy could affect the spatial distribution of landslide-

susceptible areas (Jebur et al. 2014; Kavzoglu et al. 2014;

Tien Bui et al. 2012b, 2013a, 2014).

More recently, ensemble frameworks have received

much attention in many fields due to their abilities to

improve the prediction performance of models as well as

dealing with complex and high-dimensional data (Lee et al.

2012; Rokach 2010). Various ensemble frameworks have

been proposed such as Stacking, Random subspace, Ran-

dom forests, and Rotation forests (Rodriguez et al. 2006),

Bagging (Breiman 1996), AdaBoost (Freund and Schapire

1997), MultiBoost (Webb 2000), and they can group into

two main categories: heterogeneous and homogeneous

(Shun and Wenjia 2006). The first one incorporates models

from different algorithms to form the final ensemble clas-

sifier, for example in Lee et al. (2012), whereas in the

second one, only one algorithm is used but the original

training data is split into several subsets to build classifiers,

and then, a committee is constructed (Maudes et al. 2012).

Nevertheless, exploration of ensemble frameworks for

landslide susceptibility modeling has seldom been carried

out.

This study fills this gap in literature by proposing and

verifying a novel ensemble methodology for landslide

susceptibility modeling. In the proposed approach, func-

tional trees (Gama 2004) and three ensemble techniques

such as AdaBoost, Bagging, and MultiBoost were used.

The functional trees (FT) are classification trees that use

linear functions at the leaves, whereas AdaBoost, Bag-

ging, and MultiBoost are homogeneous ensemble frame-

works that have ability to improve performances of

prediction models significantly (Pham et al. 2016b; Tien

Bui et al. 2013a, 2014). The prediction performances of

the ensemble models were assessed using the training and

validation datasets, statistical evaluation measures, the

receiver operating characteristic (ROC) curve, and area

under the curve (AUC). In addition, landslide models

derived from J48 decision trees and artificial neural net-

works were included for comparison, and finally, con-

cluding remarks were given. It is noted that the data

processing was carried out using Microsoft Excel 2013,

ArcGIS 10.2, and IDRISI Selva 17.01. The modeling

process was carried out using the R programming envi-

ronment and Weka 3.7.

Study area and data used

Geographic setting of the study area

The corridor of the National Road No. 32 section, between

the Yen Bai and the Lao Cai provinces (Fig. 1), is selected
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as the study area. The area is located in the northwestern

region of Vietnam and covers an area of around 3164 km2,

between longitudes 103�3302300E and 104�5205800E, and

between the latitude 21�1905300N and 22�2001800N. The total
length of the road section is about 250 km.

The altitude of the study area ranges from 120 to

3140 m a.s.l, with an average altitude of 1078 m and SD is

555.9 m. Areas with slope group 0�–15� account for

22.3 % of the total area. About 52.9 % of the study area

falls within slope greater than 25�, whereas areas in the

slope category 15�–25� account for 24.8 % of the total

area. Topographically, around 30.6 % of the total area is

saddle hillside, whereas ridge areas account for 18.2 %.

Approximately 17.8 % of the total area is ravine. Convex

and concave areas account for 13.1 and 12.0 % of the total

area.

The climate in the areas is characterized by the tropical

monsoon with hot, rainy, and dry seasons. The average

temperature is 22–23 �C and the average humidity

83–87 %. Rainfall is mainly concentrated in the rainy

season from March to November, with an annual average

rainfall is around 1500–2200 mm. Rainfall is generally low

from December to February. The highest temperature can

peak 41�, whereas the lowest one is around 0� (Ho et al.

2010).

Three main fault zones pass through the study area that

causes weakness in the rock mass: Fansipan, Tu Le, and

Song Da. There are 34 lithological formations outcrop in

the study area, and among them, 10 formations (Fig. 1) are

dominant and account for 88.9 % of the total area. They are

Sinh Quyen (2.2 %), Bac Son (1.5 %), Suoi Bang (6.6 %),

Muong Trai (2.6 %), Nam Mu (6.1 %), Tu Le complex

(22.4 %), Phu Sa Phin complex (9.0 %), Ngoi Thia

(12.0 %), Tram Tau (13,2 %) and Phu San Cap complex

(13.2 %). Our analysis of these formations shows that tuff,

sandstone, clay shale, clayey limestone, siltstone, lime-

stone, trachyte porphyry, rhyolite, and granite are the main

lithologies. Landslides are highly concentrated in Tu Le

complex and Tram Tau formation (Ho et al. 2010).

Data collection and processing

Landslide inventory map

In this study, data collection and processing was carried out

by means of a geographic information system. Landslide

modeling is carried out using the statistical hypothesis that

landslides will occur in future under the same conditions

that produced them in the past and present (Guzzetti et al.

1999); therefore, a landslide inventory map is highly nec-

essary to understand the conditioning factors that trigger

slope failures and their mechanisms (Dai et al. 2002). In

this study, a landslide inventory map (Fig. 1) with 262

landslide locations which have occurred during the last

Fig. 1 Landslide inventory

map of the study area
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20 years was used. These landslides were collected and

interpreted using aerial photographs with resolution of 1 m,

and these works were carried out in a national project by

Ho et al. (2010). These landslides including 16 transla-

tional slides and 246 soil-mixed-boulder slides are depicted

by polygons where the maximum size is 37,326 m2, while

the minimum size is about 476 m2.

Around 14.5 % of the total landslides have sizes lager

than 10,000 m2, whereas only 1.5 % of the total landslides

have sizes less than 1000 m2. Landslide sizes between

1000 and 5000 m2 account for 56.5 % of the total land-

slides. The other landslides (27.5 %) have sizes from 5000

to 10,000 m2. It is important to note that some types of

failures such as rock falls and topples were eliminated

because their failure mechanisms are different. Our

extensive field works showed that landslides were mainly

triggered by heavy rainfalls that caused saturation of soils.

Photographs of some landslides in this study area are

shown in Fig. 2, and detailed explanations of these land-

slides can be seen in Ho et al. (2010).

Landslide conditioning factors

Since landslide susceptibility assessments employing soft

computing techniques are considered as indirect approa-

ches, therefore a large number of input parameters should

Fig. 2 Some photographs of landslides occurred in the study area. These photographs were taken by Ho et al. (2010): a the Khau Pha health

Clinic center, b Tram Tau area, c Deo Khau Pha area, d Tu Le area, e Cao Pha area and f Nam Kip area
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be considered (Tien Bui et al. 2016b), though a model with

too many factors does not necessarily resulting in higher

prediction capability (Floris et al. 2011). Lithology, slope,

and aspect are most widely used conditioning factors (Tien

Bui et al. 2015, 2016c), whereas effectiveness of other

factors such as soil type, land use, road and river networks

may still debatable among landslide researchers. Condi-

tioning factors should be selected based on the landslide

typology and failure mechanism, the characteristics of the

study area, the scale of analysis, the available data sets, and

the methodology used (Ercanoglu 2005; Manzo et al.

2013).

Investigated relationships between landslide inventory

map and related conditioning factors for this study area have

been carried out by Ho et al. (2010), and based on their

findings, a total of ten conditioning factors were selected,

constructed, and converted to a raster format with a resolu-

tion of 20 m. They are lithology, distance to faults, slope,

aspect, relief amplitude, toposhape, topographic wetness

index (TWI), distance to roads, distance to river, and rainfall.

The detail classes of these factors are shown in Table 1.

Lithology is considered as one of the most important

factor (Ilia and Tsangaratos 2016) because it influences the

geomechanical and hydraulic characteristics of terrain,

therefore controlling types and mechanism of landslides

(Dai et al. 2001; Ercanoglu 2005). Faults are considered a

critical factor that influences distributions of landslides

(Dou et al. 2015; Hong et al. 2016); therefore, distances to

faults are also selected. In this study, the lithology and

faults area were extracted from the Geological and Mineral

Resources Map of Vietnam at a scale of 1:200,000. The

lithologic map with 12 groups (Fig. 3) that compiled by Ho

et al. (2010) was used. Distance to faults map with four

classes (Fig. 4a) was constructed.

It is well known that slope failures are directly linked to

types of terrain; therefore, a digital elevation model (DEM)

with a resolution of 20 m for the study area was constructed

using national topographic maps at the scale of 1:50,000.

Based on the DEM, five geomorphometric factors were

extracted: slope, aspect, relief amplitude, toposhape, topo-

graphicwetness index (TWI). Slope is selected for instability

analysis because it is subject to shear stresses acting on the

displacement of hill slopes (Dai et al. 2001). Aspect is a

factor that indirectly influences slope failure because slope

directions relate to the exposition of the terrain to solar

radiation and rainfall that control the concentration of the soil

moisture (Magliulo et al. 2008) and therefore influencing

landslides. In this study, the slope map (Fig. 4b) was con-

structed with six classes, whereas the aspect map (Fig. 4c)

with nine classes was built.

Relief amplitude that represents differences between the

highest and lowest points in the terrain is considered as a

highly sensitive factor to landslide occurrences (Tang et al.

2010; Vergari et al. 2011). The relief amplitude map with

six classes (Fig. 4d) was compiled for the study area. Since

the landslide occurrences are closely related to topographic

attributes (Lineback Gritzner et al. 2001; Zhang et al.

2014); therefore, topographic shape is used in landslide

susceptibility assessment (Caniani et al. 2008; Ercanoglu

2005). The toposhape map in this study (Fig. 5a) was

constructed with ten classes. TWI that was developed by

Beven and Kirkby (1979) is a combination of local upslope

contributing area. TWI could quantify the effect of

topography on hydrological processes and characterize the

distribution of soil moisture and surface saturation (Sør-

ensen et al. 2006); therefore, it is used in landslide sus-

ceptibility analysis. In this study, the TWI map (Fig. 5b)

with five classes was constructed.

Table 1 Landslide conditioning factors and their class intervals used in this study

No. Data layers Class

1 Lithology (1) Alluvium; (2) Conglomerate; (3) Dyke; (4) Intermediate; (5) K-Pluton; (6) K-Volcanic;

(7) Limestone; (8) P-Volcanic; (9) Sandstone; (10) Schist; (11) Shale; (12) Tuff

2 Distance to faults (m) (1) 0–200; (2) 200–400; (3) 400–600; (4)[600

3 Slope (�) (1) 0–8; (2) 8–15; (3) 15–25; (4) 25–35; (5) 35–45; (6)[45

4 Aspect (1) Flat; (2) North; (3) Northeast; (4) East; (5) Southeast; (6) South; (7) Southwest; (8) West;

(9) Northwest

5 Relief amplitude (1) 0–50; (2) 50–200; (3) 200–350; (4) 350–500; (5)[500

6 TWI (1)\5; (2) 5–10; (3) 10–15; (4) 15–20; (5)[20

7 Toposhape (1) Flat; (2) Ridge; (3) Saddle; (4) Ravine; (5) Convex hillside; (6) Saddle hillside;

(7) Slope hillside; (8) Concave hillside; (9) Inflection hillside; (10) Unknown hillside

8 Distance to roads (m) (1) 0–40; (2) 40–80; (3) 80–120; (4)[120

9 Distance to rivers (m) (1) 0–40; (2) 40–80; (3) 80–120; (4)[120

10 Rainfall (mm) (1)\1500; (2) 1500–1700; (3) 1700–1900; (4)1900–2200; (5)[2200
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Anthropogenic factor such as distance to roads is used for

the assessment of landslide susceptibility because excavations

for road cuts may induce slope failures (Lay 2009). For the

case of distance to rivers,watermay influence the saturation of

slopes when it undercuts banks of streams (Highland and

Bobrowsky 2008); therefore, the distance to rivers should be

used for landslide modeling. In this study, road and river

networkswereobtained from the national topographicmapsat

the scale of 1:50,000, and then, road and river sections that

undercut slopes larger than15owere extracted.Thedistance to

road map (Fig. 5c) and distance to river map (Fig. 5d) were

constructed by buffering the road and river sections.

Regarding rainfall, the rainfall map (Fig. 5e) with five classes

that was constructed byHo et al. (2010) is used. Thismapwas

constructed based on the average rainfall from the year

1980–2008 using the InverseDistanceWeighedmethod (Tien

Bui et al. 2011). The rainfall data were obtained from the

Institute of Meteorology and Hydrology in Vietnam.

Methodology

Sampling strategy and preparation of training

and validation data

In order to build landslide models and evaluate their per-

formance, the landslide inventory and ten conditioning

factor maps were converted to a grid cell format with a

cell-size of 20 m. Since the dates of these landslides are not

known, these landslide polygons were randomly split in

two subsets with a ratio of 70/30 (Tien Bui et al. 2012d).

The first subset (2781 landslide pixels) was used for

building models, whereas the second one (1011 landslide

pixels) was used for model validation.

The assessment of landslide susceptibility using data

mining methods can be considered as a binary classifica-

tion; therefore, they require both the positive data (e.g., in

current case, the presence of landslides) and negative data

(e.g., the absence of landslides). Because number of the

landslide pixels (3792 pixels) are much smaller than total

number of pixels of the study area (7,871,195 pixels),

therefore, we used the under sampling method (Pradhan

2013; Tien Bui et al. 2016d) in this study. For this reason,

the same non-landslide pixels were randomly sampled in

the free-landslide area. The landslide pixels were assigned

value of ‘‘1’’, whereas the non-landslide pixels were assign

value of ‘‘0’’. Finally, values for the ten landslide condi-

tioning factors were then extracted to build the training and

validation datasets.

Feature selection and correlation analysis

Overall performance of landslide models using soft

computing methods may be improved with the use of

Fig. 3 Lithologic map
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feature selection (Doshi and Chaturvedi 2014). This is

because the training dataset may have some noisy fea-

tures that cause confusions to the models; therefore, the

feature selection is used in this study. Various methods

and techniques for the selection of feature have been

proposed for this task such as Information Gain (Quinlan

1993), Symmetrical uncertainty (Senthamarai Kannan

and Ramaraj 2010), fuzzy rough set (Dai and Xu 2013),

and PSO-based feature selection (Ajit Krisshna et al.

2014). In this study Information Gain was used because

it is considered as one of the widely used techniques in

feature selection in soft computing (Martı́nez-Álvarez

et al. 2013; Witten et al. 2011), including landslide

modeling (Tien Bui et al. 2016e). In addition, Informa-

tion Gain helps to identify the importance of the input

variables (Yang et al. 2011).

The Information Gain value for landslide conditioning

factor Li corresponding to the out class Y (landslide and

non-landslide) is measured (Eq. 1) by calculating the

reduction of the information (entropy) in bits.

Infomation GainðY; LiÞ ¼ HðYÞ � HðY jLiÞ ð1Þ

where H(Y) is the entropy value of Yi and is calculated by

using Eq. (2); H(Y|Li) is the entropy of Y after associating

values of landslide conditioning factor Li and is estimated

using Eq. (3)

HðYÞ ¼ �
X

i

P(YiÞ log2ðP(Yi)Þ ð2Þ

HðY jLiÞ ¼ �
X

i

P(Yi)
X

j

PðYijLiÞ log2ðPðYijLiÞÞ ð3Þ

where P(Yi) is the prior probability of the out class Y and

P(Yi|Li) is the posterior probabilities of Y given the values

of conditioning factor Li.

The prediction performance of landslide susceptibility

models may have negative effects if it has an existing

Fig. 4 a Distance to faults map, b slope map, c aspect map and d relief amplitude map
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dependence between conditioning factors; therefore, the

correlation degree of these factors should be checked. In

this study, Spearman’s rank correlation (Myers and Sirois

2014) was used to analyze the relationships between these

conditioning factors. The main advantage of using Spear-

man’s rank correlation is that it is not affected by the

Fig. 5 a Toposhape map, b TWI map, c distance to roads map, d distance to rivers map and e rainfall map
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distribution of the data. In addition, it can still be efficient

with small sample sizes (Gautheir 2001).

The strength of correlation given the Spearman’s rank

is: very strong (0.9–1.0); strong, high correlation (0.7–0.9);

moderate correlation (0.4–0.7); low correlation (not very

significant) (0.2–0.4); very weak to negligible correlation

(0.0–0.2) (Passman et al. 2011).

Functional trees classifier

Decision tree is a hierarchical model composed of decision

rules that can be used for both regression and classification

problems. Decision tree comprises a large number of algo-

rithms and some of them have been proposed for landslide

modeling with promising results such as Classification and

Regression Trees (Felicisimo et al. 2013), Chi-square

Automatic Interaction Detector Decision Trees (Althuway-

nee et al. 2014), C4.5 or J48 (Tien Bui et al. 2013a), and

Random forests (Trigila et al. 2015), Alternating decision

tree (Hong et al. 2015a), and Logistic model trees (Tien Bui

et al. 2016e). New algorithm such as functional trees (FT)

(Gama 2004) has shown promising results in other fields

(Witten et al. 2011) but has seldom been explored for land-

slide modeling and therefore was selected in this study.

Consider a training dataset D with n samples (Xi, Yi) with

Xi 2 Rn, Yi 2 1,0f g. Xi is a input vector comprising the ten

landslide conditioning factors (slope, aspect, relief ampli-

tude, topographic wetness index, topographic shape, dis-

tance to roads, distance to rivers, distance to faults, lithology,

and rainfall), Yi is the output that consists of two classes,

landslide and no-landslide. The aim of FT is to build a

decision tree that separates the two classes from the men-

tioned set of training data. The main difference between

traditional decision tree algorithms and FT is that these tra-

ditional algorithms divide the input data at tree nodes by

comparing the value of some input attributes with a constant,

whereas FTuses logistic regression functions for the splitting

in the inner nodes (called oblique split) and prediction at the

leaves (Witten et al. 2011). There are three variants of FT: (1)

the full FT that uses regression models for both the inner

nodes and the leaves; (2) FT inner uses regressionmodels for

only the inner nodes; and (3) FT leaves used regression

models for only leaves. In this study, the FT leaves was used.

The FT use (1) the gain ratio as the splitting criterion is

to select an input attribute to split on; (2) standard C4.5

pruning (Quinlan 1996) to prevent the problem of over-

fitting; and (3) the LogitBoost (iterative reweighting) for

fitting the logistic regression functions at leaves with least-

squares fits (Doetsch et al. 2009) for each class Yi (Eq. 4).

fYiðXÞ ¼
X10

i¼1

biXi þb0 ð4Þ

where P(x) is the probability predicted value; bi is the

coefficient of the ith component in the input vector Xi. The

posterior probabilities in the leave, P(X), are calculated as

follows (Landwehr et al. 2005):

P(X) ¼ e2fYi ðXÞ

1þ e2fYi ðXÞ
ð5Þ

Ensemble learning algorithms

This section describes briefly three ensemble learning

algorithms, Bagging, AdaBoost, and MultiBoost that were

used to established ensemble models for landslide sus-

ceptibility in this study.

Bagging

Bagging (known as bootstrap aggregation) that is a

machine ensemble learning method proposed by Breiman

(1996) is used in this study for obtaining more robust and

accurate landslide models. Bagging has shown to be useful

in landslide susceptibility models because it is sensitive to

small changes in the training data, therefore may have

ability to improve the prediction capability of the model

(Tien Bui et al. 2014). The procedure of the bagging

algorithm consists of three steps: (1) first, bootstrap sam-

ples are obtained by randomly resampling from the training

dataset to form a set of training subsets; (2) then, multiple

classifier-based models are constructed based on each of

the subset; and (3) lately, the final model is formed by

aggregating all classifier-based models.

AdaBoost

AdaBoost (known as adaptive boosting) is a relative new

machine learning ensemble algorithm proposed by Freund

and Schapire (1997). In contrast to the Bagging, where

training subsets are randomly sampled independently from

the previous step, training subsets are obtained sequentially

in the adaptive boosting ensemble. Compared to the Bag-

ging, the AdaBoost provides controls for both bias and

variance; however, bagging has better variance reduction

(Ganjisaffar et al. 2011). The procedures of the AdaBoost

algorithm are: (1) first, a subset is generated from the

training dataset and an initial classifier-based model is then

constructed where the instances are assigned equal

weights; (2) the initial model is used to predict all instances

in the training dataset and the misclassified instances will

be embedded higher weights, whereas the weights of the

correctly classified instances are remained; (3) in the next

step, the weights of all instances in the training dataset are

normalized and a new subset is then randomly sampled to
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build a next classifier-based model. This process continues

until it reaches a terminated condition (Tien Bui et al.

2013a). The final model is obtained based on a weighted

sum of all the classifier-based models.

MultiBoost

Multiboost is an extension of the AdaBoost algorithm that

combines the strengths of Boosting and Wagging to prevent

overfitting problem (Webb 2000). Wagging is a variant of

Bagging, but Wagging does not use random bootstrap sam-

ples to form a set of training subsets; it assigns random

weights to the cases in each training subset. The procedures

of the Multiboost algorithm are: (1) using the training data-

set, random selectionwith replacement is carried out to build

a set of training subsets, and then, uses them to build clas-

sifier-based models; (2) resetting the instance weights

according to overall accuracy performance of the classifier-

based models; (3) new subsets is continuous sampling on the

instanceweighting to train the newer classifier-basedmodels

and the result is a committee of classifiers.

Performance assessment and comparison

of landslide susceptibility models

Accuracy, Sensitivity, and Specificity are the three statisti-

cal evaluation measures generally used to assess the overall

performance of the landslide susceptibility models (Tien

Bui et al. 2016b). Accuracy is the proportion of pixels that

are classified correctly. Sensitivity is the proportion of

landslide pixels that are correctly classified whereas

Specificity is the proportion of the non-landslide pixels that

are correctly classified.

Sensitivity ¼ TP

TP + FN
; Specificity =

TN

FP + TN
;

Accuracy =
TP þ TN

TP + TN + FP + FN
ð6Þ

where true positives (TP) and true negatives (TN) are the

number of pixels that are correctly classified. False posi-

tives (FP) and false negatives (FN) are the numbers of

pixels that are erroneously classified.

The overall performance of the landslide susceptibility

models is assessed through receiver operating characteris-

tic (ROC) curve. The ROC curve graphs are constructed

using the true positives versus the false positives in a two-

dimensional space (Fawcett 2006). The ROC curve tech-

nique is attractive because it is insensitive to changes in

class distribution. It means that if the proportions of

landslide and non-landslide pixels in the validation dataset

are varied, the ROC curve still remains. The area under the

ROC curve (AUC) is a summary measure of the ROC

analysis result that quantifies (1) the goodness-of-fit of the

landslide models on the training dataset and (2) prediction

capability of the landslide models using the validation data.

A perfect model will be if AUC value is equal 1, whereas

when AUC is equal 0, it indicates a non-informative model.

The closer the AUC value to 1, the better is for the land-

slide model.

The assessment of performance of models using only the

ROC curve analysis may not be the best approach. This is

because the models with a high AUC value may not be

necessarily associated with a high spatial accuracy of the

models in some cases (Aguirre-Gutiérrez et al. 2013).

Therefore, in this study, the prediction–rate curve method

(Chung and Fabbri 2003) was further used. The prediction–

rate results were obtained by overlaying the landslide

pixels of the validation dataset with landslide susceptibility

maps, and then the prediction–rate curve was constructed

by plotting the cumulative percentage of landslide sus-

ceptibility maps and the cumulative percentage of the

landslide pixels. The area under the prediction–rate curve

(AUC_P) was used to quantify the prediction capability of

the landslide models and when the AUC_P is equal to 1, it

indicates perfect prediction accuracy.

Results and analysis

Feature selection and correlation analysis

Using Information Gain, the predictive ability of the ten

conditioning factors was quantified and the result is shown

in Table 2 in which the average merit is the average In-

formation Gain and its SD with ten-fold cross-validation. It

could be seen that the distance to roads has the highest

Information Gain (0.266), followed by the slope (0.09), the

aspect (0.048), the toposhade (0.045), the TWI (0.043), the

relief amplitude (0.04), the distance to rivers (0.038), the

rainfall (0.031), the lithology (0.029), and the distance to

Table 2 Average Information Gain for the landslide conditioning

factors

Rank Conditioning factor Average merit SD

1 Distance to roads 0.266 ±0.004

2 Slope 0.09 ±0.002

3 Aspect 0.048 ±0.001

4 Toposhade 0.045 ±0.001

5 TWI 0.043 ±0.002

6 Relief amplitude 0.04 ±0.002

7 Distance to rivers 0.038 ±0.002

8 Rainfall 0.031 ±0.001

9 Lithology 0.029 ±0.001

10 Distance to faults 0.014 ±0.001
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faults (0.014). Since ten factors have positive Information

Gain, all of them were included in this analysis.

The result of the Spearman correlation analysis of the

ten conditioning factors for this study is shown in Table 3.

It could be observed that there is low correlation between

these factors because the highest correlation value of 0.497

is for the correlation between the slope and the relief

amplitude. This value is less than the critical value of 0.7

(Martı́n et al. 2012); therefore, none of the ten factors was

eliminated in this analysis.

Performance assessment of landslide susceptibility

models

The performance of the FT model may be influenced by

minimum number of instances per leaf; therefore, a test is

carried out by varying number of instances per leaf versus

classification accuracy on both the training and validation

data (Tien Bui et al. 2012a). The result showed that 30

instances per leaf are the best for this study. For building the

FT model, LogitBoost with 15 iterations (default parameter)

is used. Using tenfolds cross-validation, the FT model was

constructed using the standard top-down approach.

Accordingly, in each internal node, the splitting was carried

out using the gain ratio, and then, logistic regression models

were constructed for the leaves of the FT model.

The resulting FT model for the assessment of landslide

susceptibility is shown in Fig. 6. It can be seen that the size

of the tree is 71, including (1) the root node (orange color);

(2) 34 internal nodes (purple color); and (3) 36 leaves

(green rectangular boxes). In the leaves, LS denotes the

landslide class, No-LS denotes the non-landslide class, and

FT indicates FT number. The highest number of instances

in a leaf node in the FT model is 508, whereas the smallest

number of instances in a leaf node is 62.

Example of the FT25:15/210(152) in Fig. 6 is explained

as follows: (1) the first number (15) is the numbers of

LogitBoost iterations performed at this node; (2) the sec-

ond number (210) is the total numbers of LogitBoost

iterations performed, including iterations at the higher

levels in the tree and the number of training examples at

this node; and (3) the number in the parentheses (152) is

the number of training instances used (Fig. 6). The func-

tional trees for the node 25 are:

Non-Landslide class: 12:66� 2:76 � Slope� 0:07 �
Aspect� 0:94 � RFþ 1:1 � TWIþ 0:46 � TopoShadeþ 0:29 �
Lithology� 0:5 � Faults� 0:61 � Roads� 0:19 � Rivers
� 2:87 � Rainfall:

Landslide class: � 12:66� 2:76 � Slope� 0:07 �
Aspect� 0:94 � RFþ 1:1 � TWIþ 0:46 � TopoShadeþ 0:29 �
Lithology� 0:5 � Faults� 0:61 � Roads� 0:19 � Rivers
� 2:87 � Rainfall:

Since the aim of this study is to propose and verify three

novel ensemble frameworks (Bagging, AdaBoost, and

MultiBoost) for landslide susceptibility modeling, there-

fore three ensemble models used FT as a base classifier are

constructed and the results are shown in Table 4. It could

be observed that all three ensemble algorithms improved

the model performance and have higher goodness-of-fit to

the training data than the FT model does. The highest fit of

the training data with a model is the FT with AdaBoost

model (96.1 %) and the FT with MultiBoost model

(95.9 %), followed by the FT with Bagging model

(94.6 %), and the FT model (91.5 %). The FT with Ada-

Boost model has also the highest overall classification

accuracy (90.919 %), followed by the FT with MultiBoost

model (90.685 %), the FT with Bagging model

(88.563 %), and the FT model (87.7 %).

The FT with AdaBoost model has the highest sensitivity

of 93.492 % indicating that 93.492 % of the landslide

pixels are correctly classified to the landslide class. It is

closely followed by the FT with MultiBoost model

Table 3 Spearman’s

correlation between pairs of

landslide conditioning factors

Slope Aspect RA TWI TP LIT DF RO RI RF

Slope 1 0.055 0.497* -0.437* 0.059 20.062 0.017 0.024 20.015 0.089

Aspect 1 0.022 20.108 20.062 20.028 20.002 20.074 0.090 0.071

RA 1 20.182 0.009 20.152 0.082 0.187 0.102 0.197

TWI 1 20.001 20.080 0.005 0.104 0.018 0.006

TP 1 20.006 20.017 0.001 20.035 20.001

LIT 1 20.012 20.105 20.117 20.320

DF 1 0.193 0.138 0.066

RO 1 0.122 0.073

RI 1 0.142

RA relief amplitude, LIT lithology, DF distance to faults, RO distance to roads, RI distance to rivers, RF

Rainfall

* Indicates high correlations
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(92.844 %), the FT model (90.076 %), and the FT with

Bagging model (89.824 %). Regarding specificity, three

ensemble models have almost equal values that the prob-

ability to classify the non-landslide pixels to the non-

landslide class is almost the same. Kappa index of the four

susceptibility models is varied from 0.754 (the FT model)

to 0.818 (the FT with AdaBoost model) indicating good

agreement between the models and the training data.

Once the FT and three ensemble models were success-

fully built in the training phase, these models were then

used to calculate the susceptibility index for all the pixels

in the study area. These indices were exported into a GIS

format using an application developed in C?? program-

ming, and then opened in ArcGIS 10.2 software. For

visualization of the landslide susceptibility maps, these

indexes were visualized by means of five susceptibility

Fig. 6 The functional tree model for landslide susceptibility assessment of this study area

Table 4 Training results for the

four landslide models with

tenfolds cross-validation

Parameters FT FT with AdaBoost FT with Bagging FT with MultiBoost

True positive 2505 2600 2498 2582

True negative 2372 2456 2427 2461

False positive 408 324 353 319

False negative 276 181 283 199

Sensitivity (%) 90.076 93.492 89.824 92.844

Specificity (%) 85.324 88.345 87.302 88.525

Accuracy (%) 87.7 90.919 88.563 90.685

Kappa index 0.754 0.818 0.771 0.814

AUC 0.915 0.961 0.946 0.959
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levels such as very high, high, moderate, low and very low

(Chung et al. 1995). Although various methods can be used

for the classification of susceptibility indexes such as the

equal interval method, the natural break method and the SD

(Ayalew and Yamagishi 2005), the classification method

based on the graphical curve (Chung and Fabbri 2008; Tien

Bui et al. 2012e; Van Westen et al. 2003) is considered the

most widely used and was used in this study.

In this method, first, all landslide pixels were overlaid on

the four landslide susceptibility maps. Then, cumulative

percentages of the landslide pixels versus percentage of

landslide susceptibility indexes were calculated, and

finally, the graphical curve was derived. Detailed expla-

nation on how to build the graphical curve can be seen in

Chung et al. (1995) and Chung and Fabbri (2008). Based

on the graphical curves (Fig. 7), five susceptibility classes

were determined as very high 5 %, high 10 %, moderate

15 %, low 20 %, and very low 50 % (Fig. 7).

Model validation and comparison

The prediction capability of four susceptibility models is

evaluated and compared using the validation dataset that

was not used in the training phase. The results are shown in

Table 5 and Fig. 8. It could be seen that AUC of 0.917 is

for the FT with Bagging model indicating that the predic-

tion accuracy is 91.7 %, followed closely by the FT with

MultiBoost model (91 %), the FT model (89.8 %), and the

FT with AdaBoost model (88.2 %). The FT with AdaBoost

model has the lowest Kappa index (0.604), whereas the FT

with Bagging model has the highest one (0.711) (Table 5).

The detailed statistical measures of the validation results

are shown in Table 5. It reveals that the highest classifi-

cation accuracy is for the FT with Bagging model

(85.552 %), whereas the lowest one is for the FT with

AdaBoost model (80.208 %). The classification accuracy is

almost equal for the FT with MultiBoost model (83.869 %)

and the FT model (83.671 %). The FT with Bagging model

has the highest sensitivity (81.998 %) indicating the

probability to correctly classify the landslide pixels to the

landslide class is 81.998 %, followed by the FT model

(81.503 %), the FT with MultiBoost model (76.855 %),

and the FT with AdaBoost (68.447 %). The highest

specificity is for the FT with AdaBoost model (91.98 %)

indicating 91.98 % non-landslide pixels are correctly

classified to the non-landslide class. It is closely followed

by the FT with MultiBoost model (90.891 %), and the FT

with Bagging model (89.109 %). The lowest specificity is

the FT model (85.842 %) indicating that the probability to

classify the non-landslide pixels to the non-landslide class

correctly is 85.842 %.

The prediction rate of the four susceptibility models is

assessed using the spatial cross-validation procedure as

mentioned in the Sect. 3.5. The areas under the prediction–

rate curves (AUC_P) were then estimated and shown in

Fig. 9. It shows that the FT with Bagging has highest

prediction capability (89.7 %) is for the FT with Bagging

and the FT with MultiBoost models. They are followed by

the FT model (86.2 %) and the FT with AdaBoost model

(85.6 %).

Based on the aforementioned results, it could be con-

cluded that the FT with Bagging is the best model for

landslide susceptibility mapping in this study.

Similarities and dissimilarities of the four landslide

susceptibility maps and their classes

In order to evaluate similarities and dissimilarities of the

geographic patterns in five classes of the four landslide

susceptibility maps, three Kappa statistics (Kappa index,

Kappa location, and Kappa histogram) were used. It is

noted that this task was carried out using the Map Com-

parison Kit (Visser and de Nijs 2006). Kappa (Cohen 1960)

that based on the level of agreement is widely used to

measure similarity between a pair of landslide suscepti-

bility maps. Kappa location (Pontius 2000) and Kappa

histogram (Hagen 2002) are extensions of Kappa index.

Kappa location compares the actual to expected success

rate due to chance, to assess the similarity of location

regarding the spatial distribution of categories on the maps

(Pontius 2000). Kappa histogram measures similarity of

quantitative (fraction of pixels) based on the histograms of

the two maps (Prasad et al. 2006). The values of Kappa

statistics are varied from 0 to 1. Value of 1 indicates two

classes are identical (total agreement), while a value of 0

indicates that the no agreement between two classes. The

degree of agreement between two classes given the Kappa

is for 0.8–1.0 almost perfect, 0.6–0.8 substantial, 0.4–0.6

moderate, 0.2–0.4 fair, 0–0.2 slight, and B0 poor (Landis

and Koch 1977).

Table 6 shows the results of the comparison of four

landslide susceptibility maps in terms of Kappa statistics.

The results show that Kappa indexes for the four suscep-

tibility maps varied from 0.246 to 0.423 indicates that the

similarity between the four susceptibility maps is low.

Looking at the Kappa index values for susceptibility clas-

ses (Table 6), the highest similarity is in the very high class

obtained from the FT and the FT with Bagging models

(Kappa index of 0.810). The largest dissimilarity is for the

low susceptibility classes produced by the FT and the FT

with MultiBoost models (Kappa index of 0.057). The

highest value of Kappa location is 0.482 for two maps

obtained from The FT with AdaBoost and the FT with

MultiBoost models indicating that the spatial distributions

of susceptibility indexes over the two maps are moderate,

whereas the very high classes of the FT and the FT with
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Fig. 7 Landslide susceptibility

map using: a the functional tree

model, b the functional tree

with AdaBoost model, c the

functional tree with Bagging

model; and d the functional tree

with MultiBoost model
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Fig. 7 continued
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Bagging models has the highest similarity in terms of

spatial distributions. The largest dissimilarity in the spatial

distributions is for the low susceptibility classes obtained

from the FT and the FT with AdaBoost models (Kappa

location of 0.073). The values of Kappa histogram are

general high when comparing four susceptibility maps

indicates a perfect quantitative similarity. An interpretation

of Kappa histogram values for five susceptibility classes

Table 5 Model validation
Parameters FT FT with AdaBoost FT with Bagging FT with MultiBoost

True positive 824 692 829 777

True negative 867 929 900 918

False positive 143 81 110 92

False negative 187 319 182 234

Sensitivity (%) 81.503 68.447 81.998 76.855

Specificity (%) 85.842 91.980 89.109 90.891

Accuracy (%) 83.671 80.208 85.552 83.869

Kappa index 0.673 0.604 0.711 0.677

Fig. 8 Model validation with the ROC curves and AUC analysis for the four landslide susceptibility maps using the functional tree, the

functional tree with AdaBoost model, the functional tree with Bagging model, and the functional tree with MultiBoost model
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shows that the highest quantitative dissimilarities (Kappa

histogram of 0.521) is for the pair low susceptibility classes

obtained from the FT and the FT with MultiBoost models,

and the FT with Bagging and the FT with MultiBoost

models.

Discussion and conclusion

Landslide susceptibility maps are of great help in land use

planning, hazard management, and mitigations (Burby

1998); therefore, these maps should be constructed using

Fig. 9 Model validation with

the prediction–rate curve and

AUC_P analysis for the four

landslide susceptibility maps

using the functional tree model,

the functional tree with

AdaBoost model, the functional

tree with Bagging model, and

the functional tree with

MultiBoost model

Table 6 Kappa index, Kappa location, and Kappa histogram for the four landslide susceptibility maps and their five classes

Landslide susceptibility map Very low Low Moderate High Very high All

The FT versus the FT with AdaBoost

Kappa index 0.373 0.073 0.131 0.240 0.482 0.246

Kappa location 0.377 0.073 0.132 0.240 0.482 0.248

Kappa histogram 0.988 0.989 0.991 1 1 0.991

The FT versus the FT with Bagging

Kappa index 0.535 0.143 0.308 0.569 0.810 0.423

Kappa location 0.535 0.143 0.308 0.569 0.810 0.423

Kappa histogram 1.000 1.000 0.999 1.000 1.000 1.000

The FT versus the FT with MultiBoost

Kappa index 0.402 0.057 0.181 0.353 0.603 0.298

Kappa location 0.508 0.110 0.191 0.355 0.610 0.366

Kappa histogram 0.791 0.521 0.945 0.994 0.988 0.813

The FT with AdaBoost versus the FT with Bagging

Kappa index 0.482 0.145 0.177 0.307 0.533 0.324

Kappa location 0.487 0.146 0.178 0.307 0.533 0.327

Kappa histogram 0.898 0.898 0.991 1.000 1.000 0.992

The FT with AdaBoost versus the FT with MultiBoost

Kappa index 0.567 0.091 0.250 0.393 0.632 0.390

Kappa location 0.728 0.177 0.262 0.395 0.639 0.482

Kappa histogram 0.780 0.523 0.955 0.994 0.989 0.809

The FT with Bagging versus the FT with MultiBoost

Kappa index 0.521 0.112 0.299 0.470 0.680 0.401

Kappa location 0.659 0.214 0.317 0.473 0.688 0.493

Kappa histogram 0.791 0.521 0.946 0.994 0.988 0.813
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prediction models with high accuracy. However, a perfect

landslide model with no error is almost impossible; there-

fore, new algorithms and frameworks that may help to

increase prediction performances of landslide models

should be explored and verified. We address this issue in

this paper by proposing and verifying a new ensemble

methodology for landslide susceptibility modeling based

on FT and three ensemble frameworks, AdaBoost, Bag-

ging, and MultiBoost. Three main aims are focused on: (1)

feature selection and variable importance for landslide

conditioning factors using the Information Gain technique;

(2) exploration in the first time the potential application of

the FT and three ensembles techniques for the assessment

of landslide susceptibility at the corridor of the national

road No. 32 (Vietnam); and (3) assessment similarities and

dissimilarities of the landslide susceptibility maps and their

susceptibility classes using Kappa index, Kappa location,

and Kappa histogram.

In landslide modeling, the predictive ability of a set of

widely used conditioning factors should be quantified (Tien

Bui et al. 2016c). Although various techniques and meth-

ods have been proposed for the feature selection such as

linear correlation (Irigaray et al. 2007), Goodman-Kruskal

and Kolmogorov–Smirnov test (Costanzo et al. 2012;

Fernández et al. 2003), and GIS matrix combination

method (Cross 2002), but none of them is widely accepted

as the standard guideline for the assessment of landslide

susceptibility. The result in this study shows that the In-

formation Gain technique could be used for the feature

selection. The main advantage of this technique is that the

decrease in entropy of the output (landslide and non-

landslide classes) when the output is associated with

landslide conditioning factors, is measured and used to

assess the importance of these factors. The higher the

decreasing of entropy, the better is for the conditioning

factor. This study shows that all ten conditioning factors

have significant predictive ability, indicating that the col-

lection, processing, and coding of these factors have been

carried out successfully. Distance to roads and slope are the

most important factors, indicating logical and reasonable

result. This is because this study mainly investigated

landslides occurred in the corridor of the national road

No.32 and slope is widely accepted as the most important

in literature (Costanzo et al. 2012; Van Den Eeckhaut et al.

2006).

Using the ten conditioning factors, four landslide sus-

ceptibility maps were produced using the FT and the three

ensembles techniques. It was found that four susceptibility

models performed reasonably well with high degree-of-fits

and high prediction capabilities. The FT model with its

visible structures provided useful insights on how the

model works. The AUC for the FT model show a high

degree-of-fits on the training dataset (91.5 %). The degree-

of-fits is even improved when the FT was integrated with

the three ensembles techniques. The AUC is improved

significantly, 3.1 % for the FT with Bagging, 4.4 % for the

FT with AdaBoost, 4.6 % the FT with MultiBoost. The

prediction power of the FT with Bagging and the FT with

MultiBoost models has also improved 1.9 and 1.2 %

compared to the FT model, respectively. In contrast, the

prediction power of the FT with AdaBoost is reduced

1.6 % compared to the FT model. Therefore, the Bagging

and the MultiBoost ensemble frameworks should be used

for landslide susceptibility modeling. In fact, the Bagging

and the MultiBoost are more recently well-recognized

techniques in the soft computing modeling that enable not

only to improve single classifier but also to deal with

complex and high-dimensional modeling problems (Tra-

wiński et al. 2013). In general, the finding results in this

study agree with Althuwaynee et al. (2014), Jebur et al.

(2014), and Tien Bui et al. (2014) who state that ensemble

models outperform the single model

The prediction powers of four susceptibility models

were further estimated by using the prediction–rate method

that using only the landslide pixels in the validation set.

The FT with Bagging and the FT with MultiBoost models

have the highest prediction powers (89.7 %), followed by

the FT model (86.2 %) and the FT with AdaBoost model

(85.6 %). It is clear that the prediction power of all the

models checked by the prediction–rate method is slightly

lower than those calculated using the ROC curve method.

The highest difference is for the FT model (3.6 %), fol-

lowed by the FT with AdaBoost model (2.6 %), the FT

with Bagging model (2.0 %), and the FT with MultiBoost

model (1.3 %). These differences are because the valida-

tion procedure using the ROC curve analysis using entire

validation dataset (1011 landslide and 1011 non-landslide

pixels), whereas the prediction–rate method used only 1011

landslide pixels in the validation dataset for the estimation

of area under the curves in four susceptibility maps. In fact,

the ROC curve and AUC in landslide susceptibility models

are affected by several factors: (1) the methods or tech-

niques used; (2) the selection of conditioning factors; (3)

the landslides inventory map; and (4) characteristics of the

study area. Consequently, the correlation between AUC

values and the prediction capability of the susceptibility

models may not correspond strictly; therefore, the predic-

tion–rate method should be considered as well.

To evaluate geographic consistency of the susceptibility

index distributions, Kappa index, Kappa location, and

Kappa histogram should be used. These could help to

reveal similarities and dissimilarities of the four landslide

susceptibility maps and their classes. For example,

although the performances of the FT with Bagging and the

FT with MultiBoost models are almost the same, the

similarities of spatial distributions of susceptibility indexes
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over the two maps are only moderate. However, a high

degree of similarities is for the high landslide susceptibility

classes, whereas dissimilarities are low susceptibility

classes.

Overall, the result from this study clearly shows that

the FT with Bagging model has the highest accuracy.

Compared with the susceptibility models produced by the

same authors using well-known soft computing algorithms

such as J48 Decision Tree (Tien Bui et al. 2013a) and

artificial neural networks (Tien Bui et al. 2013b), the

prediction capability of the FT with Bagging model is

better. Therefore, we conclude that the FT with Bagging

is a promising technique that should be considered as an

alternative for the assessment of landslide susceptibility.

Since these results are representative of the currently

implemented versions of these techniques, the perfor-

mance of susceptibility models may be improved if hav-

ing changes in coding the algorithms in the future.

However, these results are only representative for the

current study area. Investigations for other areas with

different terrain and geological contexts should be further

considered. As a final conclusion, these results from this

study may useful for land use planning and decision

making in areas prone to landslides.
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J (2012) Factors selection in landslide susceptibility modelling

on large scale following the gis matrix method: application to the

river Beiro basin (Spain). Nat Hazards Earth Syst Sci

12:327–340. doi:10.5194/nhess-12-327-2012

Costanzo D, Chacón J, Conoscenti C, Irigaray C, Rotigliano E (2014)

Forward logistic regression for earth-flow landslide susceptibil-

ity assessment in the Platani river basin (southern Sicily, Italy).

Landslides 11:639–653. doi:10.1007/s10346-013-0415-3

Cross M (2002) Landslide susceptibility mapping using the Matrix

Assessment Approach: a Derbyshire case study. In: Griffiths JS

(ed) Mapping in engineering geology, vol 15. The Geological

society, Key Issue in Earth Sciences, London, pp 247–261

Dai J, Xu Q (2013) Attribute selection based on information gain ratio

in fuzzy rough set theory with application to tumor classification.

Appl Soft Comput 13:211–221. doi:10.1016/j.asoc.2012.07.029

Dai F, Lee C, Li J, Xu Z (2001) Assessment of landslide susceptibility

on the natural terrain of Lantau Island. Hong Kong Environ Geol

40:381–391

Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and

management: an overview. Eng Geol 64:65–87

Doetsch P et al (2009) Logistic model trees with AUC split criterion

for the KDD cup 2009 small challenge. In KDD Cup, pp 77–88

Doshi M, Chaturvedi SK (2014) Correlation based feature selection

(CFS) technique to predict student performance. Int J Comput

Netw Commun (UCNC) 6:197–206

Dou J et al (2015) Optimization of causative factors for landslide

susceptibility evaluation using remote sensing and GIS data in

parts of Niigata, Japan. PLoS One 10:e0133262. doi:10.1371/

journal.pone.0133262

Ercanoglu M (2005) Landslide susceptibility assessment of SE Bartin

(West Black Sea region, Turkey) by artificial neural networks.

Nat Hazards Earth Syst Sci 5:979–992

Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn

Lett 27:861–874

Fayyad UM, Piatetsky-Shapiro G, Smyth P, Uthurusamy R (1996)

Advances in knowledge discovery and data mining. AAAI press,

Menlo Park, California (USA)

Felicisimo A, Cuartero A, Remondo J, Quiros E (2013) Mapping

landslide susceptibility with logistic regression, multiple adap-

tive regression splines, classification and regression trees, and

maximum entropy methods: a comparative study. Landslides

10:175–189. doi:10.1007/s10346-012-0320-1

Fernández T, Irigaray C, El Hamdouni R, Chacón J (2003)

Methodology for landslide susceptibility mapping by means of

Environ Earth Sci (2016) 75:1101 Page 19 of 22 1101

123

http://dx.doi.org/10.1371/journal.pone.0063708
http://dx.doi.org/10.1016/j.asoc.2014.05.007
http://dx.doi.org/10.1016/j.geomorph.2004.06.010
http://dx.doi.org/10.1016/j.geomorph.2004.06.010
http://dx.doi.org/10.1080/02626667909491834
http://dx.doi.org/10.1007/s11069-007-9169-3
http://dx.doi.org/10.1016/j.geomorph.2006.12.036
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.5194/nhess-12-327-2012
http://dx.doi.org/10.1007/s10346-013-0415-3
http://dx.doi.org/10.1016/j.asoc.2012.07.029
http://dx.doi.org/10.1371/journal.pone.0133262
http://dx.doi.org/10.1371/journal.pone.0133262
http://dx.doi.org/10.1007/s10346-012-0320-1


a GIS. Application to the Contraviesa Area (Granada, Spain).

Nat Hazards 30:297–308. doi:10.1023/B:NHAZ.0000007092.

51910.3f

Floris M, Iafelice M, Squarzoni C, Zorzi L, Agostini AD, Genevois R

(2011) Using online databases for landslide susceptibility

assessment: an example from the Veneto Region (northeastern

Italy). Nat Hazards Earth Syst Sci 11:1915–1925

Freund Y, Schapire R (1997) A decision-theoretic generalization of

on-line learning and an application to boosting. J Comput Syst

Sci 55:119–139. doi:10.1006/jcss.1997.1504

Gama J (2004) Functional trees. Mach Learn 55:219–250

Ganjisaffar Y, Caruana R, Lopes CV (2011) Bagging gradient-

boosted trees for high precision, low variance ranking models.

In: Proceedings of the 34th international ACM SIGIR conference

on research and development in information retrieval. ACM,

pp 85–94

Gautheir TD (2001) Detecting trends using Spearman’s rank corre-

lation coefficient. Environ Forensics 2:359–362. doi:10.1080/

713848278

Gomez H, Kavzoglu T (2005) Assessment of shallow landslide

susceptibility using artificial neural networks in Jabonosa River

Basin, Venezuela. Eng Geol 78:11–27. doi:10.1016/j.enggeo.

2004.10.004

Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide

hazard evaluation: a review of current techniques and their

application in a multi-scale study, Central Italy. Geomorphology

31:181–216

Hagen A (2002) Multi-method assessment of map similarity. In:

Proceedings of the fifth AGILE conference on geographic

information science, Palma, Spain, pp 171–182

Highland L, Bobrowsky PT (2008) The landslide handbook: a guide

to understanding landslides. US Geological Survey Reston

Ho TC et al (2010) Combination of structural geology, remote

sensing, and GIS for the study of current status and prediction of

flash floods and landslides at the National Road No. 32 section

from the Yen Bai to the Lai Chau Provinces. Vietnam Institute of

Geosciences and Mineral Resources, Hanoi

Hoang N-D, Tien Bui D (2016) A novel relevance vector machine

classifier with cuckoo search optimization for spatial prediction

of landslides. J Comput Civil Eng. doi:10.1061/(ASCE)CP.1943-

5487.0000557

Hoang N-D, Tien Bui D, Liao K-W (2016) Groutability estimation of

grouting processes with cement grouts using Differential Flower

Pollination Optimized Support Vector Machine. Appl Soft

Comput 45:173–186. doi:10.1016/j.asoc.2016.04.031

Hong H, Pradhan B, Xu C, Tien Bui D (2015a) Spatial prediction of

landslide hazard at the Yihuang area (China) using two-class

kernel logistic regression, alternating decision tree and support

vector machines. Catena 133:266–281. doi:10.1016/j.catena.

2015.05.019

Hong H, Xu C, Revhaug I, Tien Bui D (2015b) Spatial prediction of

landslide hazard at the Yihuang Area (China): a comparative

study on the predictive ability of backpropagation multi-layer

perceptron neural networks and radial basic function neural

networks. In: Robbi Sluter C, Madureira Cruz CB, Leal de

Menezes PM (eds) Cartography—maps connecting the world.

Lecture notes in geoinformation and cartography. Springer,

Cham, pp 175–188. doi:10.1007/978-3-319-17738-0_13

Hong H, Chen W, Xu C, Youssef AM, Pradhan B, Tien Bui D (2016)

Rainfall-induced landslide susceptibility assessment at the

Chongren area (China) using frequency ratio, certainty factor,

and index of entropy. Geocarto Int. doi:10.1080/10106049.2015.

1130086

Ilia I, Tsangaratos P (2016) Applying weight of evidence method and

sensitivity analysis to produce a landslide susceptibility map.

Landslides 13:379–397

Irigaray C, Fernández T, El Hamdouni R, Chacón J (2007) Evaluation

and validation of landslide-susceptibility maps obtained by a

GIS matrix method: examples from the Betic Cordillera

(southern Spain). Nat Hazards 41:61–79. doi:10.1007/s11069-

006-9027-8

Jebur MN, Pradhan B, Tehrany MS (2014) Optimization of landslide

conditioning factors using very high-resolution airborne laser

scanning (LiDAR) data at catchment scale. Remote Sens

Environ 152:150–165. doi:10.1016/j.rse.2014.05.013

Kavzoglu T, Sahin E, Colkesen I (2014) Landslide susceptibility

mapping using GIS-based multi-criteria decision analysis, sup-

port vector machines, and logistic regression. Landslides

11:425–439. doi:10.1007/s10346-013-0391-7

Kavzoglu T, Kutlug Sahin E, Colkesen I (2015) An assessment of

multivariate and bivariate approaches in landslide susceptibility

mapping: a case study of Duzkoy district. Nat Hazards

76:471–496. doi:10.1007/s11069-014-1506-8

Kumar YJ, Salim N, Raza B (2012) Cross-document structural

relationship identification using supervised machine learning.

Appl Soft Comput 12:3124–3131. doi:10.1016/j.asoc.2012.06.017

Landis JR, Koch GG (1977) The measurement of observer agreement

for categorical data. Biometrics 33:159–174

Landwehr N, Hall M, Frank E (2005) Logistic model trees. Mach

Learn 59:161–205. doi:10.1007/s10994-005-0466-3

Lay MG (2009) Handbook of road technology. CRC Press, Boca

Raton

Lee S, Ryu JH, Min KD, Won JS (2003) Landslide susceptibility

analysis using GIS and artificial neural network. Earth Surf Proc

Land 28:1361–1376. doi:10.1002/esp.593

Lee M-J, Choi J-W, Oh H-J, Won J-S, Park I, Lee S (2012) Ensemble-

based landslide susceptibility maps in Jinbu area. Korea Environ

Earth Sci 67:23–37. doi:10.1007/s12665-011-1477-y

Lee S, Won J-S, Jeon SW, Park I, Lee MJ (2014) Spatial landslide

hazard prediction using rainfall probability and a logistic

regression model. Math Geosci 47:565–589

Lineback Gritzner M, Marcus WA, Aspinall R, Custer SG (2001)

Assessing landslide potential using GIS, soil wetness modeling

and topographic attributes, Payette River, Idaho. Geomorphol-

ogy 37:149–165. doi:10.1016/S0169-555X(00)00068-4

Magliulo P, Di Lisio A, Russo F, Zelano A (2008) Geomorphology

and landslide susceptibility assessment using GIS and bivariate

statistics: a case study in southern Italy. Nat Hazards 47:411–435

Manzo G, Tofani V, Segoni S, Battistini A, Catani F (2013) GIS

techniques for regional-scale landslide susceptibility assessment:

the Sicily (Italy) case study. Int J Geogr Inf Sci 27:1433–1452

Martı́n B, Alonso JC, Martı́n CA, Palacı́n C, Magaña M, Alonso J

(2012) Influence of spatial heterogeneity and temporal variabil-

ity in habitat selection: a case study on a great bustard

metapopulation. Ecol Model 228:39–48
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