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Abstract Precipitation plays a significant role to energy

exchange and material circulation in Earth’s surface sys-

tem. According to numerous studies, traditional point

measurements based on rain gauge stations are unable to

reflect the spatial variation of precipitation effectively. On

the other hand, satellite remote sensing could solve this

limitation by directly providing spatial distribution of

rainfall over large areas. During the last years, the Tropical

Rainfall Measuring Mission (TRMM) has provided

researchers with a large volume of rainfall data used for the

validation of atmospheric and climate models. However,

due to its coarse resolution (0.25�) the improvement of its

resolution appears as a fundamental task. The main aim of

this study is to compare two different integrated down-

scaling-calibration approaches namely multiple linear

regression analysis and artificial neural networks for

downscaling TRMM 3B42 precipitation data. The statisti-

cal relationship among TRMM precipitation data and dif-

ferent environmental parameters such as vegetation,

albedo, drought index and topography were tested in the

island of Crete, Greece. Free distributed satellite data of

coarse resolution such as those of MODIS sensor were

incorporated in the overall analysis. Multiple linear

regression as well as artificial neural network models was

developed and applied, and extensive statistical analysis

was performed by downscaling the TRMM products. The

downscaled precipitation estimates as well as the TRMM

products were subsequently validated for their accuracy by

using an independent precipitation dataset from a ground

rain gauge network. The downscaling procedure succeeded

to significant improvements of monthly precipitation esti-

mation (100 % improvement in terms of spatial resolution)

in terms of spatial analysis with means of satellite remote

sensing.
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Introduction

Precipitation has an essential impact on human activities

(Michaelides et al. 2009). There are three main sources of

precipitation estimates: rain gauge stations, ground radars

and remote sensing technology. However, according to

numerous studies traditional point measurements based on

rain gauge stations cannot reflect the spatial variation of

precipitation effectively. Furthermore, ground radar sys-

tems are generally aimed at monitoring of extreme events

over limited time spans and are not suitable for long-term

arrangements due to their limited range (Immerzeel et al.

2009). On the other hand, satellite remote sensing could

potentially solve this limitation by directly providing spa-

tial rainfall over large areas. There is a continuos concern

for techniques that improve the accuracy of the interpre-

tation of satellite imageries. This concern is reflected in

international literature (Themistocleous et al. 2013).

Satellite precipitation products could be successfully used

as an alternative to sparse rain gauge networks. Further-

more, remote sensing techniques are ideal for the collection

of continuous and repeated rainfall data throughout space

and time (Curtarelli et al. 2014). However, applications of
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these products are still limited due to the lack of robust

quality assessment (Tan et al. 2015).

One of the remote sensing satellites most widely used to

retrieve rainfall is the Tropical Rainfall Measuring Mission

(TRMM). During the last years, the Tropical Rainfall Mea-

suring Mission (TRMM) has provided researchers with a

large volume of rainfall data used for the validation of

atmospheric and climate models. However, due to its coarse

resolution (0.25�) the improvement of its resolution appears

as a fundamental task. TRMMdata have been used in various

applications such as the applicability of rainfall estimates for

distributed hydrological modeling over a flood-prone region

(Li et al. 2009), correlating rainfall peaks and water dis-

charges (Shaban 2009), stream flow forecasting (Su et al.

2008) and comparing ground rain gauge data with TRMM

measurements (Shrivastava et al. 2014). In addition, several

studies concern TRMM data correction/calibration (Dinku

et al. 2007; Condom et al. 2011; Cheema and Bastiaanssen

2012; Mantas et al. 2014), data uncertainties and data

downscaling (Duan and Bastiaanssen 2013).

According to Atkinson (2013), downscaling has an

important role to play in satellite remote sensing. Products of

finer spatial resolution are derived on either assumptions or

prior knowledge about the character of the target spatial

variation coupled with spatial optimization, spatial predic-

tion through interpolation or direct information on the rela-

tion between spatial resolutions in the form of a regression

model. In this context, reports from several studies have

highlighted that the relationship between precipitation and

other environmental factors, such as vegetation and topog-

raphy, is variable at different scales. Therefore, there is a key

issue in the process of downscaling: the best scale at which

the relationship between precipitation and other environ-

mental factors established can be used in the final down-

scaling algorithm (Jia et al. 2011).

Various downscaling approaches have been applied in

different studies during the last years. In the vast majority of

studies (Jia et al. 2011; Fang et al. 2013;Chen et al. 2014), the

positive relation between vegetation and precipitation has

been highlighted through the use of normalized difference

vegetation index (NDVI). Specifically, it has been proved

that 0.25� TRMM precipitation and 1-km NDVI have a

statistical relationship and this relationship was used to

acquire 1 km annual precipitation data. Other studies such as

Fang et al. (2013) have incorporated more factors in their

downscaling model such as temperature, humidity rough-

ness and topographical aspect for downscaling the TRMM

data. Furthermore, Ud Din et al. (2008) implemented

weighted bilinear interpolation methodology and Geo-

graphically Weighted Regression (GWR) for downscaling

TRMM 3B343 data (Chen et al. 2014).

The main objective of this study is to apply an integrated

downscaling methodology based on environmental

information such as vegetation, topography, drought and

albedo derived from MODIS satellite products. In this way

the spatial downscaling attempts to capture the sub-grid

heterogeneity while preserving the characteristics at the

original scale (Fang et al. 2013). The study area is the island

of Crete, located in the southeastern Mediterranean. Two

different methodologies, namely multiple linear regression

(MLR) and artificial neural network (ANN) analysis, were

applied to downscale the TRMM 3B 342 precipitation fields

from 25- to 1-km pixel spatial resolution. The final results

were validated based on the observation of 20 rain gauge

stations located all around the island of Crete.

Study area and data

Study area

The island of Crete occupies the southern part of Greece

(Fig. 1). With an area of 8265 km2, Crete covers almost

6.3 % of the area of Greece. The mean elevation is 482 m

ranging from sea level to 2450 m, and the average slope is

228 m/km with the topography fracturing into small

catchments with ephemeral streams and karst geology.

Crete has a typical Mediterranean island environment with

about 53 % of the annual precipitation occurring in the

winter, 23 % during autumn and 20 % during spring while

there is negligible rainfall during summer (Koutroulis and

Tsanis 2010). The average annual precipitation for a nor-

mal year in the island of Crete is approximately

934 mm (Tsanis and Naoum 2003). This fact in addition to

non-uniform precipitation distribution in the island (a

reduction of almost 300 mm from the western to the

eastern part of the island and a strong orographic effect)

makes the water availability a very small but crucial por-

tion of the total supply (Tsanis et al. 2011) (Fig. 1). This

was the main reason that within the context of this research

the island was divided spatially in two separate parts

(western and eastern) so as each part to be studied inde-

pendently in terms of precipitation data downscaling.

Data

One of the most widely used remote sensing satellites to

retrieve precipitation is the Tropical Rainfall Measuring

Mission (TRMM). TRMM is the result of a partnership

between National Aeronautics and Space Administration

and Japan Aerospace Exploration Agency, with main

objective of monitoring and studying the rainfall in tropical

and subtropical regions (Kummerow et al. 1998). TRMM

carries five sensors on its payload, a Precipitation Radar

(PR), the TRMM Microwave Imager (TMI), a visible and

infrared (IR) scanner, a cloud and earth radiant energy
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sensor and a lightning imaging sensor. Each sensor has

distinct purposes and measures energy at different ranges

of the electromagnetic spectrum. The final digital product

is based on an algorithm that merges microwave and

infrared satellite estimates. However, the infrared satellite

sampling is more frequent than the microwave sampling

(AghaKouchak et al. 2009). For the needs of the study,

TRMM 3B 342 images were used and analyzed for the

period of 2012–2014. The specific data are available with a

spatial resolution of 0.25� 9 0.25� and a temporal monthly

variation, within 50� and 50� south global latitude.

MODIS NDVI data

NDVI data are widely used to detect vegetation regime

with means of satellite remote sensing through the use of

Near InfraRed (NIR) and Red spectral channel. Further-

more, spatial and temporal relationships between NDVI

and precipitation indicate that there is generally a positive

correlation between these two parameters (Chen et al.

2014). For the needs of the study, the Terra MODerate

resolution Imaging Spectroradiometer (MODIS) monthly

composite NDVI data of 1-km resolution (MOD13A3,

collection v005) were collected from the Earth Observing

system data gateway. The data concerned the time period

of 2012–2014.

Elevation data

TRMM precipitation data were analyzed in the context of

topography. The digital elevation model (DEM) used for

the needs of the study was derived from the digitization of

topographical maps of the Hellenic Geographical Military

Service. The spatial analysis of the extracted DEM was

20 m and depicted analytically the topography variation of

the study area. Topography was incorporated in the overall

analysis due to the fact that different precipitation rates can

occur because of changes in air pressure, temperature,

relative humidity and circulation of moist air, parameters

that are affected by elevation.

Albedo data

Surface albedo, defined as the ratio of the total (hemi-

spheric) reflected solar radiation flux to the incident flux

upon the surface, quantifies the radiation interaction

between the atmosphere and the land surface, and it can be

directly related to precipitation regime in a local scale

Fig. 1 Location and topography of the study area
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(Wang et al. 2014). Albedo plays a crucial role in land

surface climate and biosphere. The MODIS BRDF/albedo

products (MCD43A) have been available since 2000 and

provide high quality surface reflectance anisotropy retrie-

vals over a variety of land surface type. For this study,

MODIS albedo products (version 4) were analyzed cov-

ering the period of 2012–2014 at 1-km spatial and 16-day

time resolution. The monthly albedo images were com-

puted by averaging the two different albedo images

acquired per month.

Drought index

Drought is a stochastic natural phenomenon that arises

from considerable deficiency in precipitation. Drought

indices are quantitative measures that characterize drought

levels by assimilating data from one or several variables

(indicators) such as precipitation and evapotranspiration

into a single numerical value (Zargar et al. 2011). Moni-

toring drought can be achieved alternatively with the

means of remote sensing precipitation products; in this case

the remote sensing based drought indices synthesizing

precipitation are developed and used in order to monitor

the complex process of drought (Du et al. 2013). One of

those indices is vegetation water supply index (VWSI)

suggested by Cai et al. (2010) and is defined as:

VWSI ¼ NDVI

LST
ð1Þ

where LST is Land Surface Temperature MODIS product.

The MODIS LST is derived from two thermal (TIR)

infrared band channels, namely 31 (10.78–11.28 lm) and

32 (11.77–12.27 lm). The product aims at retrieving LST

with an error lower than 1 �C (±0.7 �C standard deviation)

in the range of -10 to 50 �C assuming the surface emis-

sivity is known (Benali et al. 2012). In order to calculate

the LST product in Celsius degrees, the following equation

was used:

Temperature �Cð Þ ¼ DN� 0:02�273:15 ð2Þ

VWSI is showing the influence of drought on agriculture,

and maps of summer drought over large areas. Using this

method, vegetation growth can be closely monitored and

the regional effects of summer drought can be recorded in

detail. VWSI performs more efficiently on agriculture

fields with densely covered vegetation areas. Both MODIS

NDVI and LST datasets were utilized to develop VWSI for

the island of Crete for the time period 2012–2014 (Fig. 2).

Meteorological data

A dataset with monthly precipitation data for the period

2012–2014 was used and incorporated in the study. The

data have been derived from the open precipitation data-

base of the meteorological stations network, established in

the island of Crete by the National Observatory of Athens

(Table 1).

All the stations that are located above 1000 m were

excluded from the analysis due to the orographic effect of

precipitation and the errors that snow/wind causes in rain

gauge data (Fig. 3).

Downscaling methodology

The TRMM data sets were downscaled on the basis of the

assumption that there is a strong relationship between

precipitation and other environmental factors such as

vegetation, topography, albedo and drought. The TRMM

downscaling was estimated through the equation below:

Pdownscaled ¼ Pestimated þ Presidual ð3Þ

where Pdownscale is the downscaled precipitation, Pestimated

is the high spatial (1 km) resolution precipitation estimated

from various environmental factors, Presidual is the residual

between estimated precipitation and TRMM.

For the purposes of downscaling procedure, two differ-

ent methodologies were used, namely multiple linear

regression (MLR) analysis and artificial neural networks

(ANNs). All data used in the study were of monthly time

step and the overall analysis was mainly focused in the

period of 2012–2014.

Rainfall independent areas

Four different ‘‘environmental’’ parameters such as vege-

tation, topography, albedo and drought were adopted to

perform downscaling of TRMM data. Before starting the

downscaling process, research for the rainfall dependency

of the study areas was carried out. As the downscaling

method is based on the relation between ‘‘environmental’’

parameters and precipitation, non-rainfall dependent areas

such as urban areas and water bodies need to be excluded

from the downscaling procedure. Thus, certain NDVI

values such as those of water bodies are not related to

precipitation and should therefore not be included in the

NDVI-TRMM regression analysis (Duan and Bastiaanssen

2013). In order to exclude these areas, unsupervised clas-

sification (ISODATA algorithm) was performed on

MODIS NDVI mean annual image for 2013 (Verlinde

2011). Class 2 of the final thematic map was assigned as

the one that depicted the rainfall independent areas both for

western and eastern part of Crete. Those areas were

excluded from the downscaling procedure. Furthermore,

inland water areas such as lakes and rivers were considered

unsuitable for the downscaling procedure. This spatial
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information (inland water bodies) was derived from

CORINE 2000 land use/land cover spatial database. Con-

cerning the rivers, a buffer zone of 100 m was delineated

around each segment and the total area was excluded from

the overall downscaling procedure (Fig. 4). These out-

comes were the reason to exclude from the overall analysis

13 rain gauge stations that are established on rainfall

indepedent areas namely, ‘‘Chania Center,’’ ‘‘Chania,’’

‘‘Fragma Potamon,’’ ‘‘Rethymno,’’ ‘‘Alikianos,’’ ‘‘Samaria

Gorge,’’ ‘‘Siteia,’’ ‘‘Moires,’’ ‘‘Lentas,’’ ‘‘Metaxochori,’’

‘‘Agios Nikolaos,’’ ‘‘Herakleion’’ and ‘‘Spili.’’

Pre-processing statistical analysis

Before starting the downscaling process, Pearson corre-

lation analysis was performed so as to check the least

square fitting of TRMM precipitation data to ground

precipitation measurements. The Pearson correlation

analysis showed that the monthly areal rainfall TRMM

3B42 estimates are well correlated with that using the

reference data (r values of 0.7 and 0.72 for western and

eastern Crete accordingly). Furthermore, the r2 of envi-

ronmental parameters with ground monthly rainfall

measurements, ranged between 0.15 and 0.5 both for

western and eastern Crete, indicating the positive corre-

lation. However, it also justifies the implementation of

multiple linear regression analysis in order to use com-

bined information from all the different parameters and

improve the overall accuracy.

Multiple linear regression analysis

The method of analysis used in multiple linear regression

analysis is the method of least squares, which is simply a

minimization of the sum of the squares of the deviations of

the observed response from the fitted response (Naoum and

Tsanis 2003). With precipitation being the dependent (re-

sponse) variable, the model function involves both the

predictor variables (NDVI, VWSI, albedo, elevation) and

their corresponding parameters.

The general form of the final model is:

P ¼ b0 þ b1x1 þ b2x2þb3x3þb4x4 ð4Þ

where P is precipitation (mm month-1), x1 is NDVI, x2 is

albedo, x3 is VWSI and x4 is elevation and b0, b1, b2, b3, b4
the corresponding parameters

Fig. 2 a Albedo MODIS data (1 km); b LST MODIS product (Celsius); c VWSI Drought Index; d NDVI
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Downscaling was performed as described below, fol-

lowing certain steps of analysis:

1. Aggregation of 1-km data of NDVI, VWSI, albedo and

DEM to 0.25� by pixel average (resampling).

2. Application of multi-regression analysis and establish-

ment of an empirical functional relationship between

the (environmental parameters)0.25 and uncalibrated

PTRMM
0.25 for 2013. The parameters that passed the

significance test (p value) were incorporated in the

final model.

3. Estimation of monthly precipitation at 0.25� from the

environmental parameters using the regression equa-

tion derived in step 2.

4. Preparation of a residual map at 0.25� by computing

the difference between PTRMM
0.25 and (environmental

parameters)0.25 for every month of 2013. The residual

map represents the amount of precipitation that cannot

be explained by ‘‘Albedo.’’

5. Interpolation of Pres
0.25 into a grid of 1-km pixels using

spline interpolation methodology. This procedure was

followed by other researchers as well (Immerzeel et al.

2009; Duan and Bastiaanssen 2013) due to the fact that

the residual data are regular-spaced data and the spline

interpolator is usually used for this kind of data.

6. Estimation of monthly precipitation at 1 km from

(environmental parameters)1km dataset using the

regression equation derived in step 2.

7. Correction of the values of downscaled 1-km precip-

itation by adding the residual correction precipitation.

Neural networks analysis

Besides MLR, artificial neural networks (ANNs) were also

applied to downscale precipitation data. The theory behind

neural networks is based on an attempt to reproduce human

learning processes (Aleotti and Chowdhury 1999). ANN

has been used in different studies in the past to downscale

coarse TRMM precipitation data (Kumar et al. 2007). It is

an attractive and powerful numerical methodology to map

complex relationships between different sets of observed

variables (Tomassetti et al. 2009). An important advantage

of the artificial neural network is its independency from the

statistical distribution of the data and its ability to handle

imprecise and fuzzy data (Conforti et al. 2014). An ANN

consists of a collection of different neurons connected to

each other. A connection occurs when the status of a

neuron i is one of the inputs for another neuron j by means

of a Weight (synapse) Wij. The individual neurons are often

called nodes of the network. The architecture of an ANN is

defined by establishing how the individual neurons of the

network are connected to each other. In order to estimate

the number of the hidden layer nodes, equation proposed

by Hecht–Nielsen (1987) was adopted:

Ng ¼ 2� Ni þ 1 ð5Þ

where Ng is the number of hidden nodes and Ni is the

number of input nodes

A three-layer feed forward network consisting of an

input layer (four neurons), one hidden layer (nine neurons)

and one output layer was used as a network structure of

4–9–1. For the needs of the training procedure, 30,000

iterations were set as a threshold to terminate the proce-

dure. She multi-layer perceptron (MLP) neural network

was used for the application of ANN in the downscaling

process. MLP consists of a set of layers, each of which is

composed of a set of nodes and is trained with the back

propagation algorithm using a set of examples of associ-

ated input and output values and at least one hidden layer.

Tangent sigmoid function was used for transferring data

from one layer to the other. The process of calibration,

referred to as ‘‘training’’ of the ANN, consisted of the

determination of all the weights (synapses) of the network

based on the observed input/output patterns. During the

ANN analysis, the consistency of training RMS with

training testing values revealed the luck of overtraining and

the accuracy of the process.

Table 1 Rain gauge stations used in the study

Name Latitude Longitude Altitude (M)

1 Paleochora 35.21 23.66 17

2 Fragma Potamon 35.28 24.56 180

3 Rethymno 35.36 24.43 50

4 Samaria 35.30 23.91 1310

5 Spili 35.10 24.30 371

6 Falasarna 35.50 23.60 140

7 Fourfouras 35.21 24.71 472

8 Chania 35.53 24.06 131

9 Chania Center 35.50 24.00 5

10 Alikianos 35.45 23.91 63

11 Plakias 35.20 24.40 160

12 Ag. Nikolaos 35.18 25.7 14

13 Anogeia 35.28 24.88 807

14 Heraklion port 35.34 25.12 1

15 Ierapetra 35 25.4 87

16 Lentas 34.93 24.93 40

17 Metaxochori 35.13 25.14 424

18 Moires 35 24.8 146

19 Sitia 35.2 26.1 18

20 Tzermiado 35.2 25.3 336

21 Fourfouras 35.21 25.1 472

22 Heraklion West 35.3 25.1 83

23 Heraklion 35.31 25.15 90
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The steps used for downscaling in the case of ANN are

almost identical to MLR analysis with some slight differ-

ences that are described below:

1. Aggregation of 1-km data of NDVI, VWSI, albedo and

topography to 0.25� (environmental parameters)0.25 by

pixel average (resampling).

2. Use of ANN analysis for estimation of monthly

precipitation (PANN
0.25 ) at 0.25�. Precipitation is esti-

mated from monthly (environmental parameters)0.25

data and monthly uncalibrated PTRMM
0.25 data for every

month of 2013.

3. Preparation of a residual map at 0.25� (Pres
0.25) by

computing the difference between PTRMM
0.25 and (PANN

0.25 )

for every month. The residual map represents the

amount of precipitation that cannot be explained by the

implementation of ANN.

4. Interpolation of (Pres
0.25) into a grid of 1-km pixels using

spline interpolation methodology.

5. Estimation of monthly precipitation at 1 km from

(environmental parameters)1km dataset using the MLP

ANN algorithm. As a dependent image the map

extracted from Step 6 is used.

6. Correction of the values of downscaled 1-km precip-

itation by adding the residual correction precipitation

(Step 5).

Validation

The monthly ground precipitation data of 2013 were used

to validate both the downscaling results and the TRMM

products. In order to evaluate the downscaling methods

quantitatively, two different statistical methods were cal-

culated, the root-mean-square error (RMSE) and the bias

according to:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i�1 ðPi �MiÞ2

n

s

ð6Þ

Bias ¼
Pn

i¼1 Pi
Pn

i¼1 Mi

� 1 ð7Þ

Fig. 3 Spatial distribution of meteorological stations and Thiessen polygon analysis
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Pi is the downscaled precipitation, Mi is the ground

observed precipitation, n is the number of observations.

Results/discussion

After applying the validation process, multiple linear

regression analysis and artificial neural networks were

proved to have different performances in terms of accu-

racy. Both of these approaches were compared to TRMM

precipitation values. The results denoted a better perfor-

mance of MLR methodology in western Crete. In contrast,

ANN outperformed MLR in eastern Crete.

Multiple linear regression analysis

Regarding western Crete MLR revealed a strong significant

relationship (p\ 0.001) between TRMM and albedo

mainly due to vegetation cover regime. The p value for

each term tests the null hypothesis that the coefficient is

equal to zero (no effect). A low p value (\0.05) indicates

that you can reject the null hypothesis. In case of eastern

Crete, there is a correlation of TRMM with NDVI, albedo

and VWSI. In both cases, MLR did not record any corre-

lation of elevation with TRMM precipitation values. Fur-

thermore, concerning model fitting, r2 values for both cases

ranged between 0.46 and 0.47. The results denoted that the

derived regression relationship provides a medium

description of the relationship between TRMM and the

environmental parameters. The final regression equations

for western and eastern Crete accordingly are:

Pi ¼ 51:13þ 0:58� Albedo½ � ð8Þ

Pi ¼ 13:465�0:2179� Albedo½ � þ 340:37� VWSI½ �
þ 90:73� NDVI½ � ð9Þ

With the use of regression equations, the overall

downscaling methodology was implemented and the results

are presented in Fig. 5 (case of western Crete). As it was

mentioned, the residual maps indicate areas where part of

the precipitation cannot be explained by the environmental

parameters only. Negative residual values depict areas

where influence of some of the parameters is more than

Fig. 4 Rainfall independent areas
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expected. In all these areas, an additional water source may

be established (greener than expected), or some urban

fabrics are established (greater values of albedo than

expected) or are extremely drought due to a local severe

drought incident such as surface salinity exposure.

As far as validation process is concerned, in case of

western Crete, the RMSE values for MLR method ranged

from 20.23 to 191.87 with optimum model performance

during spring and summer period. Concerning bias, in few

cases values were negative, indicating underestimation of

the precipitation while precipitation during summer was

generally overestimated (positive values) (Table 2). The

fact that in some cases TRMM RMSE is almost identical to

MLR RMSE is considered to be positive for the opti-

mization of downscaled products in terms of spatial anal-

ysis. Concerning eastern Crete, RMSE values range from

11 to 182 and are slightly greater compared to those of

TRMM and ANN. The general tendency in eastern Crete is

an overestimation of precipitation.

Fig. 5 a The calibrated TRMM 3B42 precipitation at 0.25� resolution; b the predictive precipitation at 1-km resolution; c the interpolated

residuals at 1-km resolution; d the final downscaled result of precipitation at 1-km resolution

Table 2 Statistics of validation results for eastern Crete

Month Validation method

RMSE BIAS

TRMM MLR ANN TRMM MLR ANN

January 110.83 115.56 112.95 -0.43 -0.26 -0.35

February 51.29 59.04 56.55 0.50 0.57 -0.51

March 26.55 16.24 16.86 -0.21 1.39 0.56

April 36.16 29.93 49.07 -0.58 -0.28 -0.45

May 19.55 23.39 26.77 -0.19 -0.52 -0.30

June 26.59 39.95 14.36 -0.78 10.03 -0.28

July 3.72 35.06 2.36 -0.31 8.61 2.59

August 4.02 37.95 5.57 4.98 73.87 4.69

September 18.34 46.29 28.99 46.07 121.18 -0.29

October 25.78 60.75 59.19 -0.51 12.35 12.51

November 37.95 11.5 50.38 0.65 0.26 0.81

December 119.23 182.77 135.42 -0.36 -0.83 -0.40
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Neural networks

The importance of an independent variable is a measure of

how much the network’s model predicted value changes

for different values of independent variable. A sensitivity

analysis to compute the importance of each predictor was

applied. The final chart shows that the results for western

Crete are mostly dominated by albedo and NDVI, whereas

they are very slightly affected by elevation parameter, as in

the case of MLR. Similarly, albedo is the most important

and elevation is the less important parameter in eastern

Crete (Fig. 6).

The ANN model that was used to downscale TRMM

seems to perform reasonably well with mean r square

values of 0.65 and 0.55 for eastern and western Crete,

respectively (Fig. 7). In contrast to traditional statistical

methods, ANN models provide dynamic output as further

data are fed to them, while they do not require performing

and analyzing sophisticated data methodologies (Kitikidou

and Iliadis 2012). Concerning eastern Crete, ANN out-

performs MLR methodology especially during summer

period (Table 2). Regarding bias validation methodology,

most of ANN values are negative meaning that precipita-

tion is generally underestimated (Fig. 8). In western Crete,

ANN performance is less successful in terms of RMSE and

the model has optimal performance only during summer

period (Table 3).

Overall analysis

The overall results denote that most accurate predictions

are for months with moderate or low amounts of pre-

cipitation. This suggests that the ANNs have learned

partners that are generally common in the data, but have

not learned partners that deviate from the mean monthly

precipitation. In summary, concerning eastern Crete,

ANNs slightly better performance is mainly related to the

general high values of albedo due to extensive desertifi-

cation phenomena occurring in that area. In this case,

albedo succeeds to describe perfectly the vegetation

regime of the study area. Hence, the high importance of

albedo in ANNs model performance affects positively the

overall result. Regarding MLR, the incorporation of all

the environmental parameters in the overall equation

impacts negatively the models accuracy. On the other

hand, the performance of MLR in western Crete in terms

of RMSE is slightly better compared to ANNs model

mainly due to the incorporation of only albedo parameter

in the final equation. Furthermore, the relatively low

values of albedo parameter in western Crete have a

negative impact on ANNs model performance that is

generally highly affected by albedo.

Conclusions

Precipitation is a major factor in the entire hydrological

process which greatly influences runoff generation. Its

accurate estimation is a key for improving hydrological

simulations and forecasting natural hazards such as floods.

The purpose of this study was to compare two different

integrated downscaling-calibration approaches namely

multiple linear regression analysis and artificial neural

networks for downscaling TRMM 3B42 precipitation data

in order to improve monthly precipitation estimates reso-

lution from 25 9 25 km to 1 9 1 km. Furthermore, the

Fig. 6 a Neural network multi-layer perceptron independent variable important chart for western Crete; b eastern Crete
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exclusive use of MODIS data in the downscaling process

pointed out the potential of free distributed satellite data of

coarse resolution in satellite image processing procedure.

The study area was the island of Crete in southeastern

Mediterranean and the main input was MODIS NDVI, LST

and albedo data as well as regional topography.

The proposed downscaling methods assume that the

relationship between precipitation and other environmental

Fig. 7 a The calibrated TRMM 3B42 precipitation at 0.25� resolution; b the predictive precipitation at 1-km resolution; c the interpolated

residuals at 1-km resolution, d the final downscaled result of precipitation at 1-km resolution

Fig. 8 RMSE comparative analysis of TRMM, MLR and ANN methodologies with the ground precipitation measurements for 2013. a Western

Crete; b eastern Crete
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variables varies spatially, but is the same in a local region.

The main contribution of our research is the development

of two integrated downscaling methodologies, the

improvement of precipitation data spatial resolution, the

overall comparative analysis of the different methodologies

and the incorporation of free distributed satellite MODIS

data in the overall process. Concerning research results,

both techniques improved considerably the accuracy of

precipitation record in terms of spatial resolution compared

to TRMM coarse resolution. These approaches are char-

acterized by low cost and if improved can replace ground

instrumental techniques. The extracted 1-km resolution is

suitable for hydrological modeling in catchment areas.

However, the NDVI-based downscaling methods are

applicable only to land surfaces and cannot be imple-

mented to water bodies and urban areas (negative NDVI

values). MLR methodology performed slightly better in

western Crete while on the other hand ANN outperformed

MLR in the eastern part. This result is mainly due to albedo

parameter that deviates between the two study areas and

highly affects MLR and ANNs models performance. Fur-

thermore, it highlighted the potential of ANN to downscale

successfully TRMM products using more than one vari-

able. The research of the relationships between precipita-

tion and related environmental factors revealed that in case

of island of Crete environmental parameters such as

albedo, drought index and NDVI can interpret reasonably

well both precipitation variation and distribution. It was

proved that there is no clear relationship between precipi-

tation and topography. Furthermore, it was highlighted that

the two different methodologies can be implemented sup-

plementary in cases of downscaling approaches. The

overall approach is generic in nature and can be used as a

road map for future improved downscaling techniques that

could be developed for better spatial and temporal scales.
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