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Abstract Terrestrial plant invaders (TPIs) have a large

potential to threaten plant diversity under climate change.

To prevent the spread of TPIs under climate change, we

must identify the risk hotspots for TPIs. However, the risk

hotspots for TPIs have not yet been explicitly addressed at

the global scale under climate change. Here, we selected

336 TPIs from the Invasive Species Specialist Group list

and used species distribution modelling and Hot Spot

Analysis to map the risk hotspots of TPIs based on the

terrestrial ecoregions in the current, low and high gas

concentration scenarios. The risk hotspots of TPIs were

mainly distributed in South America, Europe, Australia,

New Zealand and northern and southern Africa. Climate

change may decrease the areas of hotspots that allow for

TPI expansion, but the potential distribution probabilities

of TPIs may increase in the high concentration scenario.

Furthermore, TPIs, particularly herbaceous and woody

ones, might still expand into critical or endangered ecore-

gions of these risk hotspots in the current, low and high

concentration scenarios. We also need to focus on the

impact of TPI expansion on both vulnerable and relatively

stable ecoregions due to the increasing potential distribu-

tion probabilities of TPIs in risk hotspots and should

integrate climate change into the risk assessment of plant

invasion in the vulnerable and relatively stable ecoregions.

Keywords Plant invasion � Climatic change � GIS � Risk

hotpot � Maxent modelling � Ecoregion � Hot Spot Analysis

Introduction

Terrestrial plant invaders (TPIs) pose an increasing threat

to global biodiversity under climate change (Kalusová

et al. 2013; Bellard et al. 2014). Climate change can pro-

mote the spread of TPIs into new habitats, increase the

competitiveness of invasive plants relative to native spe-

cies, alter ecosystem function and threaten native plant

diversity (Hellmann et al. 2008; Richardson and Rejmánek

2011; Bai et al. 2013). However, the relationship between

TPIs and climate change is complex (Hellmann et al.

2008). Varying patterns of climate change may result in

different distributions of species at regional scales and even

promote TPIs to expand widely over large geographic areas

(Bradley 2010, 2012). Increases in the expansion of TPIs

can enhance their chances of becoming established and

naturalized under climate change (Thuiller et al. 2005;

Wilson et al. 2009; Kalusová et al. 2013; Donaldson et al.

2014). Therefore, the definition of expansion ranges of

TPIs under climate change plays an important role in the

risk assessment of plant invasion at the geographic scale.

Ecologists often use species distribution models (SDMs)

to project the overall geographic pattern of invasive plant

species worldwide under a changing climate (Václavı́k and

Meentemeyer 2009; Vicente et al. 2013). Some studies have

also identified risk hotspots for invasive alien plants under

climate change at the regional scale using SDMs (O’Donnell

et al. 2012; Liang et al. 2014; Adhikari et al. 2015).
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Furthermore, the definition of risk hotspots of plant invasion

is useful and urgent for prioritization and management of

TPIs (Adhikari et al. 2015). With the rapid development of

global trade and the potential for explosive range expansion,

climate change may promote the risk of TPI invasion at the

global scale (Hellmann et al. 2008; Seebens et al. 2015). For

example, global climate change promotes some TPIs from

the USA to a range of new invasive species, including many

from tropical and semi-arid Africa as well as the Middle

East (Bradley et al. 2010a). Therefore, the question of how

to determine the risk hotspots of TPIs at the global scale is

becoming extremely relevant for the prevention and control

of plant invasion.

Thuiller et al. (2005) suggested that SDMs could be used

as a tool for predicting the risk of TPIs at a global scale

based on global ecoregions. Ecoregions are designed to help

users visualize and understand similarities across complex

multi-variate environmental factors by grouping areas into

similar categories (Olson et al. 2001). Climate change would

provide potentially suitable areas for TPIs in ecoregions,

which could promote TPIs to damage global ecosystems

under climate change (Thuiller et al. 2005; O’Donnell et al.

2012; Bellard et al. 2013; Adhikari et al. 2015). For exam-

ple, South African ecoregions would be invaded by TPIs

under climate change (Donaldson et al. 2014). Hence,

assessing the spread risk of TPIs at the ecoregion scale is

important for the conservation of species diversity (Duursma

et al. 2013; Adhikari et al. 2015). In this study, the ecore-

gions were integrated into the risk assessment of TPIs. Liang

et al. (2014) suggested that the use of Hot Spot Analysis in

the geographic information system (GIS) on defining risk

hotspots of TPIs can facilitate invasive species risk assess-

ment and improve the effectiveness of SDMs on the risk of

plant invasion. Here, SDMs and Hot Spot Analysis in GIS

were used to map the risk hotspots of TPIs based on the

terrestrial ecoregions at the global scale.

In this study, 336 TPIs were selected from the Invasive

Species Specialist Group (ISSG; http://www.issg.org/data

base/species/List.asp) list and Maxent was used to model

the potential distributions of these 336 TPIs at the global

scale. Then, Hot Spot Analysis was used to model the risk

hotspots for TPIs as affected by climate change based on

ecoregions at the global scale (Thuiller et al. 2005).

Finally, some effective suggestions were proposed for

conservation management.

Materials and methods

Ecoregion data

Ecoregions include basic characteristics, such as the sta-

bility of ecological function, long-term persistence of

species composition and the consistent ecological dynam-

ics of species; they contain a variety of ecosystems (Olson

and Dinerstein 1998; Olson et al. 2001). Terrestrial

ecoregions were defined based on the ecoregions of the

World Wide Fund for Nature (WWF). These ecoregions

include 867 distinct units within three degrees of protection

for species diversity and their natural habitats [i.e. critical

or endangered (CE), vulnerable (VU) and relatively

stable or intact (RI)] based on a previous 30-year prediction

of future conservation status given the current conservation

status and trajectories (http://www.worldwildlife.org/

biomes; Olson et al. 2001; Figure S1).

Bioclimatic data

Nineteen bioclimatic variables with 10-arc-minute spatial

resolution were used for the environmental input layers of

the SDM and as future bioclimatic variables. Data were

downloaded from the WorldClim database (averages from

1950 to 2000 were used as current bioclimatic variables;

http://www.worldwildlife.org/publications/terrestrial-ecor

egions-of-the-world). A Pearson correlation analysis was

used to test the multi-collinearity among predictor vari-

ables. Among the highly cross-correlated variables

(Pearson correlation coefficient r[ 0.9 or \ –0.9,

P\ 0.05), only one was selected for eliminating multi-

collinearity effects in the estimates of parameters in the

species distribution models (Merow et al. 2013; Fourcade

et al. 2014). The remaining nine bioclimatic variables

influence the habitat suitability of TPIs (Table S1; Gal-

lagher et al. 2013). We relied on data from the Inter-

governmental Panel on Climate Change’s (IPCC) Fifth

Assessment Report (AR5) as a reference for modelling the

changing trends of TPI invasion (http://www.ipcc.ch/).

To model the future potential distribution of TPIs in the

2080 s (2071–2099), we used an average map of four

global climate models (GCMs; i.e. bcc_csm1_1, csir-

o_mk3_6_0, gfdl.cm3 and mohc_hadgem2_es) and two

greenhouse gas emission scenarios, the Representative

Concentration Pathways (RCPs) 4.5 (mean 780 ppm; range

595–1005 by 2100) and 8.5 (mean 1685 ppm; range

1415–1910 by 2100), representing the low and high gas

concentration scenarios, respectively (IPCC Fifth Assess-

ment Report 2013; http://www.ccafs-climate.org/). The

two scenarios predict different climatic changes due to

differences in projected concentrations of greenhouse gases

and other pollutants (http://www.ipcc.ch/).

Species data

We used 336 TPIs from the Invasive Species Specialist

Group (ISSG) list from IUCN (http://www.issg.org/data

base/species/List.asp) to serve as a representative set of
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TPIs with a high potential to invade habitats around the

world (Table S2). These TPIs share the following charac-

teristics: (1) imposing a significantly negative impact on

plant diversity; (2) threatening a variety of ecosystems; (3)

illustrating important issues on plant invasions, and (4)

general functional traits that promote plant invasion and

detailed records of invading non-native regions worldwide

(http://www.issg.org/database/species/List.asp). Occur-

rence data, especially geographic coordinates, for each TPI

were obtained from the Global Biodiversity Information

Facility (GBIF; www.gbif.org; Garcı́a-Roselló et al. 2014),

the largest online provider of distribution records. We

removed duplicate occurrences of recorded data for species

in 10.0-arc-minute grid cells (16 km at the equator) to

avoid any georeferencing errors (Merow et al. 2013).

Previous studies have shown that using species with more

than 100 records as input for SDMs decrease the negative

effect of sampling bias on their performance (Wisz et al.

2008; Fourcade et al. 2014; Garcı́a-Roselló et al. 2014).

We examined enough occurrence records of TPIs to cover

the present distributions of species as given in data from

ISSG. (http://www.issg.org/database/species/List.asp; Bel-

lard et al. 2014). The selected record number of each

species was over 100. These TPIs included 142 woody

plants, 151 herbaceous plants and 43 vines (Table S2).

Modelling potential distributions of TPIs

Maxent was used to model the potential distribution for

each TPI from current presence-only species records and

current, low and high gas concentration scenarios (Merow

et al. 2013; Fourcade et al. 2014). The set of all pixels were

regarded as the possible distribution space of maximum

entropy. For the map cells predicted using Maxent, pixels

with values of 1 had the highest degree of potential dis-

tribution probability and pixels with values of 0 had the

lowest (Elith et al. 2011).

As suggested by Merow et al. (2013), the modelling sets

were as follows: (1) the regularization multiplier (beta) was

set to 1.5 to produce a smooth and general response that

could be modelled in a biologically realistic manner (Saupe

et al. 2014); (2) a tenfold cross-validation approach was

used to remove bias due to recorded occurrence points

(Merow et al. 2013); (3) the maximum number of back-

ground points was set to 10,000 (Merow et al. 2013); (4)

the output format was logistic (Merow et al. 2013); and (5)

all other settings were the same as described in Elith et al.

(2011).

We evaluated the predictive precision of Maxent using

the area under the curve (AUC) of the receiver operation

characteristic (ROC) that regards each value of the pre-

diction result as a possible threshold and then obtained the

corresponding sensitivity and specificity through

calculations. The area under the curve ranges from 0.5

(lowest predictive ability or not different from a randomly

selected predictive distribution) to 1 (highest predictive

ability). Models of each species with values above 0.7 were

considered useful in our study. The AUC values of all of

the 336 species were over 0.7, indicating a useful model

performance (Hijmans 2012; Table S2). These 336 TPIs

were also distributed worldwide based on the occurrence

records.

Identifying the risk hotspots for TPIs

First, the map of each TPI potential distribution (originally

at 16-km grid cell size; 10-arc-minute) was downscaled to

4.3-km grid cell size (2.5-arc-minute). If a species occurred

in a 16-km grid cell, it was assumed to occur in each of the

respective 4.3-km grid cell that had a suitable climate;

otherwise, it was absent (Araújo et al. 2011). Then, we

combined the Maxent results of all the TPIs to produce the

maps of potential distribution of TPIs in the current, low

and high concentration scenarios based on all the species

and the plant types such as woody plants, herbaceous plants

and vines, respectively (Figure S2).

Secondly, we calculated the potential distribution

probabilities of all TPIs based on all the species in the

ecoregions as follows (Alagador et al. 2011; Calabrese

et al. 2014):

St ¼
Xn

j¼1

XjYj

where St is the potential distribution probabilities of TPIs

in the ecoregion t; n is the total number of distribution

pixels; Xj is an indicator of the potential distribution

probabilities of TPIs in the pixel j of ecoregion t; and Yj is

the area percentage of the pixel j on the all the pixels of

ecoregion t.

Next, we employed Optimizing Hot Spot Analysis

using the false discovery rate to compute the regional risk

hotspots of TPIs for ecoregions around the world (http://

resources.arcgis.com/en/help/main/10.2/; Liang et al.

2014). Optimizing Hot Spot Analysis is a cluster analysis

tool that, by computing the Getis-Ord Gi statistic, allows

for the determination of the clusters of features with high

values or features with low values based on global

ecoregions (Liang et al. 2014). Optimizing Hot Spot

Analysis was used to predict the current and future risk

hotspots of TPIs for ecoregions based on the spatial

correlation between the potential distribution probabili-

ties of multiple TPIs in the ecoregions (http://resources.

arcgis.com/en/help/main/10.2/; Liang et al. 2014). Thus,

TPIs may have the ability to expand among the ecore-

gions at the global scale (based on the spatial correlation
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between the potential distribution probabilities of TPIs in

the global ecoregions). In other words, the expansion

pathways could be assessed by Optimizing Hot Spot

Analysis (Liang et al. 2014). We calculated the potential

distribution probabilities of TPIs based on the areas of

risk hotspots of TPIs and the ecoregions belonging to the

three protection degrees as described in Olson et al.

(2001) in risk hotspots in the current, low and high

concentration scenarios (Alagador et al. 2011; Calabrese

et al. 2014):

C ¼
Xn

i¼1

AiBi

where C is the potential distribution probabilities of TPIs in

the risk hotspot areas in the current, low and high con-

centration scenarios; Ai is an indicator of the potential

distribution probabilities of TPIs in the pixel i of the risk

hotspot areas; Bi is the area percentage of the pixel i on all

the pixels of risk hotspots of TPIs in the current, low and

high concentration scenarios and of the ecoregions

belonging to three protection degrees; and n is the total

number of distribution pixels in the risk hotspot areas.

Finally, the following equation was used to compute the

change in the potential distribution probabilities of TPIs

based on the risk hotspot areas of TPIs and of the ecore-

gions belonging to the three protection degrees described

by Olson et al. (2001) in the low and high concentration

scenarios:

P ¼ CFuture � CCurrent

CCurrent

where P represents the change in the potential distribution

probabilities of TPIs in the low or high concentration

scenario, and CFuture and CCurrent are the future and current

potential distribution probabilities of TPIs, respectively.

Results

All of the climatic niche models had AUC values greater

than 0.7 for both the training data sets, indicating that each

model was accurate based on the 0.7 cut-off described in

materials and methods (Table S2). The areas of risk hot-

spots of TPIs would decrease with increasing gas concen-

tration at the global ecoregion scale. However, the potential

distribution probabilities of all the TPIs would increase in

the high concentration scenario (current: 106.294; low:

94.380; high: 136.280; Table 1). The risk hotspots of TPIs

were mainly distributed in South America, Europe, Aus-

tralia, New Zealand and northern and southern Africa in

the current concentration scenario (Fig. 1). The areas of

risk hotspots would decrease in South America, Australia

and Africa and increase in northern Europe in the low

concentration scenario (Fig. 1). The risk hotspots were

distributed mainly in Europe, south-western Australia, New

Zealand and Madagascar in the high concentration scenario

(Fig. 1).

The risk hotspots of TPIs (based on all the species and

plant types such as woody plants, herbaceous plants and

vines) occurred mainly in the ecoregions of CE in the

current, low and high concentration scenarios (the potential

distribution probabilities of all the TPIs: current: 54.297;

low: 48.962; high: 45.101; Table 1). The potential distri-

bution probabilities of herbaceous TPIs were the largest for

the risk hotspots of TPIs based on the ecoregions of CE in

the current, low and high concentration scenarios (current:

28.900; low: 27.266; high: 24.534; Table 1). The potential

distribution probabilities of vine TPIs for the ecoregions of

CE were the lowest in the current, low and high concen-

tration scenarios (current: 5.678; low: 4.469; high: 4.310;

Table 1).

The potential distribution probabilities of TPIs would

decrease in risk hotspots of TPIs in the ecoregions of CE,

VU and RI in the low concentration scenario (Table 1) and

would also decrease in the ecoregions of CE in the high

concentration scenario (Table 1). However, they would

increase in the ecoregions of VU and RI in the high con-

centration scenario (Table 1). The increasing trends of

potential distribution probabilities of herbaceous TPIs were

the largest in the ecoregions of VU and RI in the high

concentration scenario (VU: ?108.6 %; RI: ?146.4 %;

Table 1).

Discussion

Maps of risk hotspots of TPIs were produced at the global

scale based on the plant types and the ecoregions using

SDMs and Hot Spot Analysis in GIS. The potential dis-

tribution probabilities of TPIs would increase in the

ecoregions that fall in risk hotspots in the high concentra-

tion scenario. TPIs, particularly herbaceous and woody

plants, might still expand in the critical or endangered

ecoregions of the risk hotspots in Europe, south-western

Australia, New Zealand and Madagascar. However, overall

the areas of risk hotspots of TPIs would decrease.

Some studies have shown that climate change would

increase plant invasion at the global scale (Hellmann et al.

2008; Bradley et al. 2012; Seebens et al. 2015), but others

have not found such an impact (Bellard et al. 2013, 2014;

Gallagher et al. 2013). We found that, although TPIs may

expand widely in South America, Europe, Australia, New

Zealand and northern and southern Africa in the present

days, the areas of TPI expansion would decrease in the

future. Hence, climate change may not promote the TPI

expansion at the global scale based on the decreasing areas
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of risk hotspots for TPIs. However, the expansion potential

of TPIs would be concentrated in the ecoregions of risk

hotspots in Europe, south-western Australia, New Zealand

and Madagascar under climate change (particularly, in the

high concentration scenario; Table 1 and Fig. 1). To

address and prevent these issues in the future, we suggest

that Fig. 1 is regarded as the reference for global preven-

tion and control of plant invasion.

TPIs are likely to expand in the CE ecoregions, partic-

ularly in Europe in the current, low and high concentration

scenarios due to a high spreading ability (Fig. 1; Table 1).

These ecoregions included rich plant diversity and threat-

ened or endangered vascular plant species (Olson and

Dinerstein 1998; Olson et al. 2001; Gorenflo et al. 2012).

However, the plant diversity of these CE ecoregions in

Australia and New Zealand may be threatened by climate

change and the resulting plant invasion (Fig. 1; O’Donnell

et al. 2012; Duursma et al. 2013; Beaumont et al. 2014;

Bellard et al. 2014). Furthermore, herbaceous and woody

TPIs had a high potential to expand in the CE ecoregions of

South America, Europe, Madagascar and northern and

southern Africa (Richardson and Rejmánek 2011; Beau-

mont et al. 2014; Bellard et al. 2014; Donaldson et al.

2014). As habitat suitability for TPIs expands with climate

change, natural dispersal of TPIs could also promote

invasion of ecoregions without the aid of human activities

(Foxcroft et al. 2011; Colautti and Barrett 2013). TPIs have

the ability to spread and occupy non-native habitats rapidly

under climate change (Colautti and Barrett 2013). Hence,

an effective management planning should be developed to

prevent and control TPIs from expanding in CE ecoregions

(Bradley 2010; Foxcroft et al. 2011; Meier et al. 2014).

Human impact, including human activity in CE ecore-

gions, may also aid the expansion of TPIs to risk hotspots

under climate change (Spear et al. 2013; Melin et al. 2014).

Human activities can provide invasion pathways for TPIs

under climate change (Bradley et al. 2012; Donaldson et al.

2014; Seebens et al. 2015). Globalization facilitates the

spread of TPIs as international commerce develops and as

plants are introduced for horticulture or commercial pur-

poses (Perrings et al. 2005; Bradley et al. 2010b; Donald-

son et al. 2014; Melin et al. 2014; Seebens et al. 2015). For

example, climate change can increase the invasion risk of

Lonicera japonica, a common invasive horticultural vine in

the USA (www.issg.org). Acacia species have also been

introduced from Australia to South Africa as an ornamental

and commercial species; however, they have become

invasive (Donaldson et al. 2014). Furthermore, intensive

anthropogenic activities greatly increase the chances of

increasing pathways for TPIs (Spear et al. 2013). Hence,

we need to integrate introduction dynamics into the man-

agement planning for preventing intentional or accidental

introduction or dispersal of TPIs (Bradley 2010; Donaldson

et al. 2014; Melin et al. 2014).

The finding that climate change may increase the

expansion of TPIs, particularly herbaceous plants in the

VU and RI ecoregions in the high concentration scenario,

suggests that we need to employ methods of long-term

monitoring for plant invasion (Duursma et al. 2013;

Table 1). Previous studies have shown that TPIs would

need appropriate temperatures with pronounced seasonality

to spread (Bradley et al. 2010b, 2012). Also, extreme

weather events, such as extreme seasonal differences in

temperature within a year, can facilitate the formation of

Table 1 Potential distribution probabilities of terrestrial plant invaders (TPIs) in risk hotspots under climate change

Types Status Current

(probabilities)

Low

(probabilities)

High

(probabilities)

Change low

(%)

Change high

(%)

All CE 54.297 48.962 45.101 -9.8 -16.9

VU 22.788 21.682 39.195 -4.9 72.0

RI 29.209 23.736 51.984 -18.7 78.0

Woody CE 19.719 17.226 16.257 -12.6 -17.6

VU 9.152 8.426 12.855 -7.9 40.5

RI 12.827 9.894 15.990 -22.9 24.7

Herbaceous CE 28.900 27.266 24.534 -5.7 -15.1

VU 10.914 10.850 22.769 -0.6 108.6

RI 12.262 10.658 30.216 -13.1 146.4

Vine CE 5.678 4.469 4.310 -21.3 -24.1

VU 2.722 2.406 3.570 -11.6 31.2

RI 4.120 3.185 5.778 -22.7 40.2

Current, low and high represent the potential distribution probabilities of TPIs in risk hotspots in the current, low and high concentration

scenarios, respectively. Change low and Change high represent the changes in the potential distribution probabilities of TPIs in risk hotspots in

the low and high concentration scenarios, respectively

CE critical or endangered, VU vulnerable, RI relatively stable or intact
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expansion for TPIs in the VU and RI ecoregions (Bradley

et al. 2010a, b; Diez et al. 2012). Hence, the detection of

extreme climatic events is necessary for the prevention and

control of TPIs.

Herbaceous TPIs may have the ability to expand in some

VU and RI ecoregions of risk hotspots with low nutrition

resources such as northern Europe and central Australia

(Fig. 1; Eskelinen and Harrison 2014; Kremer 2014;

Turner et al. 2014). Therefore, we should guard against the

entry of TPIs into these VU and RI ecoregions to maximize

their capacity to prevent and control plant invasion (Fox-

croft et al. 2011; O’Donnell et al. 2012; Duursma et al.

2013). The challenge for biological conservationists is to

minimize the opportunities for herbaceous TPIs to be

introduced into new areas under climate change (Duursma

et al. 2013). Establishing an early warning system for TPIs,

particularly herbaceous plants, will improve the ability to

prevent and control the movement of TPIs (Hellmann et al.

2008; Bradley et al. 2010a; Meier et al. 2014). Finally, the

following measures should be purposed for the prevention

and control of herbaceous TPIs in VU and RI ecoregions:

(1) detailed monitoring of climate change (Bradley et al.

2010b); (2) more effective management of human activities

(Meier et al. 2014); and (3) prevention of the introduction

of herbaceous TPIs with a high ability to disperse naturally

(Donaldson et al. 2014).

Conclusions

The identification of risk hotspots for TPIs could promote

the development of prevention and control of plant inva-

sion. TPIs, particularly herbaceous and woody ones, should

be efficiently prevented and controlled in the critical or

endangered ecoregions of Europe, south-western Australia,

New Zealand and Madagascar in the current, low and high

concentration scenarios. Attention should also be paid to

the expansion potential of TPIs, particularly herbaceous

ones in both vulnerable and relatively stable ecoregions in

risk hotspots under climate change. The innovative evalu-

ation approaches and tools are urgently needed for the

projection of TPI expansion at the global scale. Further-

more, with accelerating economic globalization and rapid

climate change, the risk evaluation of universal coverage

for TPIs at global scale also is urgently required.
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