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Abstract Groundwater evaluation indices, multivariate

statistical techniques, and geostatistical models are applied

to assess the source apportionment and spatial variability of

groundwater pollutants at the Lakshimpur district of Ban-

gladesh. A total of 70 groundwater samples have been

collected from wells (shallow to deep wells, i.e.,

10–375 m) from the study area. Groundwater quality index

reveals that 50 % of the water samples belong to good-

quality water. The degrees of contamination, heavy metal

pollution index, and heavy metal evaluation index present

diversified results in samples even though they show sig-

nificant correlations among them. The results of principal

component analysis (PCA) show that groundwater quality

in the study area mainly has geogenic (weathering and

geochemical alteration of source rock) sources followed by

anthropogenic source (agrogenic, domestic sewage, etc.).

Cluster analysis and correlation matrix also supported the

results of PCA. The Gaussian semivariogram models have

been tested as the best fit models for most of the water

quality indices and PCA components. The results of

semivariogram models have shown that most of the vari-

ables have weak spatial dependence, indicating agricultural

and residential/domestic influences. The spatial distribution

maps of water quality parameters have provided a useful

and robust visual tool for decision makers toward defining

adaptive measures. This study is an implication to show the

multiple approaches for quality assessment and spatial

variability of groundwater as an effort toward a more

effective groundwater quality management.

Keywords Geostatistical methods � Groundwater quality

index � Multivariate analysis � Bangladesh

Introduction

Metals’ contamination of groundwater is of great concern

on lives owing to their toxicity, persistence, and extensive

bioaccumulation. Groundwater is an important resource for

agriculture, industrial, and other economic sectors in

Bangladesh. Rapid urbanization, agricultural, and indus-

trial activities are affecting groundwater day by day. A

wide range of public health issues such as cancer, hyper-

tension, hyperkeratosis, peripheral vascular disease,

restrictive lung disease, and gangrene occurs due to the

consumption of contaminated water (Smith et al. 2000).

Approximately 17 % of groundwater in Bangladesh exhibit

arsenic (As) concentrations beyond the acceptable limit

(10 lg/L) of DoE (1997) for drinking water.

The interpretation of water quality data sets for pollution

evaluation is quite difficult by only elemental concentrations

(Nimic and Moore 1991). However, WQIs have huge scope

to analyze the data sets for better interpretation of pollution.

There exists a wide range of WQIs; however, the choice
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depends upon the input variables and the desired results

(Handa 1981; Zou et al. 1988; Sahu et al. 1991; Li et al.

2009). Due to some limitations, WQI values provide better

results together with the chemometric techniques. It has

been found that chemometric methods are the most reliable

approaches for data mining of matrices from environmental

quality assessment (Astel et al. 2007, 2008). Among the

available chemometric methods, multivariate statistical

analysis has been widely used for source apportionment of

metals in soil and water in different parts of the world (e.g.,

Singh et al. 2005; Halim et al. 2010; Bhuiyan et al. 2010; Li

et al. 2013; Machiwal and Jha 2015).

On the other hand, geostatistical method has gained

importance to evaluate the spatial distribution of pollutant in

soils and water. It is also an important tool for spatial

dependence/autocorrelation among the sampling points.

Subsequently, this type of information is important in esti-

mating the pollutant migration history and spatial distribution

of the pollutant at different sites. However, the integrated

approaches of multivariate analysis and geostatistics may

provide a holistic approach on the complex pollution system.

As the spatial distribution of heavy metal contamination

in groundwater is controlled by the geological/geochemical

heterogeneity, the spatial interpolation technique has been

used to estimate the concentration at unmeasured locations

and devise points to show groundwater contamination

(Webster and Oliver 2001). Detailed and extensive expla-

nations of geostatistical method have been reported in

different literatures (Isaaks and Srivastava 1989; Goovaerts

1997; Webster and Oliver 2001). The cross-validation

results from geostatistics represent that the ordinary kriging

technique can predict spatial variability more accurately.

The ordinary kriging method deals with spatial correlations

between the sample points and has been widely used for

mapping spatial variability of elements. An assessment of

drinking and irrigation water quality is very essential for

understanding the suitability of groundwater for different

purposes. In the study area, a limited work has been con-

ducted on groundwater quality. Hence, the integrated

approaches of different chemometric methods are consid-

ered as important tool for pollution evaluation in this study

area. Considering all these aspects, Lakshimpur district of

Bangladesh has been selected as the study area for a

comprehensive study using the integrated approaches of

multivariate analysis and geostatistical methods.

Materials and methods

Study area

Lakshimpur Sadar upazila (a subdistrict, a small adminis-

trative unit), located in southeastern Lakshimpur district of

Bangladesh, has been selected for this study. Geographi-

cally, the study area is positioned between 22�490–22�030N
and 90�430–92�000E (Fig. 1). It is bounded by Raipur,

Ramganj, and Chatkhil upazilas on the north; Daulatkhan,

Kamalnagar, and Noakhali Sadar upazilas on the south;

Begumganj and Sonaimuri upazilas on the east; and Raipur

upazila and Meghna River on the west. Lakshimpur upazila

(subdistrict) has an area of 514.78 sq km with a total

population of 575,278 (Banglapedia 2006). The sites are

chosen mainly based on their proximity of suspected pol-

lution sources and ecological and environmental impor-

tance. Dalal Bazar, Parbatinagar, Dattapara, Hajipara,

Jacksinhat sites are densely populated areas. The ground-

water quality at Mazuchowdhurihat and Shackchar (west-

ern part of the area) is highly dominated by Meghna River.

Physiographically, it is a coastal floodplain that experi-

ences tide actions regularly. About 74 % of this area is

under water supply coverage provided by several local and

national NGOs.

Sample collection and preparation

Groundwater samples are collected from 70 preselected

sampling points at the Sadar upazila of Lakshimpur dis-

trict of Bangladesh (Fig. 1). The sampling locations are

recorded by a GPS device (Explorist model: 200). The

information regarding well depths is collected from the

record preserved by the well owners and local government

offices. Three types of tubewells such as (1) shallow wells

(10–60 m depth), (2) deep wells (80–375 m depth), and

(3) dug wells (7–318 m) have been selected on the basis

of the availability at the study area. Samples are collected

in pre-washed high-density polypropylene (HDPP) bottles

following the standard method of APHA-AWWA-WEF

(2005). For metal ions and dissolved organic carbon

(DOC) analysis, water samples are preserved following

the standard procedures of Rahman and Gagnon (2014).

All analytical procedures of groundwater samples are

conducted following the standard methods (Table 1). The

accuracy and precision of analysis are tested through

running duplicate analysis on selected samples, and the

average results for all analyses are used to represent the

data.

Groundwater pollution evaluation indices

Groundwater quality index (GWQI)

Groundwater quality index (GWQI) method reflects the

composite influence of the different water quality param-

eters on the suitability for drinking purposes (Sahu and

Sikdar 2008). The groundwater quality has been measured

by using the following equation for GWQIs Vasanthavigar
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et al. (2010) with respect to WHO (2011) and Bangladesh

standards (1997).

GWQI ¼
X

SIi

¼
X

ðWi � qiÞ ¼
X wiPn

i¼1 wi

� �
� Ci

Si
� 100

� �� �

where Ci is the concentration of each parameters, Si is the

limit values, wi is the assigned weight according to its

relative importance in the overall quality of water for

drinking purposes (Table 2), qi is the water quality rating,

Wi is the relative weight, and SIi is the subindex of ith

parameter.The heavy metal pollution index (HPI) method

Fig. 1 Location map showing the sample sites in the study area

Table 1 List of chemical elemental analysis, methods, and equipments

Variables Method Units Equipment

pH pH meter Accumet electrode and Accumet Excel, XL50

(Dual channel pH/ion/conductivity) meter

EC Conductivity meter Accumet electrode and Accumet Excel, XL50

(Dual channel pH/ion/conductivity) meter

DOC Total organic carbon analyzer TOC-VCHP Total Organic Carbon Analyzer (Shimadzu, Japan)

HCO3 Field titration HACH digital titrator (HACH 1690, USA)

Cl, F, SO4, NH4–N, Na, K, Ca, Mg Chromatography Ion chromatograph (761 Compact IC, Metrohm)

As, Pb, Fe, Mn, Ni, Sb, Ba, Mo,

Al, Zn, B, P, Si

Inductively coupled plasma

mass spectrometry

Thermo Scientific X-Series2 ICP-MS
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has been developed by assigning rating or weightage (Wi)

for each chosen parameter (As, Pb, Fe, Mn, Ni, Sb, Ba, Mo,

Al, Zn) and selecting the groundwater parameter on which

the index has to be based on (Bhuiyan et al. 2010). The

rating is nearly zero to one, and its selection reveals the

significance of each water quality parameter. It has been

developed based on the monitored values, ideal values, and

recommended standard values of the studied parameters. It

can be defined as inversely proportional to the recom-

mended standard (Si) for each parameter (Horton 1965;

Reddy 1995; Mohan et al. 1996). The concentration limits

(i.e., the highest permissible value for drinking water (Si)

and maximum desirable value (Ii) for each parameter) are

taken from the Indian drinking water specification stan-

dards of 2012 (BIS 2012) for this study. Heavy metal

pollution index (HPI) has been used for assigning rating or

weightage (Wi) for each selected parameter and can be

computed using the following expression (Mohan et al.

1996; Bhuiyan et al. 2015):

HPI ¼
Pn

i¼1 WiQiPn
i¼1 wi

where Qi is the subindex of the ith parameter, Wi is the unit

weight of the ith parameter, and n is the number of

parameters. The subindex Qi is computed by

Qi ¼
Xn

i¼1

Mið�ÞIif g
ðSi � IiÞ

� 100

where Mi, li, and Si stand for the monitored values, ideal

values, and standard values of the ith parameter, respec-

tively. The negative sign (-) denotes numerical difference

in the two values ignoring algebraic sign.

Heavy metal evaluation index (HEI) method provides an

insight into the overall quality of the groundwater with

respect to heavy metals and metaloids (As, Pb, Fe, Mn, Ni,

Sb, Ba, Mo, Al, Zn (Edet and Offiong 2002). It has been

calculated by Prasad and Jaiprakas (1999) as follows:

HEI ¼
Xn

i¼1

Hc

Hmac

where Hc is the monitored value and Hmac is the maximum

admissible concentration (MAC) of ith parameter.

The degree of contamination (Cd/CD) has been adopted

from Backman et al. (1997). Prasad and Bose (2001)

evaluate the combined effects of several quality parameters

which are considered detrimental to household water. The

CD/Cd is determined by:

Cd ¼
Xn

i¼1

Cfi

where

Cfi ¼
Cai

Cni

� 1

Cfi is the contamination factor, Cai is the analytical value,

and Cni is the upper permissible concentration for the ith

component and n indicates the normative value. Here, Cni

is taken as maximum admissible concentration (MAC).

Multivariate statistical analysis

Principal component analysis (PCA) reduces the dimen-

sionality of data by a linear combination of original data

to generate new latent variables which are orthogonal and

Table 2 List of parameters,

weight factors, and limit values

for the water quality index after

Vasanthavigar et al. (2010)

Parameters Units Weight (wi) Relative weight (Wi) Limit values

pH 4 0.078 6.5–8.5

HCO3 mg/L 1 0.020 600

Cl mg/L 3 0.059 250

F mg/L 4 0.078 1.5

SO4 mg/L 4 0.078 400

NH4–N mg/L 3 0.059 0.5

Na mg/L 4 0.078 200

K mg/L 2 0.039 12

Ca mg/L 2 0.039 75

Mg mg/L 2 0.039 30

As lg/L 4 0.078 50

Pb lg/L 4 0.078 10

Fe lg/L 4 0.078 1000

Mn lg/L 4 0.078 300

Al lg/L 3 0.059 200

Zn lg/L 3 0.059 5000
P

wi ¼ 51
P

Wi ¼ 1
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uncorrelated to each other (Nkansah et al. 2010). It

extracts the eigenvalues and eigenvectors from the

covariance matrix of original variables (Chabukdhara and

Nema 2012). The eigenvalues of the PCs are the measure

of their associated variance, the participation of original

variables in the PCs is given by the loadings, and the

coordinates of the objects are called scores (Helena et al.

2000; Wunderlin et al. 2001; Heberger et al. 2005). PCA

provides an objective way of finding indices of this type

so that the variation in the data can be accounted for as

concisely as possible (Sarbu and Pop 2005). PCA has

been performed to extract principal components (PC)

from the sampling points and to evaluate spatial varia-

tions and possible sources of heavy metals in

groundwater.

Factor analysis is similar to PCA except for the prepa-

ration of observed correlation matrix for extraction and the

underlying theory (Tabachnick and Fidell 2007; Bhuiyan

et al. 2011a). The goal of FA can be achieved by rotating

the axis defined by PCA, according to the well-established

rules, and constructing new variables, also called varifac-

tors (VF) (Shrestha and Kazama 2007).

The correlation coefficient matrix measures how well

the variance of each constituent can be explained by rela-

tionship with each other (Liu et al. 2003). According to the

approach of Liu et al. (2003), the terms ‘‘strong,’’ ‘‘mod-

erate,’’ and ‘‘weak’’ are applied to factor loadings and refer

to absolute loading values as [0.75, 0.75–0.50, and

0.50–0.30, respectively.

The cluster analysis (CA) is applied to identify groups or

clusters of similar sites on the basis of similarities within a

class and dissimilarities between different classes (Lattin

et al. 2003). Hierarchical cluster analysis (HCA) studies

distance between parameters of samples. The most similar

points are grouped forming one cluster, and the process is

repeated until all points belong to one cluster (Danielsson

et al. 1999; Birth 2003). The result obtained is shown in a

2D plot called dendrogram. In the study, Ward’s method

with squared Euclidean distances is used. The experimental

groundwater data were subjected to statistical analysis

using SPSS software (version 22.0). Pearson’s correlation

matrix is used to identify the relationship among the pairs

of parameters.

Geostatistical modeling

Ordinary kriging (OK) and semivariogram models are

applied for spatial distribution of groundwater parameters

which are related to groundwater application in hydrolog-

ical studies. These interpolation techniques are well doc-

umented in the recent literature (e.g., Masoud and Atwia

2010; Ahmed et al. 2011; Masoud 2014; Marko et al.

2014). Kriging is one of the most popular and robust

interpolation techniques among other techniques. It inte-

grates both spatial correlation and the dependence in the

prediction of a known variable. Estimations of nearly all

spatial interpolation methods can be represented as

weighted averages of sampled data. The equation can be

written as follows (Delhomme 1978):

ẑðxoÞ ¼
Xn

i¼1

kizðxiÞ

where ẑ is the estimated value of an attribute at the point of

interest xo, z is the observed value at the sampled point xi,

ki is the weight assigned to the sampled point, and n rep-

resents the number of sampling points used for the esti-

mation (Webster and Oliver 2001). The attribute is usually

called the primary variable, especially in geostatistics. The

semivariance can be estimated from groundwater data by

the following equation:

cðhÞ ¼ 1

2n

Xn

i¼1

zðxiÞ � zðxi þ hÞ2
h i

where n is the number of pairs of sample points separated

by the standard distance calls lag h (Burrough and

McDonnell 1998), and zðxiÞ is the value of variable z at

location xi. Variogram modeling and estimation are

important for structural analysis and spatial interpolation.

Among the different kriging techniques, OK has been used

in this study because of its easy calculation and prediction

accuracy compared to the other kriging methods (Gorai and

Kumar 2013). Recently, different variograms or semivari-

ogram models such as linear, exponential, and spherical

models are very popular worldwide for spatial analysis of

geochemical data sets (Kitanidis 1997; Elogne et al. 2008;

Varouchakis and Hristopulos 2013). In this study, circular,

spherical, exponential, and Gaussian models have been

used to measure spatial autocorrelation or dependence of

the groundwater data. The best fit theoretical semivari-

ogram models are prepared based on selecting the trial-

and-error basis. Predictive performances of fit models are

checked on the basis of cross-validation tests (Gorai and

Kumar 2013). The mean error (ME), mean square error

(MSE), root mean error (RMSE), average standard error

(ASR), and root mean square standardized error (RMSSE)

values are assessed to establish the fit models performance.

Hu et al. (2004) have discussed several criteria for using

error measurements to judge the performance of spatial

interpolation methods. Models attain the best goodness-of-

fit results in minimum mean error (ME), root mean error

(RME), and mean squared error (MSE), attain root mean

squared error (RMSE) and average squared error (ASE)

close to unity and are considered as the best fit models

performance (ESRI 2009). The errors are estimated by the

following equations:
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ME ¼ 1

n

Xn

i¼1

ðpi � oiÞ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðpi � oiÞ2

" #vuut

MSE ¼ 1

n

Xn

i¼1

ðpsi � osiÞ

RMSSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðpsi � osiÞ2

" #vuut

ASE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðpi �
Xn

i¼1
pi

� �.
nÞ2

" #vuut

where n is the number of observation points or samples; o

and p are the observed value and predicted or estimated

values at location i; os is the standardized observed value;

ps is the standardized predicted value. After completing the

cross-validation process, kriging offers graphical repre-

sentation of the distribution of groundwater quality. In this

study, Arc GIS (10.2 version) has been used for this

interpolation technique.

Results and discussion

Groundwater quality

GWQI values are calculated using different International

Standards and BMAC values to determine the suitability of

groundwater quality for drinking purposes (Table 3). The

GWQI values range from 24.73 to 430.94 with the mean of

113.56. The critical limit (100) for drinking water purposes

has been proposed by Vasanthavigar et al. (2010). The

results in Table 4 show that 50 % of samples exceed the

critical limit (100) of GWQIs. Among the total samples,

17 % of samples belong to excellent water quality and

33 % represent good water quality, 40 % exhibit poor

water quality, 7 % of water is of very poor quality, and the

rest of 3 % indicate unsuitable water for drinking purposes

(Table 4).

The degree of contamination (CD) has been used for

estimating the extent of metal pollution (Al-Ami et al.

1987; Bhuiyan et al. 2010). Table 5 shows that range and

mean values of CD for groundwater samples are

0.17–66.23 and 11.17, respectively. CD may be catego-

rized (Backman et al. 1997; Edet and Offiong 2002) as

follows: low (CD\ 1), medium (CD = 1–3), and high

(CD[ 3). The heavy metal pollution indices (HPI) are

computed using the International Standard (BIS 2012)

values of metal content in groundwater samples. The range

and mean values of HPI in groundwater samples are

2.19–59.01 and 10.41, respectively. Among the total sam-

ples, 77 % of the samples fall above the critical values, i.e.,

CD 3. According to Edet and Offiong (2002), most of the

samples are considered as highly polluted water. Besides

the CD values, the water samples are further analyzed by

HPI and HEI methods to compare with the results of CD.

However, HPI and HEI values for all sample locations fall

below the critical values prescribed for drinking purposes

(Table 5). The heavy metal evaluation index (HEI) is used

to synchronize the criteria for various pollution indices.

The HEI criteria for groundwater samples are thus classi-

fied as low (HEI\ 40), medium (HEI = 40–80), and high

(HEI[ 80). It is observed that groundwater in the study

area exhibits low level of pollution. The results of GWQIs,

CD, HPI, and HEI methods show more or less similar

trends for most of the samples (Fig. 2). The GWQI values

have shown higher spatial variation, whereas HEI values

have depicted lower variation. We have also assessed the

relationship between metal concentration with the com-

puted indices (GWQIs, CD, HPI, and HEI in Table 5). The

GWQIs show positive significant correlations with CD,

HPI, and HEI. As, Fe, Mn, and Ni show strong positive

correlation (Table 6) with the indices values indicating the

metals are the major factors for the pollution in this region.

Source identification of groundwater pollutants

Principal component analysis (PCA) is used for source

identification of heavy metals following the standard pro-

cedures (Dragovı́c et al. 2008; Franco-Urı́a et al. 2009).

Varimax rotation is used to maximize the sum of variance

of the factor coefficients which better explains the possible

groups/sources that influence water systems (Gotelli and

Ellison 2004). Six factors with eigenvalues [1 are

extracted for groundwater data sets which represent

80.61 % of the total variance. The scree plot is used to

identify the number of PCs to be retained to understand the

underlying parameters’ structure (Fig. 3a). The calculated

factor loadings together with cumulative percentage and

percentages of variance are explained by each factor as

listed in Table 7. The positive and negative scores in PCA

indicate that most of the water samples are either essen-

tially affected or unaffected by the presence of extracted

loads on a specific factor/component, respectively. About

58.38 % of the total variance is represented in the first

three loading factors (Fig. 3b). In this study, PC1, PC2,

PC3, PC4, PC5, and PC6 explain more than 26, 17, 14, 8,

7, and 6 % of the total variance, respectively.

The first principal component (PC1) in the groundwater

data sets explains more than 26.87 % of the total variance.

It is loaded with Na, EC, Cl, B, Mg, K, Ca, SO4, and
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HCO3. This factor was brought under the purview of many

natural hydrogeochemical evolution of groundwater

through groundwater–geological medium interaction

(Omo-Irabor et al. 2008). PC2, explaining 17 % of total

variance, is loaded with P, As, DOC, NH4–N, Mo, Fe, and

HCO3 (Table 5). PC2 explains leaching of materials from

soil horizon to the aquifer which are basically trace ele-

ments and are regarded as nonpoint pollutant sources along

with partial natural weathering processes. Arsenic comes

under this category, i.e., geogenic processes augmented

through human-induced activities such as fertilizers and

animal feedings (Bhuiyan et al. 2011b). R-mode cluster

analyses thus are influenced by both geogenic and

anthropogenic activities. Excessive presence of NH4–N has

found to contribute by the use of chemical fertilizer in

agricultural fields (Backman et al. 1998). PC3, accounting

for 14 % of total variance, is associated with Fe, Ba, and

Si, indicating geogenic factors. PC4 is moderately loaded

with Mn, accounting for 8.5 % of total variance and is

related to geogenic factors. Generally, Mn occurs naturally

as a mineral from sedimentary rocks or from mining and

industrial waste products (Bhuiyan et al. 2010). Bacterial

activities on Fe and Mn are also responsible for releasing

Fe and Mn (Bromfield 1978; Bhattacharya et al. 2002;

Naujokas et al. 2013; Islam et al. 2013). PC5 has strong

loadings of Al and Pb with 8 % of total variance, indicating

anthropogenic pollution from domestic and agricultural

sources. Natural causes like geogenic process along with

anthropogenic activities (like industrialization) control

these enrichments and are shown in high scores of PC5 and

S12 and S63 samples. PC6 has moderate to strong loadings

of Ni and Sb which is linked to release from stainless steel

and alloy product industries.

Spatial similarities and sampling site grouping

In this study, the CA results strongly agree with the PCA

results. The R-mode CA retains four main clusters for

analyzed parameters (Fig. 4a). Elements belonging to the

same cluster are likely to have originated from a common

Table 3 Descriptive statistics of physiochemical parameters and heavy metals in the study area

Parameters Minimum Maximum Mean SD WHO limits

(2011)

BMAC

(1997)

Acceptable limit

of Indian (2012)

Permissible limit

of Indian (2012)

pH 6.53 7.59 7.0369 0.24661 6.5–8.5 6.5–8.5

EC (ls/cm) 384 4640 1135.086 954.7244 700a

DOC (mg/L) BDL 14 3.5386 3.06104

HCO3
- (mg/L) 125 1140 430.18 217.5315 600a

Cl- (mg/L) 2.7 1550 227.1904 364.6709 250 150–600 250 1000

F- (mg/L) 0.08 0.45 0.2149 0.07277 1.5 1 1.5

SO4
2- (mg/L) BDL 265 16.1429 45.05423 400 200 400

NH4–N (mg/L) BDL 17.8 1.9434 2.73216 0.5 0.5

Na? (mg/L) 7.9 1090 159.7871 225.6383 200

K? (mg/L) 3.1 41.3 10.8943 7.75802 12

Ca2? (mg/L) 16.6 186 55.7614 34.72118 75 75 200

Mg2? (mg/L) 15.7 154 46.1486 31.55469 30–35 30 100

As (lg/L) BDL 404 85.5443 98.45996 10 50 10 50

Pb (lg/L) 0.04 9.23 0.3667 1.09535 10 50 10

Fe (lg/L) 122 24,800 3235.286 3868.188 300–1000 300

Mn (lg/L) 51 3830 652 583.4879 100 100 300

Ni (lg/L) BDL 6.8 1.9086 1.23038 70 100 20

Sb (lg/L) BDL 1.18 0.0673 0.15305 20

Ba (lg/L) 5 657 77.1857 107.0766 700 10 700

Mo (lg/L) BDL 20 2.9157 3.67043 70

Al (lg/L) BDL 93 6.3143 12.61646 200 30 200

Zn (lg/L) 2 82 21.6429 19.36756 5000 5000 15,000

B (mg/L) BDL 0.82 0.1716 0.1799 2.4 1 0.5 1

P (mg/L) BDL 3.4 0.7729 0.78407 0

Si (mg/L) 8.37 31.6 17.4703 5.55114

BDL below detection limit, BMAC Bangladesh maximum admissible concentration
a FAO standard for irrigation purposes
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source. The R-mode CA performed on the groundwater

samples produces four clusters. Cluster 1 includes EC, Na,

Cl, Mg, SO4, K, HCO3, and B which may be explained by

combining nonpoint sources and leaching of fertilizers

from the soil horizon to the aquifer. Cluster 2 consists of

Mn, Zn, Ca, Ni, Fe, and Ba reflecting the influence of

domestic and agricultural pollution (Omo-Irabor et al.

2008). Cluster 3 includes As, DOC, NH4–N, P, Mo, and pH

and is explained by the dissolution of minerals under basic

condition. Cluster 4 includes Pb, Al, Si, and Sb which

represent the presence of anthropogenic and geogenic

activities. Although there are some variations between the

results of CA and PCA, a good agreement between the two

statistical techniques is evident in all the data sets analyzed.

Q-mode CA has been applied to detect the spatial sim-

ilarities and site grouping among the sampling points

(Table 8). Samples are clustered in a particular group

which share similar characteristics with respect to the

analyzed parameters. The 70 sampling sites fall into four

clusters (Fig. 4b). Cluster 1 consists of 37 sampling points.

These 41 sampling points are S4–S12, S15–S18, S20, S23,

S24, S27, S33, S35, S38–S41, S43–S49, S51–S55, S58,

S62, S63, S65, S66, and S69. Among the sites, strong

correlation exists among the element pairs: Ca with Cl

(r = 0.679, p\ 0.01) and Mg with Na (r = 0.786,

p\ 0.01). It is worth noting that moderate concentrations

of Ca, Mg, K, SO4, Cl, HCO3, EC, B, and Na have been

observed at most of the stations. Cluster 2 contains only

four samples such as S19, S56, S64, and S67. Cluster 3

includes the following 12 sample sites: S1–S3, S14, S22,

S25, S26, S30, S31, S34, S36, and S37. Cluster 4 consists

of 13 sites which are S13, S21, S28, S29, S32, S42, S50,

S57, S59, S60, S61, S68, and S70. The relationships among

the analyzed parameters are also visualized in the factor

loading plots of PC1 versus PC2 and PC1 versus PC3

(Figs. 5, 6). Five major clusters are obtained for all

parameters from the plotting of PC1 versus PC2 (Fig. 5a).

Cluster 1 contains parameters As, P, DOC, Mo, and Fe.

Cluster 2 consists of F, Al, pH, Ni, Zn, Mn, Ba, Al, Sb, and

Pb. Cluster 3 includes B, Mg, Be, Na, Cl, K, and SO4.

NH4–N, HCO3, Ca belong to cluster 4, whereas Si inde-

pendently remains in cluster 5. Near similar groupings of

parameters are observed in the plot of PC1 versus PC3

(Fig. 5b) with some exceptions of Si, pH’s groupings. For

sampling sites, the PC1 versus PC2 and PC1 versus PC3

plots show same common sources having four distinct

clusters (Fig. 6a, b) which differ from the clustering phe-

nomenon that are shown in Fig. 5a, b.

Correlation matrix analysis

Pearson’s correlation coefficient matrix is generated in

order to identify the rotations among the parameters and

sources of groundwater pollution (Table 9). Correlation

matrix shows that inter-parameter relationships agree with

the results obtained from PCA. It also shows some new

associations between the parameters that are not adequately

reported in the previous sections. Strong (p\ 0.01) and

significant correlations (p\ 0.05) are observed in most of

the parameters of groundwater samples. EC has a strong

positive correlations at p\ 0.01 with Na? (r = 0.959), K?

(r = 0.682), Mg2? (r = 0.847), Ca2? (r = 0.645), NH4
2-–

N (r = 0.538), SO4
2- (r = 0.685), HCO3

- (r = 0.608),

Cl- (r = 0.939), and B (r = 0.842), and these parameters

are also positively correlated with each other (Table 8).

These associations indicate mixed sources of geogenic/

anthropogenic origin which are described in PC1

S1 S9 S17 S25 S33 S41 S49 S57 S65
1

10

100

1000

GWQI Cd HPI HEI

Fig. 2 Spatial variation in groundwater quality index values in the

study area

Table 6 Correlation coefficient matrix for indices values and metal

concentration

HPI HEI CD GWQI

HPI 1 0.774** 0.599** 0.661**

HEI 0.774** 1 0.760** 0.830**

Cd 0.599** 0.760** 1 0.988**

GWQI 0.661** 0.830** 0.988** 1

As 0.941** 0.627** 0.498** 0.544**

Pb 0.235 0.116 -0.002 0.042

Fe 0.423** 0.850** 0.615** 0.661**

Mn 0.349** 0.429** 0.366** 0.419**

Ni 0.350** 0.580** 0.506** 0.539**

Sb 0.118 0.1 -0.007 0.016

Ba -0.108 0.314** 0.261* 0.259*

Mo 0.445** 0.176 0.309** 0.313**

Al 0.281* 0.250* 0.097 0.144

Zn 0.145 0.164 0.331** 0.312**

* Correlation is significant at the 0.05 level (two-tailed)

** Correlation is significant at the 0.01 level (two-tailed)
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section. Na?, Cl-, Mg2?, K? are the main constituents of

groundwater as a result of interaction with minerals or

trapped saline fluids in aquifers and chemical weathering of

catchment rocks. The partially acidic nature of ground-

water is due to leaching of altered rocks and anthropogenic

sources. DOC shows significant correlations with As

(r = 0.617, p\ 0.01), Mo (r = 0.479, p\ 0.05), Fe

(r = 0.414, p\ 0.05), NH4
2-–N (r = 0.422, p\ 0.05),

and P (r = 0.583, p\ 0.01). These results are also show-

ing similarity with PC2. These correlation results are

attributed to geogenic sources from the basement rocks.

Harvey et al. (2002) have reported that DOC in ground-

water in Bangladesh is positively correlated with As and

has concluded that the mobility of As has been closely

related to the recent inflow of carbon or desorption of As

by carbonate rock. pH shows negative significant correla-

tions with Fe (r = -0.488, p\ 0.05) and Si (r = -0.696,

p\ 0.01). The metal pairs Fe–Ni, Fe–Ba, and Fe–P show

significant correlations (at p\ 0.05) with correlation

coefficients (r) 0.493, 0.609, and 0.458, respectively,

depicting a similar sources as mentioned in PC3 sec-

tion. Similar observations are made by Chapagain et al.

(2010) in the deep groundwater quality in Kathmando,

Nepal, where the occurrence of heavy metals is possibly

influenced by redox levels and nature of underlying sedi-

ment (i.e., mineral composition and organic matter con-

tents) of groundwater. A poor correlation exists between

As with Fe (r = 0.305, p\ 0.05) and Mn (r = 0.142,

p\ 0.05), whereas As shows significant correlations with

P (r = 0.773, p\ 0.01) and Mo (r = 0.543, p\ 0.01). So,

the correlations between As, Fe, and Mn in groundwater

are due to the precipitation of dissolved Fe as siderite solids

(FeCO3) or rhodochrosite (MnCO3) under reduced envi-

ronmental conditions (Reza et al. 2010a). High As, low Fe,

low Mn in groundwater of the Meghna flood plain in

southeastern parts of Bangladesh are evaluated by Reza

et al. (2010b). However, their findings quite differ from the

observations in this study where very high concentrations

of Fe, Mn, and As are observed. A positive strong corre-

lation is observed between Pb and Al (r = 0.843,

p\ 0.01), indicating similar sources as observed in PC5.

Ni exhibits significant correlation with Sb (r = 0.480,

p\ 005) as observed in P62 section.

Geostatistical modeling

Semivariogram models are employed after normalizing the

data using ArcGIS (version 10.2). Among other models,

OK (ordinary kriging) is applied in this study. The nugget,

sill, and the range values of the best fit semivariogram

models for quality parameters are shown in Table 10.

Extremely low nugget effects and the absence of variability

in groundwater elevation at short distances demonstrate

that there is an insignificant small-scale variability mea-

surement error. Thus, the fit semivariogram represents very

well the spatial structure of these variables in the ground-

water. The error statistics are estimated to ascertain the

reproducibility of observed values by the theoretical

semivariogram models and developed spatial maps

(Table 10). The best fit semivariogram model is chosen

(b)(a)

Fig. 3 a Scree plot of the characteristic roots (eigenvalues) of principal component analysis, b Component plot in rotated space of principal

component analysis
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based on ME, MSE, RMSE, RMSSE, ASE criterion. A

model is considered robust and accurate when ME and

MSE are close to zero, RMSE and ASE are small, and

RMSSE is close to 1 (Adhikary et al. 2010). Ranges of

semivariograms are a measure of extension where auto-

correlation existed (Li et al. 2009). The distance where the

(a) (b)

Fig. 4 a Dendrogram showing the hierarchical clusters of analyzed parameters. Dashed lines in dendrogram represent Phenon lines.

b Dendrogram showing the hierarchical clusters of analyzed samples site. Dashed lines in dendrogram represent Phenon lines

Table 7 Varimax rotated

principal component analysis

(R-mode) for groundwater

samples

Parameters PC1 PC2 PC3 PC4 PC5 PC6

R-mode

pH 0.212 0.265 -0.732 -0.26 -0.058 -0.249

EC 0.957 0.158 0.161 0.047 -0.015 0.023

DOC -0.016 0.792 0.035 0.021 -0.041 -0.056

HCO3 0.627 0.5 -0.355 -0.059 0.03 -0.022

Cl 0.917 -0.029 0.271 0.141 -0.035 0.016

F -0.16 0.233 -0.366 -0.702 -0.032 0.009

SO4
2 0.762 -0.269 -0.117 0.24 -0.039 0.008

NH4_N 0.416 0.701 0.109 -0.059 0.012 -0.009

Na 0.977 0.025 0.017 -0.044 -0.046 0.01

K 0.782 -0.01 -0.254 0.208 -0.025 -0.066

Ca 0.529 0.332 0.517 0.486 0.059 0.007

Mg 0.839 0.056 0.139 0.413 0.056 -0.006

As -0.105 0.865 -0.189 0.11 0.007 0.077

Pb -0.012 -0.101 -0.003 0.101 0.947 0.034

Fe 0.006 0.517 0.74 0.165 0.076 0.077

Mn 0.267 0.094 -0.207 0.77 0.182 0.208

Ni 0.333 0.215 0.376 0.304 0.23 0.637

Sb -0.067 -0.054 -0.021 0.019 -0.038 0.944

Ba 0.16 -0.032 0.91 -0.077 -0.071 -0.042

Mo 0.153 0.663 -0.314 -0.49 0.076 0.065

Al -0.015 0.089 0.054 0.041 0.955 0.013

Zn 0.361 0.177 0.004 0.01 0.118 0.171

B 0.84 0.19 -0.325 -0.202 -0.018 0.007

P 0.029 0.888 0.029 -0.097 0.008 0.019

Si -0.326 -0.477 0.692 -0.057 0.1 -0.074

Eigenvalues 7.468 4.596 3.42 2.073 1.438 1.158

% of variance 26.869 17.288 14.224 8.546 7.82 5.865

Cumulative % 26.869 44.157 58.382 66.928 74.748 80.613
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models first flatten out is known as the range which varies

in each variable of groundwater quality indices. The range

of semivariograms for all the variables is from 0.5 to

22 km showing the lowest range for PC1 and highest range

for GWQIs.

The nugget/sill ratio represents spatial dependence of

groundwater quality parameters (Nayanaka et al. 2010).

There are three classifications used for model explanation:

If the ratio is less than 25 %, it shows strong spatial

dependence; if the ratio is in between 25 and 75 %, it

indicates moderate spatial dependence; and if the ratio is

more than 75 %, it represents weak spatial dependence.

Figures 7 and 8 show experimental semivariograms (bin-

ned sign) around the omnidirectional semivariogram model

(blue line) and average of semivariogram models (plus

sign). The best fit semivariogram models for different

groundwater quality parameters are shown in Figs. 7 and 8,

and Table 10. The Gaussian semivariogram model is

identified to be the best fit model for CD, HPI, PC3, PC4,

PC5, PC6, while the circular semivariogram model fit best

for GWQIs. The exponential semivariogram model is

observed to be the best fit model for HEI and PC2, whereas

Table 8 Varimax rotated principal component (Q-mode) analysis for groundwater samples

Sample PC1 PC2 PC3 PC4 PC5 PC6 Sample PC1 PC2 PC3 PC4 PC5 PC6

S1 0.43 -0.21 -0.49 -0.88 0.11 0.23 S36 -0.26 -0.12 -0.71 -1.25 -0.04 -0.21

S2 -0.62 -0.51 0.16 -0.19 -0.40 -0.88 S37 -0.12 -0.04 -0.70 -0.35 -0.03 -0.29

S3 -0.49 0.75 -0.82 1.14 -0.40 -0.56 S38 -0.83 -0.31 -0.40 1.29 -0.51 -0.43

S4 -0.75 -0.62 0.56 -0.21 -0.45 -0.73 S39 -0.36 -0.97 1.33 -0.72 -0.37 1.37

S5 -0.77 0.55 -0.21 0.44 -0.47 1.40 S40 -0.26 -0.48 2.20 -0.14 -0.40 0.05

S6 1.09 3.09 -0.06 -2.04 -0.04 -0.16 S41 -0.45 -0.38 -0.30 0.85 -0.32 0.95

S7 -0.80 -0.30 0.07 0.49 0.16 -0.40 S42 3.57 -1.26 -0.82 0.67 -0.14 0.27

S8 -0.54 2.64 0.10 1.20 -0.12 0.09 S43 -0.53 -0.29 -0.35 0.64 0.46 0.36

S9 -0.62 -0.79 0.33 -0.54 -0.14 -0.32 S44 -0.16 0.03 -0.68 1.98 -0.18 0.02

S10 0.12 3.51 2.62 1.35 1.11 -0.16 S45 -0.46 1.87 0.35 0.52 -0.39 -0.26

S11 -0.62 1.59 -0.48 -0.19 0.01 -0.18 S46 -0.80 0.21 -0.39 -0.04 -0.46 -0.35

S12 -0.09 1.25 -0.45 -0.86 1.35 0.62 S47 -0.74 -0.97 0.35 -0.47 -0.13 -0.68

S13 0.29 0.04 -0.44 -0.68 -0.05 -0.17 S48 -0.71 -0.98 0.31 -0.52 -0.15 -0.43

S14 0.53 0.66 -0.93 -2.58 0.45 0.51 S49 -0.32 -0.81 1.23 -0.30 -0.53 -0.13

S15 -0.77 0.75 -0.54 0.80 -0.23 -0.41 S50 0.55 0.19 -0.75 -1.13 0.27 0.45

S16 -0.67 0.40 -0.92 0.07 0.02 -0.35 S51 -0.79 -0.41 -0.36 0.04 -0.23 7.25

S17 -0.75 -0.91 0.81 -0.60 -0.23 -0.38 S52 -0.85 1.12 0.36 1.29 -0.28 0.40

S18 2.30 2.53 1.63 -1.02 -0.23 -0.23 S53 -0.53 -0.86 0.87 -0.32 -0.31 -0.11

S19 -0.45 -0.15 -0.67 1.36 -0.32 -0.33 S54 -0.41 -0.45 -0.46 -0.66 1.17 0.60

S20 -0.35 -0.26 1.96 0.09 -0.32 -0.39 S55 -0.43 0.58 -0.53 -0.71 -0.24 0.11

S21 -0.08 -0.19 -0.77 -1.13 -0.18 -0.37 S56 -0.78 -0.61 -0.41 0.47 -0.35 0.16

S22 -0.16 0.89 -1.30 -1.34 -0.35 -0.37 S57 -0.03 -0.70 -0.94 -0.82 -0.20 -0.58

S23 -0.83 1.33 -0.73 0.85 -0.53 -0.41 S58 1.23 -0.93 3.68 -0.43 -0.51 -0.59

S24 0.48 -0.31 2.99 -0.24 -0.06 1.29 S59 0.76 -0.42 -0.30 -0.39 -0.19 -0.03

S25 0.08 0.31 -0.69 -0.12 -0.19 -0.20 S60 2.59 0.25 0.07 0.20 -0.18 -0.22

S26 -0.02 0.54 -0.90 -1.89 0.40 0.28 S61 -0.67 -0.37 -0.66 0.40 -0.31 -0.74

S27 -0.73 -0.84 0.89 -0.69 -0.25 -0.32 S62 -0.44 -0.33 -0.66 -0.01 0.19 -0.46

S28 2.36 -0.19 -0.22 1.36 -0.05 0.45 S63 -0.19 -0.84 0.19 0.69 7.68 -0.30

S29 3.93 -0.99 -0.68 0.27 -0.13 0.15 S64 1.00 -0.07 0.00 3.84 -0.20 0.24

S30 -0.67 -0.85 0.01 -0.26 0.04 -0.81 S65 0.46 -0.51 -0.79 0.72 -0.13 -0.26

S31 -0.50 -0.95 0.26 -0.26 -0.37 -0.29 S66 0.20 -0.73 -0.17 0.88 -0.38 -0.08

S32 0.10 -0.29 -1.03 -0.86 -0.14 -0.21 S67 0.01 -0.20 -0.72 1.31 -0.36 -0.47

S33 -0.61 0.29 0.03 0.51 -0.39 -0.39 S68 -0.13 -0.67 -0.54 0.90 0.22 -0.34

S34 0.27 0.36 -0.78 -0.89 0.09 -0.14 S69 -0.67 -0.91 0.70 -0.62 -0.03 -0.63

S35 -0.15 -0.77 1.64 -0.38 0.23 -0.06 S70 1.61 -1.01 -0.98 0.11 -0.37 -0.46
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the spherical model fit well for PC1. In this study, the

results show that most of the variables are weakly spatial

dependent in semivariogram shapes except PC1 and HEI.

PC1 represents strong spatial dependence, whereas HEI

shows moderate spatial dependence (Fig. 7). Mostly, the

weak spatial dependence has been demonstrated in the

large nugget effect in semivariogram shape (Fig. 8) and is

due to the high variability of topography of groundwater

which varies with the agriculture, residential, and industrial

areas.

The OK interpolation techniques are applied to develop

spatial distribution maps of groundwater data set (n = 70)

for each groundwater pollution index and each PC score.

After conducting the cross-validation test of best fit mod-

els, maps of kriged estimates are generated which provide a

visual representation of the distribution of groundwater

samples. GWQIs, CD, HPI, and HEI exhibit more or less

similar distribution patterns with an increasing trend at the

southeast to northwest direction of the study area (Fig. 9).

In general, contamination of groundwater with metal pol-

lution is attributed to anthropogenic sources. Other than

this, both geogenic and anthropogenic sources are likely to

be contributed by the high scores of GWQIs, CD, HPI, and

HEI in the study area. High scores are observed at the

northern and northwestern parts of the sampling area, and

low scores are observed at the southeastern part, suggesting

the existence of similar point sources. The strong signifi-

cant correlations among GWQIs, CD, HPI, and HEI show

similar distribution pattern of the previous findings.

Spatial distribution of PC1 score in Fig. 10a reveals

complex pattern where high scores (i.e., values from 0.42

to 3.93) are mostly observed at the southern parts and low

scores are found at the northern and central parts. The

higher score of PC1 is probably due to the rock–water

interaction and ion exchange in groundwater (Guler et al.

2012). Similar findings are obtained from the recent studies

(b)(a)

Fig. 5 Plots of first three principal component loadings. a PC1 versus PC2 and b PC1 versus PC3 for all analyzed parameters

(b)(a)

Fig. 6 Plots of first three principal component loadings. a PC1 versus PC2, b PC1 versus PC3 for all analyzed sampling sites
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conducted in various regions of the world (e.g., Fernandes

et al. 2008; Guler et al. 2012). The spatial distribution of

PC2 scores shows high scores (values from 0.02 to 3.52) at

the northern part and the low scores (i.e., values from

-1.26 to -0.38) at the southern part (Fig. 10b). This

variation is influenced by the dominance of nonpoint

sources such as fertilizer and sewage discharges. For

example, high NH4 and P in PC2 of groundwater samples

may be attributed to the use of fertilizers and urban runoff.

Figure 10c shows the distribution of PC3 scores, where

moderately higher scores (i.e., values from 0.23 to 1.91) are

observed at the northern corner of the study area and the

lower scores are found at the southern edge. PC3 contains

very high scores of Fe, Ba, and Si which are likely due to

geogenic origin. Figure 10d showing the distribution of

PC4 scores reverses the distribution pattern of PC3 score,

where the higher scores (from 0.12 to 2.18) are observed at

the southern part and the lower scores are observed at the

Fig. 7 Best fit semivariogram models of groundwater quality evaluation indices in the study area. a GWQI, b CD/Cd, c HPI, and d HEI

Table 10 Indices and PCs of best fit semivariogram models for groundwater parameters and their variance

Indices and PCs Fit model types Nugget Major range Sill Nugget/

Sill

Lag size ME RMSE MSE RMSSE ASE

GWQI Circular 5911.38 22,381.50 6055.74 0.976 2797.69 -0.826 80.49 -0.01 1.01 79.52

CD Gaussian 147.90 22,381.49 147.90 1.00 2797.69 -0.044 12.68 -0.003 1.01 12.55

HPI Gaussian 411.10 8719.78 411.10 1.00 1089.98 -0.627 21.61 -0.029 1.03 20.95

HEI Exponential 19.42 8142.02 25.72 0.76 1017.75 -0.139 5.45 -0.025 1.07 5.04

PC1 Spherical 0.20 5304.55 1.07 0.19 663.07 -0.004 0.98 -0.001 1.09 0.89

PC2 Exponential 0.73 8354.05 0.86 0.84 1044.26 -0.023 0.95 -0.023 1.01 0.94

PC3 Gaussian 0.91 6743.03 0.91 1.00 842.88 -0.001 1.01 -0.001 1.01 0.99

PC4 Gaussian 1.04 11,276.01 1.039 1 1409.50 -0.011 1.01 -0.009 0.96 1.05

PC5 Gaussian 0.93 9418.91 0.927 1 1177.37 -0.009 1.03 -0.009 1.03 0.99

PC6 Gaussian 1.04 13,156.66 1.036 1 1644.58 0.005 1.01 0.004 0.97 1.05

ME mean error, RMSE root mean square error, MSE mean standardized error, RMSSE root mean square standardized error, ASE average standard

error
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northern part. PC4 comprises of the high positive score of

Mn and negative score of F reflecting the geogenic origin.

The distribution of PC5 component score in Fig. 10e shows

higher score (values from 0.12 to 2.18) at the eastern part

and the lower score at the western part of the study area.

Overall, the map shows a decreasing trend toward the east.

In PC5, high score of Al is strongly correlated with Pb,

indicating the anthropogenic origin. Figure 10f shows the

spatial distribution of PC6 component score. The highest

score (i.e., values from 1.00 to 7.25) is found at the central

part which comprises of high score of Sb and Ni. This

component is contributed by the wastewater discharge

from urban areas.

Among the geostatistical models, OK is considered as an

effective tool for preliminary decision makers of ground-

water quality management at the southeastern Bangladesh.

The best fit semivariogram models are selected based on

the criterion of ME, MSE, RMSE, RMSSE, and ASE

which varied for each PC and index. The Gaussian semi-

variogram model is identified to be the best fit model for

CD, HPI, PC3, PC4, PC5 and PC6 while the circular

semivariogram model fit best for GWQIs. The exponential

semivariogram model is observed to be the best fit model

for HEI and PC2, whereas the spherical model fit well for

PC1. In the study, most of the variables have weak spatial

dependence except PC1 and HEI. PC1 represents strong

spatial dependence, whereas HEI shows moderate spatial

dependence. However, the weak spatial dependence indi-

cates high variability of topography in groundwater system

(e.g., agriculture, residential, and industrial areas). The

cross validation indicates that kriging method is the most

accurate interpolation technique for the study. The spatial

Fig. 8 Best fit semivariogram models of groundwater parameters in the study area. a PC1, b PC2, c PC3, d PC4, e PC5, and f PC6
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distribution maps are generated using OK method showing

the variation in different indices in the study area. Con-

sidering the distribution maps, six PC groups (PC1–PC6)

and four indices (GWQIs, CD, HPI, and HEI) with dif-

ferent spatial variability patterns can be distinguished

(Figs. 9, 10). Indices scores exhibit more or less similar

distribution pattern with an increasing trend at the south-

east to northwest direction where high scores of GWQIs,

CD, HPI, and HEI are observed at the northern and

northwestern parts of the study area (Fig. 9a–d). The low

scores are found at the southeastern part which suggests the

existence of similar point sources. However, spatial anal-

ysis of GWQIs depicts that water quality is poor at the

western and northwestern parts of the study area. Different

distribution patterns of the PC scores have implied the

existence of different sources. Distribution maps of PC1 to

PC6 have shown some anomalies regarding the mean

scores of groundwater variables (Fig. 10a–f). In fact,

salinity observed at the northwestern part of PC1 of the

study area is alarming, as households depend upon

groundwater for domestic purposes.

Conclusions

Integrated approaches of different multivariate statistical

and geostatistical techniques are employed in this study to

evaluate the variations in groundwater quality of the Lak-

shimpur district of Bangladesh. Cluster analysis groups 70

sampling points into four clusters of similar water quality

characteristics. Based on the obtained information, it may

be easier to design the study area further where optimal

sampling strategies can reduce the number of sampling

sites and associated costs. Principal component analysis

assists for identifying the factors or sources responsible for

water quality variations. This study illustrates the

GWQI

– 0 5 102.5

Kilometers

Cd

– 0 5 102.5

Kilometers

HPI

– 0 5 102.5

Kilometers

HEI

– 0 5 102.5

Kilometers

(a) (b)

(d)(c)

Fig. 9 Maps showing the spatial distribution of four index scores obtained by the indices of quality evaluation of the groundwater samples.

a GWQI, b CD/Cd, c HPI, and d HEI. Here, both HPI and HEI are plotted considering with As and other metals
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Fig. 10 Maps showing the spatial distribution of six PC scores. a PC1: Na, K, Ca, Mg, Cl, SO4, HCO3, EC, and B; b PC2: P, Mo, As, NH4N,

DOC, and Fe; c PC3: Fe, Ba, and Si; d PC4: Mn and Fe; e Pb and Al; and f Ni and Sb

1020 Page 20 of 23 Environ Earth Sci (2016) 75:1020

123



usefulness of multivariate statistical and geostatistical

techniques for the analysis and interpretation of complex

data sets, identification of pollution sources, and under-

standing spatial variations in water quality for effective

groundwater management. Moreover, the chemometric

studies enable us to demonstrate the similarities and dif-

ferences among the examined variables that are not evi-

dently visible from an examination of the analytical data as

shown in the tables. The ordinary kriging is an effective

tool for preliminary decisions makers of groundwater

quality management in southeastern Bangladesh. Except

As, other geogenic pollutants are not much alarming for the

groundwater consumption at the study area. However,

some anthropogenic processes are quite unpleasant.

The results of principal component/factor analysis indi-

cate that anthropogenic (agrogenic, surface runoff, and

domestic sewage) and natural/geogenic sources (weathering

of source rock) are responsible for variation in physico-

chemical parameters and metal contents in groundwater

systems at the southeastern coastal region of Bangladesh.

The resulting spatial distribution maps provide a helpful and

robust visual tool for researchers and policy makers toward

defining adaptive measures. The study provides background

information on physiochemical parameters, harmful metals,

possible sources, and spatial variation in groundwater sys-

tems in Lakshimpur district of Bangladesh.
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