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Abstract This paper investigates the spatial stationarity of

the relationship between landslide susceptibility and asso-

ciated factors in Three Gorges Reservoir area, a landslide-

rich area in China. Two logistic regression (LR) models

have been used: A global LR (LR) assumes that the

regression coefficients remain constant over the whole

region, whereas a geographically weighted LR (GWLR)

allows the regression coefficients to differ at the local

scale. In LR model, lithology seems to have positive

influence on the location of landslides, as it has a positive

regression coefficient (0.005), while the other factors all

have negative effects on landslide susceptibility as they all

have negative coefficients. However in GWLR model,

lithology does not always keep positive influence, as its

coefficients range from -0.533 to 0.695. These results

indicate a degree of spatial variation in the relationship

between landslide susceptibility and the influencing factors

in the study area. Furthermore, six evaluation criteria,

based on the fit and complexity of the models, were used to

compare the two approaches: deviance, corrected Akaike’s

information criterion (AICc), local percent deviance

explained (pdev), receiver operating characteristic curve

(ROC), Bayesian information criterion (BIC), and residual

Moran’s I. The results suggest that GWLR model provides

potential advantages in landslide susceptibility mapping

and sheds new light on the spatial non-stationarity of the

relationship between landslide susceptibility and its influ-

encing factors.
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Introduction

Landslides are characterized the most natural hazards after

earthquakes, which continue to cause human and financial

loss. In Sep 2014, Lifengyuan Hydropower Station (origi-

nally called Dalingshan) in China was completely

destroyed by landslides. It is the first time hydropower

station has been destroyed by landslides in Three Gorges

Reservoir area. Landslide susceptibility mapping (LSM) is

a solution to understanding and predicting hazards to mit-

igate their consequences (Feizizadeh and Blaschke 2011).

For decades, a variety of methods for LSM have been

proposed, most of which are GIS-based and are related to

qualitative, quantitative, or hybrid approaches (Fig. 1).

Some of methodology overviews list as follows: Varnes

1984; Van Westen 1994; Leroi 1996; Aleotti and Chowd-

hury 1999; Guzzetti et al. 1999; Van Westen et al. 2003;

Brenning 2005; Glade and Crozier 2005; and Budimir et al.

2015.

Landslides are complex processes, mainly because of

the role of many factors, including geology, geomorphol-

ogy, hydrology, and the role of people. If we try to quantify

the relationships between influencing factors and landslide
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occurrence, a question may be asked: whether the influence

of factors on landslide occurrence is homogeneous every-

where? That is to say, are relationships between landslide

location and influencing factors stationary? It is necessary

to note that the literature focusing on the spatial non-sta-

tionarity in landslide susceptibility assessment is very

limited (Zhou et al. 2002; Erener 2009; Erener and Düz-

gün 2010; Atkinson and Massari 2011; Chalkias et al.

2011, 2014; Feuillet et al. 2014). Unfortunately, most

studies have considered the relationships between predic-

tors and landslide occurrence as fixed effects (Feuillet et al.

2014).

The methods which ignore spatial dependence or auto-

correlation characteristics of data in susceptibility assess-

ment, like logistic regression (LR), can be called as global

models (Feuillet et al. 2014). Relatively, the methods which

consider spatial variability in the effect of influencing

parameters at the local scale, like geographically weighted

logistic regression (GWLR), can be called as local models.

The global model (LR) makes the regression coefficients of

landslide predisposing factors remain constant throughout

the whole study area, whereas the local model (GWLR)

allows the regression coefficients different everywhere. The

concept of geographical weighting was proposed in 1996

and initiated using geographically weighted regression

(GWR) to capture spatial non-stationarity (Brunsdon et al.

1996; 1998; Fotheringham et al. 2002). GWLR is then

developed to explore the relations between riverbank ero-

sion and geomorphological controls (Atkinson et al. 2003).

Erener (2009) first used GWLR in LSM in her PhD thesis, in

the case of Bartin Kumluca watershed in Turkey; then, she

compared LR, spatial regression (SR), and GWLR in the

case of More and Romsdal, Norway (Erener and Düzgün

2010); Chalkias et al. showed the differences of landslide

susceptibility estimations between GWLR and LR in South

Greece (Chalkias et al. 2011; 2014). Feuillet et al. (2014)

focused on investigating the spatial non-stationarity in the

relationships between paraglacial variables and landslide

locations in northern Iceland.

In this paper, LR and GWLR models are implemented

for LSM in Qinggan River basin, a small part of the Three

Gorges Reservoir area in China. And six evaluation criteria

are used to compare the two approaches.

Study region

Three Gorges lies in the mountains separating Sichuan

Basin and Jianghan Plain, and along the middle reaches of

the Yangtze River. The study area, located *50 km west

of the Three Gorges Dam, covers a surface area of

46.8 km2 and lies between latitudes from 30.5601300 N to

31.003700N and longitudes from 110.3304600E to

Qualita�ve Quan�ta�ve Hybrid
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Fig. 1 A schematic illustration of commonly used LSM methods (by

Sabokbar et al. 2014)

Fig. 2 Study area in Three Gorges Reservoir area with landslide events
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110.3903600E (Fig. 2). The minimum elevation in the area is

140 m, and the maximum elevation is 1210 m. The terrain

consists of a series of limestone ridges and gorges, with

intergorge valleys underlain primarily by interbedded

mudstones, shale, and thinly bedded limestone. Landslides

tend to occur in areas underlain by failure-prone rock units

are exposed in the intergorge valleys (Fourniadis et al.

2007a, 2007b). Although the slope gradients range from 0�
to 78�, the majority are between 20� and 30�. Steep slopes

have developed in areas underlain by easily erodible, soft

materials, and landslides are common in these areas. The

average annual precipitation is 1100 mm. The rainfall is

generally concentrated in the spring and summer, and the

summer average can be as high as 200–300 mm per month

(Peng et al. 2014, 2015).

The study area is located in the southern tip of Zigui

syncline axis. The strata exposed along the northwest to the

southeast are (from the old to the new): Triassic Badong

Formation (T2b), Triassic Jiuligang Formation (T2j),

Jurassic Tonglinyuan Formation (J1t), Jurassic Qianfoyan

Formation (J2q), Jurassic lower Shaximiao Formation (J2x),

and Jurassic upper Shaximiao Formation (J2s).

A landslide inventory map surveyed by the Three Gorges

Headquarters was used to obtain landslide locations (Fig. 2).

The mapped landslides cover a total area of 5.46 km2, rep-

resenting 11.1 % of the study region. Landslides mostly

distribute along the waters. The global Moran’s I is 0.617

with P value 0.001, which reveals obvious spatial agglom-

eration. Examples of large and the most destructive land-

slides include Shuping landslide, Qianjiangping landslide

and Yanguoshaba landslide (Fig. 2).

Data

Influencing factors of landslides

Nine variables were selected for the LSM study area: ele-

vation, slope, modified normalized difference water index

(MNDWI, Pelletier et al. 1997), normalized difference

vegetation index (NDVI), distance-to-stream (dis_stream),

distance-to-fault (dis_fault), distance-to-road (dis_road),

lithology, and bedding structure. These variables were

based on previous studies of landslide susceptibility in

Three Gorges Reservoir area (Liu et al. 2004, 2009;

Fourniadis et al. 2007a, 2007b; Bai et al. 2010; Peng et al.

2014; Bi et al. 2014; Talaei 2014).

Elevation seems to have no direct relation with land-

slide. However, water development and human activities

are closely associated with elevation. Then as elevation

reduces, the probability of the surface material disturbance

increases. Through the histogram statistics and analysis,

there is no landslide when elevation is more than 700 m.

Therefore, negative correlation may exist between eleva-

tion and landslides.

Slope is thought to be important factor affecting the

stability of landslides. In the study area, most landslides

distribute between 20� to 30�, and there is no landslide

distribution after more than 50�.
It is essential to group lithology properly. We divided

lithology into three groups: mudstone, shale and Quater-

nary deposits; sandstones and thinly bedded limestones;

and limestones and massive sandstones.

The bedding structure is a continuous raster layer repre-

senting the angular relationship between topography and strata

attitude. The relationship can be characterized by the product

of the bed dip direction and angle, slope angle, and aspect

(Meentemeyer and Moody 2000; Peng et al. 2014). The clas-

sification for bedding structure is shown in Fig. 3. Then, these

data were used to generate a bedding structure map (Fig. 4).

Elevation, slope, dis_stream, dis_fault, and dis_road

were derived from 1:10,000-scale digital topographic maps

and 1:10,000-scale digital geological maps surveyed by the

Three Gorges Headquarters. MNDWI and NDVI were

calculated from Landsat imagery. Lithology was obtained

from 1:50,000 geo-map. Bedding structure was obtained

from 1:10,000 topo-map and 1:50,000 geo-map.

By the analysis of multicollinearity, dis_stream showed

a high correlation with elevation, and MNDWI showed

high correlation with NDVI. As a result, dis_stream and

NDVI were excluded from the further calculations. In the

study area, the main triggering factor for landsliding is the

high amount of precipitation (mainly consists of rainfall).

However, the regression analysis does not include precip-

itation because rainfall is relatively uniform throughout the

whole study area.

Slope unit

In this study, slope unit was chosen as the LSM unit, a

partition of the landscape based on the surface hydrologic

analysis. Partition of a region into subbasins or slope units

is obtained from high-quality DEM’S and hydrological

regions between drainage and divide lines (Carrara 1988;

Carrara et al. 1991). Depending on the type of instability to

be investigated (deep-seated vs. shallow slides or complex

slides vs. debris flows) the mapping unit may correspond

either to the subbasin or to the main slope unit (right/left

side of the subbasin) (Guzzetti et al. 1999). In nature, there

exists a clear physical relationship between landsliding and

the fundamental morphological elements of a hilly or

mountainous region, namely drainage and divide lines.

Therefore, the slope unit-based mapping unit has more

representative power for the landslide phenomena (Erener

2009).
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Methods

Two logistic regression models were developed for quantita-

tive mapping of landslide susceptibility: LR was used to

establish the relationship between landslide influencing fac-

tors and landslide occurrence at a global scale, while GWLR

was used to investigate the relationship at a local scale. Fig-

ure 5 is a schematic representation of the methodology.

Global logistic model (LR)

LR is a multivariate analysis model for predicting the

presence (or the absence) of a phenomenon, based on the

values of predictor variables (Lee 2005). It has at least two

advantages over traditional multivariate linear regression

(Atkinson et al. 2003). First, LR allows the independent

variables that are categorical or continuous, or any com-

bination of both types. Second, residuals do not need to be

normally distributed about their mean and no assumptions

are made about their error distributions. Thus, most of the

limitations of traditional regression are removed (Atkinson

et al.2003). Using a LR model, the relationship between

landslide occurrence (Y) and landslide influencing factors

(X1, X2,…, Xn) is established as:

Y ¼ log it ðpiÞ ¼ lnð pi

1� pi
Þ ¼ b0 þ

Xp

k¼1

bk � Xk ð1Þ

where pi is the probability of Y occurring at location i, pi/

(1–pi) is the ‘‘odds ratio’’ or likelihood ratio, b0 is the

intercept, and b1, b2,…, bp are the regression coefficients.

If a coefficient is positive, its transformed log value will be

greater than one, meaning the event is more likely to occur.

If a coefficient is negative, its transformed log value will be

less than one and the odds of the event occurring decrease

(Ayalew and Yamagishi 2005).

In the application of LR model for LSM, some scientists

have created layers of binary values for each class of an

influencing parameter (Guzzetti et al. 1999; Lee and Min

3D sketch Definition Type 3D sketch Definition Type
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Fig. 3 Classification of the bedding structure. a: slope aspect; b: bed dip direction; c: bed dip angle; and d: slope angle (by Peng et al. 2014)

Fig. 4 Bedding structure map for the whole region
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2001; Dai et al. 2001; Dai and Lee 2002; Ohlmacher and

Davis 2003). This might lead to a great number of inde-

pendent variables. If many variables are included, the

regression equation will be very long and it may even

introduce numerical problems. One solution is to arrange

classes of all parameters according to their corresponding

landslide densities (Ayalew and Yamagishi 2005). Another

alternativemethod is to transform the categorical variables to

numeric variables by using landslide densities (Yesilnacar

and Topal 2005; Zhu and Huang 2006; Bai et al. 2010).

In this study, we implemented the two logistics models

by using the continuous data standardized to range from 0

to 1 and using landslide density to transform the categorical

variables to numeric variables. Landslide density is cal-

culated as (Carrara 1992):

Landslide density ¼ ðBi=AiÞ
,

P
i

ðBi=AiÞ ð2Þ

where Ai is the area of the ith type of the influencing

variable and Bi is the landslide area in ith type of the

influencing variable.

Local logistic model (GWLR)

GWLR is a geographically weighted version of the above

traditional LR model. It is first developed to explore the

relations between riverbank erosion and geomorphological

controls (Atkinson et al. 2003). Then, it has been applied in

the spatial simulation of regional land use patterns (Liao

et al. 2010), the exploration of spatial non-stationarity of

fisheries survey data (Windle et al. 2010), other studies in

geosciences (Erener and Düzgün 2010; Chalkias et al.

2011; 2014; Cossart 2013; Wu and Zhang 2013; Feuillet

et al. 2014; Zini et al. 2015), and in human geography

(Windle et al. 2010; Saefuddin et al. 2012; Yang and

Matthews 2012).

A key step in the development of GWLR is the choice of

a spatial weighting function for estimating local parame-

ters. Specifically, GWLR uses a distance-based weighting

scheme since it is assumed that observations near point i

have more influence on the estimation of the parameters

than observations located farther from i (Feuillet et al.

2014). Then, the weighted least square estimates of bi are:

b̂i ¼ ðxTwixÞ�1
xTwiy ð3Þ

where wi is n by n weighting matrix, whose off-diagonal

elements are zero and diagonal elements are the geo-

graphical weighting:

wi ¼

wi1

wi2

. .
.

win

0

BBBBB@

1

CCCCCA
ð4Þ

The choice of wi depends on the selection of kernel func-

tion, which may be in the form of fixed (i.e., fixed
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Fig. 5 Schematic representation of the methodology
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bandwidth) or adaptive kernels (i.e., varying bandwidths).

We choose bi-square function (Fotheringham et al. 2002):

wij ¼
1� ðdij=bÞ
� �2

dij � b

0 dij [ b

(
ð5Þ

where b is the bandwidth and dij is the spatial distance

between location i and j. Points close to location i are

highly weighted, and the weighting reduces as dij
increases. The choice of bandwidth size is influent and is

determined by minimizing the corrected Akaike’s infor-

mation criterion (AICc), which is based on the log like-

lihood of the model (Johnson and Omland 2004). In this

study, the bandwidth that minimizes the AICc is 805 m in

the GWLR model with 7 variables. But we choose a fixed

bandwidth (1600 m) in order to compare with other

GWLR models.

All the regression calculations were performed using

GWR4.0 freeware, while interpolation and mapping were

computed with ArcGIS 10.2, and spatial statistics was done

in GeoDa.

Model comparison criteria

Six evaluation criteria, considering both fitting and com-

plexity of the models, are used to compare LR and

GWLR. BIC/MDL is appropriate for arguing the degree

of complexity of the process to be analyzed. Lower value

of AICc indicates a more efficient model. The model error

is given by deviance, and the lower the value is, the better

the fitting is. Local percent deviance explained (pdev) is

another goodness-of-fit measure, also known as a type of

pseudo-R square. The higher the value is, the better the

model fits to the data. The receiver operating character-

istic curves (ROC) are also given. The area under the

ROC curve (AUC) is used to evaluate the accuracy of

model. It is normally above 0.5 (random discrimination)

and not higher than 1 (perfect separation of the classes)

(Swets 1988). The global Moran’s I is used as a measure

on the spatial distribution of the residual error. The closer

the index is to 0, the more random the spatial distribution

is.

Results and discussion

Model comparison results

The statistics of model parameters are summarized in

Table 1. In LR model, the regression coefficients are

constant over the whole region. But in GWLR model, the

regression coefficients are different for each slope unit

(Table 1 and Fig. 6).

From Table 1, bedding structure and lithology seem to

be not significant, owing to the small Z scores. But in the

study area, they are very important factors. Then, should

we remove these two factors? For the sake of answer, two

experiments, one with all the factors except lithology, the

other with all the factors except bedding structure and

lithology, have been compared to see whether the factors

could be removed. The comparison results are given in

Table 2, and the ROC are shown in Fig. 7.

Table 2 shows that, as factor removed, the model

complexity is decreased slightly (BIC/MDL decreased

gradually), both for LR and GWLR model. However, there

is almost no change in LR results except BIC/MDL,

whether the goodness of fit, or the spatial autocorrelation of

residuals. But GWLR model behaves different. When

lithology factor being removed, the goodness of fit of

GWLR significantly reduced, with less randomness of

residual distribution. Details about the six evaluation cri-

teria see the last section.

Table 1 Summary statistics for LR and GWLR regression coefficients

Model Evaluating indicator Intercept Elevation MNDWI Slope dis_fault dis_road Bedding structure Lithology

LR Estimate -1.903 -1.523 -0.593 -0.401 -0.217 -0.253 -0.101 0.005

Stand error 0.085 0.116 0.073 0.069 0.073 0.083 0.062 0.070

Z(Est/SE) -22.379 -13.138 -8.149 -5.786 -2.970 -3.048 -1.620 0.075

Exp(Est) 0.149 0.218 0.553 0.669 0.805 0.777 0.904 1.005

GWLR Min -4.647 -2.460 -1.304 -1.506 -1.120 -3.454 -0.305 -0.533

Max -1.633 -0.870 -0.182 0.135 1.451 0.065 0.199 0.695

Lwr quartile -2.784 -1.754 -0.811 -0.443 -0.430 -1.043 -0.199 -0.236

Median -2.209 -1.669 -0.646 -0.320 -0.246 -0.631 -0.145 -0.032

Upr quartile -1.797 -1.475 -0.515 -0.131 -0.134 -0.254 -0.029 0.123

Stand error 0.710 0.296 0.208 0.314 0.395 0.615 0.113 0.245

Exp(Median) 0.110 0.189 0.524 0.726 0.782 0.532 0.865 0.969
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Fig. 6 Spatial variation of coefficients values from GWLR calculation

Table 2 Comparison

diagnostics between LR and

GWLR models with different

number of factors

Factors number Model BIC/MDL AICc Deviance pdev AUC Residual Moran’s I

7 LR 1768.435 1723.434 1707.364 0.203 0.806 0.481

GWLR 1742.372 1592.510 1538.325 0.282 0.848 0.436

6 LR 1760.807 1721.425 1707.370 0.203 0.806 0.481

GWLR 1726.842 1652.472 1625.822 0.241 0.826 0.464

5 LR 1755.815 1722.052 1710.012 0.202 0.806 0.482

GWLR 1716.088 1652.134 1629.245 0.239 0.825 0.466
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The comparative results told us two things. On the one

hand, it is likely to weed out some important factors by

significance tests; on the other hand, GWLR model could

better reflect the importance of lithology factor and protect

important factors being removed. Therefore, we decided

not to remove the last two factors.

Next, let us compare LR and GWLR models. Again,

from Table 1, we can easily find that LR lithology appears

to have a little positive influence on landslide occurrence,

as it has a small positive regression coefficient (0.005), and

the other factors have negative effects in landslide forma-

tion as they all have negative coefficients. However, the

situation changes in GWLR model; lithology does not

always keep positive influence at the local scale, as its

coefficients range from -0.533 to 0.695, negative in the

northern and middle parts of the study region and positive

in the eastern and western other parts (Fig. 6). And the

other factors do not always have negative effects in land-

slide formation, except for elevation and MNDWI. The

hypothesis that elevation is negatively related to landslides

has been confirmed by both LR and GWLR. However,

GWLR results indicate a degree of spatial variation in the

relationship between landslide susceptibility and the

influencing factors in the study area, which seems more

reasonable than LR. For example, through the slope his-

togram statistics before the regression analysis, we know

that slope is impossible always negatively related to land-

slides, but for LR slope has a negative effect (-0.401) over

the whole study area.

Nevertheless, GWLR has well maintained the general

trend with LR, for the comparability between the median

of the regression coefficients in GWLR and the corre-

sponding coefficients in LR (Table 1). And for both the

two models, elevation shows the strongest correlation

with landslide, as it has a maximum absolute value, next

are MNDWI and slope. On the contrary, bedding structure

and lithology have little influence on landslide occurrence

(Table 1).

Furthermore, it is easy to find from Table 2 that GWLR

model has less complexity than LR, as it has smaller BIC/

MDL values. GWLR also shows a better fit of the statistics,
Fig. 7 ROC of LR and GWLR models with different number of

factors

Fig. 8 Landslide susceptibility maps produced by LR and GWLR with 7 variables
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with lower values of AICc, deviance, and higher values of

pdev and AUC. Moreover, GWLR gives a more randomly

distributed spatial pattern, as it has lower residual

Moran’s I.

Landslide susceptibility mapping

Landslide susceptibility maps were created after obtaining

the two regression models (Fig. 8). The probability of

landslide occurrence, i.e., a proxy for the landslide sus-

ceptibility index values has been obtained from the

regression calculation. For LR, the probability ranges from

0.0003 to 0.826, while for GWLR it ranges from 0 to 0.834.

The natural breaks algorithm in ArcGIS was used to divide

the probability maps into four susceptibility zones: very

low, low, medium, and high. The breakpoints are: 0.114,

0.273, and 0.470 for LR, and 0.119, 0.291, and 0.477 for

GWLR, respectively.

Looking at the two maps (Fig. 8), there are places where

differences are subtle and there are also areas with dis-

similarities. In both of the prediction models, the eastern

part of the region is less susceptible to landslides, com-

pared to the middle and southwestern parts of the regions

which are highly susceptible to landslides. It should been

taken into consideration that the more the distance from the

effective landslide events the more the intrinsic uncertainty

is to the interpolated points. Figure 8 shows that the eastern

area is more uniformly depicted in GWLR technique than

in LR since there are no real landslides. In contrast, the

northern part is more susceptive for GWLR model, which

seems more acceptable, for its adjacent to the Yangtze

River.

Percentage statistics given in Table 3 show the differ-

ences between the two susceptibility maps quantitatively. It

is found that 70 % of all the landslides which occurred in

the study region in the past lie in the high and medium

susceptibility zones in LR, comparing to 75 % that exist in

the high and medium susceptibility zones in GWLR. 5 %

of the past landslides lie in the very low susceptibility zone

in LR, comparing to 2 % that exist in the very low sus-

ceptibility zone in GWLR. As it can be seen from the

findings, the reliability of the GWLR model is relatively

higher.

Conclusion

This paper implemented two logistic regression models

(LR and GWLR) for LSM in the Three Gorges Reservoir

area, China. The summary statistics for regression coeffi-

cients (Table 1) and the comparative results summarized

(Table 2, 3) show that GWLR has less complexity and

higher goodness of fit than LR. It could better reflect the

importance of lithology factor and protect important factors

being removed. Moreover, GWLR gives a more randomly

distributed spatial pattern, as it has lower Moran’s I value

of the residual error. The results reveal that GWLR pro-

vides potential advantages in LSM and sheds new light on

the spatial non-stationarity of the relationship between

landslide susceptibility and its influencing factors. It is

worth noting that GWLR parameters are specific to the area

under study, but the general methodology is ‘‘general,’’

since it is reproducible to any geographical context.
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