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Abstract To identify the principal geochemical processes

controlling groundwater quality in eastern part of Semnan

Province, a total of 257 groundwater samples from wells and

springs were collected. Since groundwater is the only source

of water for various purposes, preservation of the quality of

available groundwater resources in this region is of great

importance. The order of abundance of anions was Cl-[
SO4

2-[HCO3
-[NO3

-[F-, and for them the average values

were 509.41, 404.24, 120.48, 14.51, 0.59 mg/l, respectively.

On the other hand, for cations, Na? and Ca2? with average

values of 442.10 and 135.09 mg/l were the most abundant

parameters. Geochemical characteristics based on bivariate

diagrams indicated that Na release from silicate weathering is

an important process whereas the dissolution of dolomite and

the effect of silicate materials on the aquifer were other

determinative processes influencing the quality of ground-

water in the area. In order to predict the overall quality of

groundwater with respect to a calculated water quality index

(WQI), support vector machine (SVM) and artificial neural

network (ANN) were utilized. The correlation coefficients

between the predicted and observed WQI for the training and

test data set related to SVM were 0.97 and 0.96, respectively.

On the contrary, the results of ANNs with early stopping

showed roughly the same performance resulting in correlation

coefficients of 0.98 and 0.96 for the training and test data set,

respectively. As a whole, the WQI for 8 % of the sampling

stations was\50 and for 17 %, the calculated index was\60

which are important concerns.

Keywords Geochemical processes � Groundwater �
Support vector machine � Artificial neural network

Introduction

More than 90 % of the Iran’s area is located in arid and

semiarid regions. Overpopulation in recent decade has

diverted the groundwater consumption from agricultural

use to industrial and drinking purposes. At present, about

55 % of the water consumed in Iran is provided from

groundwater resources (Zehtabian et al. 2010). High rate of

evaporation in addition to low rain fall in arid and semiarid

area can lead to groundwater salinity (Umar and Absar

2003), a phenomenon which has been intensified in recent

years in Iran. In the absence of major anthropogenic

sources, water–rock interaction is the main process that

affects the groundwater chemistry in an area (Corteel et al.

2005). These geochemical processes are responsible for the

spatial–temporal variations in groundwater chemistry.

There have been multiple studies on the impacts of geo-

chemical processes on the quality of groundwater in dif-

ferent parts of Iran (e.g., Taheri Tizro and Voudouris 2007;

Jalali 2009; Aghazadeh and Mogaddam 2011). In this

respect, Panno et al. (2002) compared geochemical and

isotopic techniques for identifying the natural and anthro-

pogenic sources of Na and Cl contamination in ground-

water and surface water resources in the Midwestern USA.

Graphing techniques were used to discriminate among

multiple sources and between unaffected and affected

surface and groundwater. These graphical techniques were
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useful for distinguishing the sources of Na? and Cl-

contamination in groundwater in Illinois and can be more

widely applicable in other places. Hydrogeochemical

characteristics based on bivariate diagrams of major and

minor ions were also utilized by Kim et al. (2003) and

showed that changes in the chemical composition of

groundwater are mainly controlled by the salinization

process followed by cation exchange reactions.

Semnan Province is one of the provinces in central parts

of Iran that stretches along the Alborz mountain range and

borders to Dasht-e Kavir desert in its southern parts

(Mirhosseini et al. 2011). The main lithologic units of this

area are ophiolitic complex accompanied by Eocene–Oli-

gocene volcaniclastic and basic rock units. The ophiolitic

complex is mostly dominated by serpentinized harzburgite

and dunite, which is considered as the main body of

ultramafic rocks of ophiolitic zones (Hajizadeh et al. 2011).

Moreover, cretaceous carbonates are other dominant for-

mations in the region (Bazargani-Guilani et al. 2010).

The main cities in the study area are Shahrood, Damghan

and Byar. Considering the chemical composition and ion

chemistry of groundwater in the study area, high Ca, Mg, and

pH and higher-than-recommended hardness values were

detected in the groundwater of Shahrood City and its nearby

area reflecting the influence of carbonate rock formations on

the groundwater composition (Kazemi 2004). In this respect,

the limestone/dolomite has mainly influenced the hardness

of the water whereas the samples for which the pH was

measured are supersaturated with respect to calcite and were

undersaturated with respect to all other mineral phases such

as evaporates (Kazemi 2004). Moreover, in a study con-

ducted by Rahimi et al. (2013) on the levels of fluoride in

groundwater resources of Shahrood and Damghan, nine out

of ninety five drinking water samples (9.5 %) had exceeded

the standard level of 1.5 mg/l and the values ranged from

0.052 to 6.87 mg/l in that research.

Due to the arid climate of this province, and low

recharge of the groundwater, preservation of the quality of

available groundwater resources is of great importance.

This study was initiated to identify the principal geo-

chemical processes controlling groundwater quality in

eastern part of Semnan Province. In addition, considering

the large sample size collected in this research, prediction

of groundwater quality using a water quality index was

another considered goal in this study.

Materials and methods

Sample collection and field studies

A total of 257 groundwater samples from wells and springs

were collected. Polyethylene bottles were used for

sampling following rinsing of each bottle with the sample

to avoid any contamination during sampling. Electrical

conductivity (EC) and pH were recorded in situ using pH

meter and a portable EC meter. Samples were transported

to the laboratory the same day and following with filtering

with 0.45-lm Millipore filter paper and acidification with

nitric acid, they were analyzed for cations. For anion

analyses, these samples were stored below 4 �C. Major

cations (Na?, Ca2?, Mg2?, K?) and anions (Cl–, SO2�
4 ,

HCO�
3 , F-, NO�

3 ) were determined using the procedures

given in APHA (1995). A factor analysis, with respect to

principal component analysis and varimax rotation method,

was conducted to find the principal components responsible

for the variation found in groundwater quality variables.

Characteristics of the area

The geology of the study area is mainly characterized by

Shemshak Formation (including Dark gray shale and sand-

stone), Lar Formation (including bedded to massive lime-

stone), Dorud Formation (including shale with subordinate

sandy limestone), Mobarak Formation (including limestone

with black shale), Ruteh limestone (including bedded to

massive limestone) and Karaj Formation (including tuff and

tuffaceous shale). In addition, there are outcrops of creta-

ceous rocks and marl with gypsiferous marl in the region as

well. The main geological formations have been illustrated

in Fig. 1. Regarding the industrial activities in the region,

there are just two industrial complexes in the area including

Shahrood and Damghan industrial complex located next to

these cities; however, these industrial activities are less

likely to have an impact of the levels of anions and cations

analyzed in this study. The location of these industrial

complexes has been given in Fig. 6.

Water quality index calculation

To calculate water quality index (WQI), the method proposed

by Horton (Horton 1965) and followed by many researchers

(e.g., Dwivedi and Pathak 2007) was applied. To sum up, a

weight was assigned to each parameter with respect to its

importance in the overall quality of water. In the next step,

using a quality rating scale for each parameter the final WQI

was calculated as the product of the weight and the associated

rating scale for each parameter. The detail of this method can

be found in other literatures (e.g., Rupal et al. 2012).

Support vector regression (SVR)

Support vector regression (SVM) was one of the modeling

procedures used to predict the water quality index given 10

groundwater quality variables (pH, EC, Cl-, NO�
3 , SO2�

4 ,
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HCO�
3 , Na?, Ca2?, Mg2?, K?) as the features. A popular

regression version of SVM, e-SVM, is used to find a

function that has at most e deviations from the actual

obtained targets for all the training data, and is as flat as

possible (Smola and Scholkopf 2004).

To enlighten this modeling method, consider a set of

training points, x1; z1ð Þ; . . .; xl; zlð Þf g, where xi 2 Rn is a

feature vector and zi 2 R1 is the target output. Given the

regulation parameter (C[ 0) and insensitive loss function

(e[ 0), the standard form of support vector regression is as

follows (Vapnik 1999):

min
x;b;n;n�

1

2
xTxþ C

Xl

i¼1

ni þ C
Xl

i¼1

n�i

subject toxT/ xið Þ þ b� zi � eþ ni;

zi � xT/ xið Þ � b� eþ n�i ; ni; n
�
i � 0; i ¼ 1; . . .; l ð1Þ

where ni and n�i are slack variables and e is the accuracy

demanded for the approximation. The constant C[ 0

determines the trade-off between the flatness of linear

functions and the amount up to which deviations larger

than e are tolerated (Smola and Scholkopf 2004). Trans-

forming this quadratic programming problem to its corre-

sponding dual optimization problem and introducing the

kernel function in order to achieve the nonlinearity, yields

the optimal regression function as (Singh et al. 2011):

f xð Þ ¼
XN

i¼1

ðai � a�i ÞK xi; xð Þ þ b ð2Þ

where C � ai; a�i � 0; i ¼ 1; . . .;N:ai and a�i (with

0 B ai, a�i C C) are the Lagrange multipliers and K xi; xð Þ
represents the kernel function.

For building SVR forecasting model, the LIBSVM

package proposed by Chang and Lin (2001) was adapted in

this study. In addition, RBF kernel was utilized for building

the model.

The performance of SVM for regression depends on

several parameters such as capacity parameter (C), e-in-

sensitive loss function and the variables associated with

each kernel type (Aryafar et al. 2012). A trial and error

procedure was followed for optimization of each parame-

ter. The leave-one-out cross validation method was utilized

using 80 % of the original data as the training set, and out-

of-sample generalization error of the test data set was used

for model selection.

Artificial neural network with early stopping

Artificial neural network (ANN) was utilized as another

modeling method for prediction of WQI. The linear

transfer function and the following transfer function were

used for the output and hidden layers, respectively:

yj ¼ tanh
Xd

i¼1

wijxi þ bj

 !
ð3Þ

where wij and bj are the weight and bias parameters in

which ‘‘i’’ and ‘‘j’’ subscripts refer to the input and neuron,

Fig. 1 Main geological formations in the study area
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respectively. In addition, Levenberg–Marquardt algorithm

was used to update the weight and bias of the network. To

avoid the risk of over-fitting which is a common problem

during neural network training, early stopping was used. To

keep within the scope of this paper, we limited our survey

of ANN models to the feed-forward neural network with

one hidden layer.

Results and discussion

Principal geochemical processes controlling

groundwater quality

Descriptive statistics associated with each groundwater

quality variable are given in Table 1. The order of abundance

of anions was Cl[ SO4[HCO3[NO3[ F in which the

average values were 509.41, 404.24, 120.48, 14.51, 0.59 mg/

l, respectively. On the other hand, for cations Na? and Ca2?

with average values of 442.10 and 135.09 mg/l were the

most abundant parameters. Moreover, the results of factor

analysis for water quality parameters using principal com-

ponent analysis and varimax rotation method are rendered in

Tables 2 and 3. The Kaiser–Meyer–Olkin (KMO) test is a

representative test of the sampling adequacy to conduct

factor analysis. There is no cutoff point associated with this

test; however, if the test result is smaller than 0.5, the factor

analysis is not suitable (Wu and Kuo 2012). The result of

KMO test was 0.788, indicating the suitability of factor

analysis. In addition, Chi-square distribution (v2) of Bar-

tlett’s test of sphericity was high (1669.46), and highly sig-

nificant, implying the existence of a common factor among

the relevant matrices of the parent population (Wu and Kuo

2012).

There are many criteria for retaining the number of

factors. For instance, according to Kaiser Criterion (Kaiser

1960), only factors with eigenvalues greater than 1 are

retained. However, Jolliffe (1972) believed that Kaiser’s

criterion was too large and suggested using a cutoff of 0.7

on the eigenvalues instead. Therefore, based on the Jol-

liffe’s criterion, eight components were kept accounting for

90.97 %of the total data variance. According to the results

of initial and rotated sum of squares associated with each

component (Table 3), ten initial water quality variables

were reduced to five components accounting for 87.03 %

of the total variance. It should be noted that due to missing

values for bicarbonate in 17 stations, this parameter was

excluded from the factor analysis. The first factor with an

eigenvalue of 4.47 accounts for 44.73 % of the total vari-

ance (Table 2) and is the most important component. It has

a high loading with chloride (0.932), sulfate (0.766),

potassium (0.814), sodium (0.942), magnesium (0.911) and

EC (0.778) as well (Table 3). As explained by Kumar et al.

(2006), chloride levels are higher in area covered with sand

dunes (like that of the study area). In addition, due to

morphology of the area, high chloride weathering of ridge

material can also contribute to the elevated levels of

chloride (Kumar et al. 2006). The reaction of rainwater

with evaporated deposits in the sand dunes can enhance the

Cl-, HCO�
3 and Na? as well (Subramanian and Saxena

1983). In urban area of the region, wastewater is the most

likely source of extra chloride in the groundwater (Kazemi

2011); however, as explained by Jalali and Kolahchi

(2008), the addition of salt to animal food and application

of their manures in agricultural fields is a possible source of

chloride in the study rural area next to geological origin of

this element.

Sulfate levels in this research fluctuated between 9.63

and 4753 mg/l with an average level of 404.24 mg/l.

Regarding the morphology of the region, the concentra-

tions of sulfate have been proved to be higher in sand dunes

(665–2531 mg/l) compared with that of quartzite

Table 1 Descriptive statistics

for samples groundwater quality

variables

Groundwater quality variables Average (mg/l) Min (mg/l) Max (mg/l) SD

pH 7.64 6.44 9.04 0.47

F- 0.59 0.05 8.99 0.86

Cl- 509.41 2.41 23,660.00 1616.97

NO3
- 14.51 0.05 113.22 14.54

SO2�
4

404.24 9.63 4753.00 534.47

HCO�
3 120.48 0.43 385.51 93.99

Na? 442.10 3.05 16,560.00 1189.37

K? 3.35 0.02 39.00 3.50

Ca2? 135.09 6.05 5342.00 401.83

Mg2? 47.78 1.00 835.00 65.07

EC 1606.89 54.00 29,080.00 2703.44

SD stands for standard deviation
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(75–750 mg/l) and alluvium (200–831 mg/l) in a study

conducted in Delhi, India (Kumar et al. 2006). In com-

parison with other groundwater resources in arid and

semiarid area, the levels are in the same range as that of

Ejina Basin in China in which average values as high as

565.95 mg/l have been recorded (Wen et al. 2005),

whereas these are higher than the average sulfate levels of

88.64 mg/l in Hail Province in Saudi Arabia (Zaidi et al.

2014). In this respect, as explained by Doulati Ardejani

et al. (2011), high levels of sulfate in some parts of the

aquifer(as high as 4753 mg/l) may result from pyrite oxi-

dation due to prevalent coal washing waste dump.

The sources of Mg in the aquifer are mainly from the

dissolution of dolomite (Zaidi et al. 2014). The average

concentrations of calcium and magnesium were 47.78 and

135.08 mg/l, respectively. As a whole, the average con-

centration of magnesium is higher than that of calcium.

Since these two species have originated from geological

formations and the solubility of CaCO3 is much lower than

that of MgCO3, so, Ca2? is precipitated as CaCO3 resulting

in the lower values of this cation in the groundwater.

The fixation of K? by clay minerals and the greater

resistance of this cation to weathering result in its low

levels in natural groundwater (Subba Rao 2002). The

average value of this cation was 3.35 mg/l which is far less

than that of the other cations due to the foregoing reasons.

The second factor, with an eigenvalue of 1.12, accounts

for 11.23 % of the total variance and has a high loading

with fluoride (0.966). Fluoride concentration in most nat-

ural groundwater resources is \1 mg/l (Hem 1985). The

main contributing factor for the concentrations of fluoride

in groundwater is the solubility of fluorite (CaF2) as the

common fluoride mineral. In addition, through ion

exchange reactions fluoride is adsorbed onto clay minerals

including gibbsite, kaolinite and halloysite (Vengosh and

Pankratov 1998). Another possible source for fluoride is

evaporitic and crystalline rocks (both magmatic and

metamorphic) (D’Alessandro et al. 2008) which are

prevalent in the region. According to a recent study,

Semnan Province is located in high-fluoride regions of Iran

(Mesdaghinia et al. 2012). The mean of fluoride in this

study area was 0.6 mg/l which is comparable with that of

0.64 mg/l reported from a study conducted on 78 sampling

wells by Mesdaghinia et al. (2012).

The third factor encompassed 10.42 % of the total

variance and has an eigenvalue of 1.04. It also has a high

loading with pH (0.986). The fourth factor with an eigen-

value of 1.04 accounts for 10.35 % of the total variance. In

addition, this factor is highly loaded with nitrate. The

average value of nitrate in the groundwater of the study

area was 14.51 mg/l which is less than the permissible

level of 40 mg/l; however, values as high as 113.22 mg/l

Table 2 Initial and rotated sum

of squares associated with each

components

Component Extraction sums of squared loadings Rotation sums of squared loadings

Total % of variance Cumulative % Total % of variance Cumulative %

1 4.636 46.363 46.363 4.473 44.734 44.734

2 1.283 12.828 59.191 1.123 11.227 55.961

3 1.035 10.349 69.540 1.042 10.417 66.378

4 0.937 9.369 78.909 1.035 10.347 76.725

5 0.812 8.124 87.033 1.031 10.308 87.033

Table 3 Rotated component

matrix of groundwater quality

variables

Water quality parameters Component

1 2 3 4 5

pH 0.003 0.043 0.986 0.081 0.043

F- 0.120 0.966 0.040 -0.036 0.034

Cl- 0.932 0.097 0.065 -0.022 0.020

Sulfate 0.766 0.338 0.098 0.102 0.131

Na? 0.942 0.093 0.120 0.027 0.026

K? 0.814 -0.080 -0.145 -0.193 0.129

Ca2? 0.142 0.041 0.044 0.022 0.982

Mg2? 0.911 -0.120 -0.011 -0.001 0.166

EC 0.778 0.181 -0.097 0.077 -0.017

Nitrate -0.002 -0.029 0.080 0.986 0.023

Loadings higher than 0.5 have been highlighted using bold fonts
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have also been recorded in the region indicating gross

pollution in some parts of the aquifer. The sources of this

cation however are mainly due to the application of fer-

tilizer and manure in agricultural fields (Berenji 1998) plus

urban and rural absorbing wells (Kazemi 2011). For

instance, the application rate of nitrogen fertilizers in two

towns in the region (Mojen and Tash) is twofold and

threefold higher than the common rate in other parts of Iran

due to the tendency of farmers to use these fertilizers

(Berenji 1998). On the contrary, in the urban area of the

region, disposal wells and deep cesspits have been attrib-

uted as the main cause of higher-than-normal values of

nitrate in the previous studies (e.g., Kazemi 2011).

The fifth factor has a high loading with calcium (0.982)

and accounts for 10.31 % of the total variance as well.

Because of the prevalence of limestone in the region, most

of the calcium in groundwater has emanated from this

mineral.

On the contrary, the correlation coefficients among

groundwater quality variables are rendered in Table 4. In

general, most ions are positively correlated with Cl, and

Na, K, Br, Mg, and SO4 show a strong correlation with Cl,

indicating that such ions are derived from the same natural

source which is geological formations of the study area.

With respect to the correlation coefficient between Na?

and Sulfate (r = 0.78), it can be concluded that the excess

of sodium in these samples mostly results from the disso-

lution of sodium sulfate minerals. The low correlation

coefficient between Ca2? and HCO�
3 (r = 0.12) shows that

calcite may not be the source of Ca2? in the study area. The

Sharood Aquifer (the biggest city in the study area) is an

unconfined alluvial aquifer bordered by lime-

stone/dolomitic mountains in the north of the city to the

marly–gypsiferous outcrops in the south (Kazemi 2011).

Dolomite, is a sedimentary rock composed primarily of the

mineral dolomite, CaMg(CO3)2. It is thought to be formed

by the postdepositional alteration of lime mud and lime-

stone by magnesium-rich groundwater. On the contrary,

gypsum is a soft sulfate mineral composed of calcium

sulfatedihydrate, with the chemical formula CaSO4�2H2O

(Klein et al. 1985). Therefore, the high levels of calcium

and magnesium in the region can be attributed to existence

of these geological formations in the study area.

High correlation between sulfate and Mg2? (r = 0.66)

may highlight the contribution of magnesium sulfate min-

erals to the levels of Mg2? in the region. The sources of

bicarbonate can be attributed to limestone and dolomite of

Elica and Lar formations (Doulati Ardejani et al. 2010).

A Na/Cl molar ratio can be used to detect the source of

Na? in the groundwater. For instance, Na/Cl molar ratio

greater than one indicates that the excess of sodium has

probably originated from silicate-weathering reactions,

whereas if halite dissolution is responsible for Na, the Na/

Cl molar ratio is approximately equal to one (Meybeck

1987). If silicate weathering is a probable source of

sodium, the water samples would have HCO�
3 as the most

abundant anion (Rogers 1989). This is because of the

reaction of the feldspar minerals with the carbonic acid in

the presence of water, which releases HCO�
3 (Elango et al.

2003). Among groundwater samples, about 82 % have Na/

Cl molar ratio greater than one indicating that Na release

from silicate weathering is an important process in the

study area. The plot of Na/Cl versus EC would give a

horizontal line if evaporation is dominant in the area

(Jankowski and Acworth 1997) meaning that no mineral

species is precipitated.

With respect to the plot of Na/Cl versus EC (Fig. 2a), it

can be concluded that most of the samples lie above

equiline suggesting silicate weathering as the dominant

process for the excess Na in the study area. In addition, if

silicate weathering is the dominant process, the plot of

HCO3 versus Na should have samples falling above the

Table 4 Correlation coefficients among groundwater quality variables

PH F- (ppm) CL- (ppm) NO�
3 (ppm) SO2�

4 (ppm) HCO3- (ppm) Na? (ppm) K? (ppm) Ca2? (ppm) Mg2? (ppm)

pH 1.00

F- 0.10 1.00

Cl- 0.05 0.21 1.00

NO3
- 0.18 0.00 0.00 1.00

SO4
2- 0.09 0.34 0.69 0.11 1.00

HCO3
- 0.52 0.29 0.02 0.27 0.11 1.00

Na? 0.10 0.18 0.95 0.04 0.78 0.08 1.00

K? -0.12 0.09 0.70 -0.13 0.51 -0.12 0.67 1.00

Ca2? 0.09 0.08 0.17 0.05 0.24 0.12 0.18 0.19 1.00

Mg2? -0.00 0.04 0.81 -0.00 0.66 -0.03 0.81 0.79 0.27 1.00

Bold values indicate the significant correlation coefficients at 5 percents level
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equiline (Elango and Kannan 2007). Regarding Fig. 2b, it

is obvious that the majority of points lie above the equiline

thus confirming the results of Na/Cl versus EC plot.

On the other hand, if dissolution of calcite dolomites and

gypsum is responsible for the production of Ca2?, Mg2?,

SO2�
4 and HCO�

3 , then a charge balance should exist

between the cations and anions (Jalali 2006). In the

absence of such a relationship, ion exchange process will

shift the points to the right of the resultant 1:1 line of the

plot of Ca ? Mg versus SO4 ? HCO3 whereas the points

will be shifted to the left side of this line in the case of

reverse ion exchange process (Kumar et al. 2006; Fisher

and Mulican 1997). The clustering of points around and

below 1:1 line indicates the dominance of ion exchange

process which is due to excess bicarbonate; however, a few

points lie above this line proving the existence of reverse

ion exchange in the study although to a lesser extent as well

(Fig. 3).

On the other hand, since Ca and Mg do not increase with

increasing salinity (Fig. 3b), it is an indication of reverse

ion exchange in the clay/weathered layer (Kumar et al.

2006) confirming the above-mentioned results.

The (Ca2??Mg2?)/HCO�
3 is a good indication for the

sources of Ca and Mg in the groundwater. As explained by

Sami (1992), if dissolution of carbonates in the aquifer and

weathering of accessory pyroxene or amphibole minerals

are responsible for the presence of Ca and Mg in the

aquifer, this ratio would be about 0.5. As it is obvious from

the plot of (Ca2??Mg2?)/HCO�
3 versus salinity (e.g.,

Concentration of Cl), the Ca and Mg concentrations are

added to the solution at a greater rate than the increase in

the salinity of the system (Fig. 4a). These high ratios

cannot be attributed to HCO3 depletion; as under the

existing alkaline conditions, HCO3 does not form carbonic

acid (H2CO3) (Spears 1986). High ratios, therefore,

indicate other sources for Ca and Mg, such as reverse ion

exchange (Rajmohan and Elango 2004). A ratio\0.5 may

be due to the exchange of calcium and magnesium in water

by sodium bound in the clay. As a whole, the salinity level

does not have a significant impact on this ratio.

Study on the Ca/Mg ratio contains valuable information

about the source of these cations in the aquifer. That is if

Ca/Mg = 1, dissolution of dolomite should occur, whereas

a higher ratio is indicative of greater calcite contribution

(Maya and Loucks 1995). In addition, higher Ca/Mg molar

ratio ([2) indicates the dissolution of silicate minerals,

which contribute calcium and magnesium to groundwater

(Katz et al. 1998). Considering Fig. 3b, most of the sam-

ples lie around or slightly below Ca/Mg = 1 line indicating

the dissolution of dolomite. There are some other samples

having a ratio between 1 and 2 implying the dissolution of

calcite. Those with greater ratios are indicative of the effect

of silicate materials on the aquifer.

Prediction of WQI

The optimized values of regularization (C) and epsilon

value (e) parameters for modeling with SVMs were 270

and 5, respectively. Since the gamma parameter was the

most sensitive parameter during SVM model building, the

results for different values of this parameter are rendered in

Table 5.

Regarding this table, the coefficient of determination

(R2) for the out-sample data has increased from 0.04 to

0.93 whereas that of mean squared error (MSE) for the test

data set has reduced from 383.57 to 35.05. The predicted

values of WQI for the training and test data have been

compared, and the results have been given in Fig. 5 to

show the performance of SVM. The correlation coefficients

for the training and test data set were 0.97 and 0.96,

Fig. 2 Plot of Na/Cl versus EC (a) and plot of bicarbonate versus sodium (b) for the sampling stations

Environ Earth Sci (2016) 75:917 Page 7 of 12 917

123



respectively. On the contrary, the results of ANNs with

early stopping have shown roughly the same performance

with respect to Fig. 5 resulting in correlation coefficients of

0.98 and 0.96 for the training and test data set, respectively.

Although the danger of over-fitting is one of the prob-

lems during ANNs training in many of the previous

researches (e.g., Sakizadeh et al. 2015; Piotrowski and

Napiorkowski 2013; Giustolisi and Simeone 2006) and

SVMs have outperformed in many of the previous resear-

ches (Aryafar et al. 2012; Yoon et al. 2011; Behzad et al.

2009; Lamorski et al. 2008; Gill et al. 2006) however, this

study indicated that in cases in which the number of

samples is high enough compared with that of the number

of features(e.g., water quality variables), using an

Fig. 3 Plot of Ca ? Mg versus SO4 ? HCO3 (a) and plot of Ca ? Mg versus Cl (b) for the sampling stations

Fig. 4 Plot of (Ca ? Mg)/HCO3 versus Cl (a) and plot of Ca/Mg versus sample number (b) for the sampling stations

Table 5 Results of

optimization of gamma

parameter for RBF kernel

Gamma parameter MSE training R2 testing MSE testing R2 testing

0.015 22.26 0.97 383.57 0.04

0.0015 22.28 0.97 337.88 0.27

0.00015 20.37 0.97 201.36 0.60

0.000015 15.40 0.96 92.23 0.80

0.0000015 13.96 0.96 58.11 0.86

0.00000015 19.19 0.94 35.02 0.93

Bold values indicate the significant correlation coefficients at 5 percents level
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algorithm to avoid over-fitting, the same results can be

obtained with ANNs modeling. Since the prediction of

WQI was successful, it shows that the resultant WQI is a

good representative of the available groundwater quality

parameters. Therefore, the map of WQI for the study area

was produced by ArcMap version 10.1, using IDW method

(Gong et al. 2014).

Considering Fig. 6, there are some areas with WQI

values as low as 21 in the vicinity of Byar City. The nitrate

and fluoride concentrations in this station, for instance,

were 49.39 and 3.93 mg/l, respectively. The area around

Shahrood City, however, had the best quality compared

with other parts of the study area. As a whole, with respect

to the measured parameters, the WQI for 8 % (22 stations)

of the sampling wells and springs was \50 and for 17 %

(44 stations), the calculated index was \60 which are

important concerns that loom large.

Conclusion

A geochemical investigation was conducted in the

groundwater of eastern part of Semnan Province to

identify the geochemical characteristics controlling

groundwater quality. This study demonstrated that the

overall groundwater chemistry of the region is controlled

Fig. 5 Comparison between the observed and predicted values of WQI for training (a) and test (b) data of SVM and training (c) and test (d) data

of ANNs
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by the rock–water interaction. There are some special

conclusions drawn by studying the molar ratio of cations

and anions in this research which deserve attention.

Among groundwater samples, about 82 % of samples

have Na/Cl molar ratio greater than one indicating that Na

release from silicate weathering is an important process in

the study area. The clustering of points around and below

1:1 line indicates the dominance of ion exchange process

with respect to the plot of Ca ? Mg versus SO4 ? HCO3,

which is due to excess bicarbonate. Moreover, it can be

concluded that most of the samples lie above equiline

given the plot of Na/Cl versus EC, suggesting silicate

weathering as the dominant process for the excess Na in

the region. On the other hand, since Ca and Mg do not

increase with increasing salinity, it is an indication of

reverse ion exchange in the clay/weathered layer. Higher

Ca/Mg molar ratio ([2) shows the dissolution of silicate

minerals, which contribute calcium and magnesium to

groundwater. In this study, most of the samples lie around

or slightly below Ca/Mg = 1 line indicating the dissolu-

tion of dolomite. Factor analysis reduced the original

water quality variables to five components accounting for

87.03 % of the total variance. The molar ratio between

some groundwater quality parameters highlighted

geological sources of the studied cations and anions in the

region. With respect to the results of WQI calculation, the

area around Shahrood City had the best quality compared

with other parts of the study area. The prediction of WQI

was implemented through SVM and ANN methods. The

finding of this study in this regard was that in cases in

which the number of samples is high enough compared

with that of the number of features (e.g., water quality

variables), the same results for both of SVM and ANN

can be obtained.

Acknowledgments The authors are grateful to Geological Survey of

Iran for the help in analysis of heavy metals. The financial support of

this project has been provided by the Grant number 100-2164 offered

by Geological Survey of Iran.

References

Aghazadeh N, Mogaddam AA (2011) Investigation of hydrochemical

characteristics of groundwater in the Harzandat aquifer, North-

west of Iran. Environ Monit Assess 176:183–195

APHA (1995) Standard methods for the examination of water and

wastewater, 17th edn. APHA, Washington, DC

Aryafar A, Gholami R, Rooki R, Doulati Ardejani F (2012) Heavy

metal pollution assessment using support vector machine in the

Fig. 6 Overall quality of groundwater with respect to WQI

917 Page 10 of 12 Environ Earth Sci (2016) 75:917

123



Shur River, Sarcheshmeh copper mine, Iran. Environ Earth Sci

67:1191–1199

Bazargani-Guilani K, Faramarzi M, Nekouvaght Tak MA (2010)

Multistage dolomitization in the cretaceous carbonates of the

east Shahmirzad area, north Semnan, central Alborz, Iran.

Carbonates Evaporites 25:177–191

Behzad M, Asghari K, Eazi M, Palhang M (2009) Generalization

performance of support vector machines and neural networks in

runoff modeling. Expert Syst Appl 36:7624–7629

Berenji A (1998) Evaluation of agricultural development in the Shahrood

District [in Persian]. In: Proceedings of Shahrood and development

symposium, November 1998, Shahrood, Iran, pp 25–39

Chang CC, Lin CJ (2001) LIBSVM: a library for support vector

machines, Software http://www.csie.ntu.edu.tw/*cjlin/libsvm

Corteel C, Dini A, Deyhle A (2005) Element and isotope mobility

during water–rock interaction processes. Phys Chem Earth

30:993–996

D’Alessandro W, Bellomo S, Parello F, Brusca L, Longo M (2008)

Survey on fluoride, bromide and chloride contents in public

drinking water supplies in Sicily (Italy). Environ Monit Assess

145:303–313

Doulati Ardejani F, Jodieri Shokri B, Bagheri M, Soleimani E (2010)

Investigation of pyrite oxidation and acid mine drainage

characterization associated with Razi active coal mine and coal

washing waste dumps in the Azad Shahr-Ramian region,

northeast Iran. Environ Earth Sci 61:1547–1560

Doulati Ardejani F, Jodieri Shokri B, Moradzadeh A, Ziadin Shafaei

S, Kakaei R (2011) Geochemical characterisation of pyrite

oxidation and environmental problems related to release and

transport of metals from a coal washing low-grade waste dump,

Shahrood, northeast Iran. Environ Monit Assess 183:41–55

Dwivedi SL, Pathak V (2007) A preliminary assignment of water

quality index to Mandakini River, Chitrakoot. Indian J Environ

Prot 27:1036–1038

Elango L, Kannan R (2007) Rock–water interaction and its control on

chemical composition of groundwater. Dev Environ Sci

5:229–243

Elango L, Kannan R, Senthil Kumar M (2003) Major ion chemistry

and identification of hydrogeochemical processes of groundwa-

ter in a part of Kancheepuram district, Tamil Nadu, India.

J Environ Geosci 10:157–166

Fisher RS, Mullican WF (1997) Hydrochemical evolution of

sodiumsulphate and sodium-chloride groundwater beneath the

northern Chihuahuan desert, Trans-Pecos, Texas, USA. Hydro-

geol J 5:4–16

Gill MK, Asefa T, Kemblowski MW, McKee M (2006) Soil moisture

prediction using support vector machines. J Am Water Resour

As 42:1033–1046

Giustolisi O, Simeone V (2006) Optimal design of artificial neural

networks by a multi-objective strategy: groundwater level

predictions. Hydrolog Sci J 51:502–523

Gong G, Mattevada S, O’Bryant SE (2014) Comparison of the

accuracy of kriging and IDW interpolations in estimating

groundwater arsenic concentrations in Texas. Environ Res

130:59–69

Hajizadeh H, Karami GH, Saadat S (2011) A study on chemical

properties of groundwater and soil in ophiolitic rocks in

Firuzabad, east of Shahrood, Iran: with emphasis to heavy metal

contamination. Environ Monit Assess 174:573–583

Hem JD (1985) Study and interpretation of the chemical character-

istics of natural water, USGS Water-Supply Paper 2254

Horton RK (1965) An index number system for rating water quality.

J Water Pollut Control Fed 37:300–306

Jalali M (2006) Chemical characteristics of groundwater in parts of

mountainous region, Alvand, Hamadan, Iran. Environ Geol

51:433–446

Jalali M (2009) Geochemistry characterization of groundwater in an

agricultural area of Razan, Hamadan, Iran. Environ Geol

56:1479–1488

Jalali M, Kolahchi Z (2008) Groundwater quality in an irrigated,

agricultural area of northern Malayer, western Iran. Nutr Cycl

Agroecosyst 80:95–105

Jankowski J, Acworth RI (1997) Impact of debris-flow deposits on

hydrogeochemical processes and the development of dryland

salinity in the Yass River catchment, New South Wales,

Australia. Hydrogeol J 5:71–88

Jolliffe IT (1972) Discarding variables in principal component

analysis. I: artificial data. J Appl Stat 21:160–173

Kaiser HF (1960) The application of electronic computers to factor

analysis. Educ Psychol Meas 20:141–151

Katz BG, Coplen TB, Bullen TD, Davis JH (1998) Use of chemical

and isotopic tracers to characterize the interaction between

groundwater and surface water in mantled Karst. Groundwater

35:1014–1028

Kazemi GA (2004) Temporal changes in the physical properties and

chemical composition of the municipal water supply of

Shahrood, northeastern Iran. Hydrogeol J 12:723–734

Kazemi GA (2011) Impacts of urbanization on the groundwater

resources in Shahrood, Northeastern Iran: comparison with other

Iranian and Asian cities. Phys Chem Earth 36:150–159

Kim Y, Lee KS, Koh DC, Lee DH, Lee SG, Park WB, Koh GW, Woo

NC (2003) Hydrogeochemical and isotopic evidence of ground-

water salinization in a coastal aquifer: a case study in Jeju

volcanic island, Korea. J Hydrol 270:282–294

Klein C, Hurlbut CS Jr (1985) Manual of mineralogy, 20th edn.

Wiley, New York, pp 352–353

Kumar M, Ramanathan AL, Rao MS, Kumar B (2006) Identification

and evaluation of hydrogeochemical processes in the ground-

water environment of Delhi, India. Environ Geol 50:1025–1039

Lamorski K, Pachepsky Y, Sławiński C, Walczak RT (2008) Using
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