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Abstract Poor fragmentation is one of the most side

effects induced by blasting operations. Therefore, risk

assessment and prediction of rock fragmentation are

essential to reduce the mentioned effects. In the present

study, an attempt has been made to evaluate the risk

associated with rock fragmentation as well as its prediction

at Sarcheshmeh copper mine, Iran, proposing the rock

engineering system (RES) technique. A total number of 52

blasting events were collected and considered and the

values of 10 key effective parameters in rock fragmentation

were carefully measured in the mine. These 10 key

parameters were only related to blasting design and rock

mass properties were not considered in the analysis of this

study due to some limitations regarding their measure-

ments in the mine. The RES result showed that the level of

overall risk, based on the considered blast events, is in the

range of medium–high. Furthermore, it was found that the

burden is the most interaction factor in the rock fragmen-

tation. In case of rock fragmentation prediction, all of

datasets were divided randomly to training and testing

datasets for proposing RES model. For comparison pur-

pose, non-linear multiple regression (NLMR) was also

employed for estimating rock fragmentation. The perfor-

mances of the proposed predictive models were examined

according to three performance indices, i.e. coefficient of

determination (R2), root mean square error (RMSE) and

variance account for (VAF). The obtained results of this

study indicated that the RES is a reliable method to predict

rock fragmentation with a higher degree of accuracy in

comparison to NLMR model. For instance, RMSE values

of 1.95 and 4.002 for testing datasets of RES and NLMR

models, respectively, suggest the superiority of the RES

model in predicting rock fragmentation compared to other

developed model.

Keywords Blasting � Rock fragmentation � Risk

assessment � Rock engineering system � Non-linear

multiple regression

Introduction

The ultimate objective of conducting blasting operation is

to create proper rock fragmentation. However, these works

have some undesirable environmental impacts such as

ground vibration, airblast, flyrock and back-break (Ton-

nizam Mohamad et al. 2012; Monjezi et al. 2013; Marto

et al. 2014; Jahed Armaghani et al. 2015a, c; Hasanipanah

et al. 2015; Tonnizam Mohamad et al. 2016). Properly

fragmented rocks will maintain successfulness of the sub-

sequent operations of loading, hauling and crushing (Morin

and Ficarazzo 2006). Quality of the fragmented rock shows

the efficiency level of a blasting work. Hence, blasting

design factors play a vital role in generating the desired
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rock fragmentation (Monjezi et al. 2009). According to

several scholars such as Thornton et al. (2002), Monjezi

et al. (2009) and Shams et al. (2015), all effective param-

eters on rock fragmentation can be categorized into three

groups; (1) rock mass properties, (2) blast geometry and (3)

explosive properties. Normally, detonation and the

dynamic response of the rock are affected by rock fracture

and fragmentation around a borehole (Zheming et al. 2007,

2008). Collecting all effective parameters is not possible in

some occasions especially when some of them are not

available or they are very difficult to measure (Monjezi

et al. 2009). Therefore, sometimes, proper production of

the fragmented rock seems to be difficult due to above

discussion (Monjezi et al. 2009).

Several empirical models have been developed for

estimating blast-induced rock fragmentation (e.g., Kuz-

netsov 1973; Cunningham 1983). Hjelmberg (1983) pro-

posed as fragmentation prediction model with name of

SveDeFo. He used type of rock mass and drilling pattern to

predict the mean fragment size. In another study, Stagg

et al. (1992) developed a model to assess distribution of

fragment size using two parameters namely fracture

strength and rock density. Furthermore, Roy and Dhar

(1996) incorporated the effect of joint orientation in their

fragmentation model. As a fact, in developing the empirical

models, only one or two effective parameters on rock

fragmentation such as explosive characteristics, blast-hole

diameter and compressive strength were used (Bahrami

et al. 2011). This fact makes these models inaccurate and

unreliable.

To overcome drawbacks of empirical model, application

of soft computing techniques, e.g., artificial neural network

(ANN) and fuzzy system (FS) in predicting rock frag-

mentation has been highlighted by several researchers.

A FS model was proposed to estimate rock fragmentation

resulting from blasting operation of Gol-E-Gohar iron mine

in the study conducted by Monjezi et al. (2009). Moreover,

Bahrami et al. (2011); Sayadi et al. (2013) and Ebrahimi

et al. (2015) utilized ANN technique for purpose of frag-

mentation prediction. Karami and Afiuni-Zadeh (2013)

developed an adaptive neuro-fuzzy inference system

(ANFIS) for estimating size of fragmented rock resulting

from blasting. Table 1 presents results of several frag-

mentation studies and their utilized soft computing models.

The rock engineering systems (RES) proposed by

Hudson (1992), is a multi-objective and powerful system

for solving complex engineering problems. Many

researchers have been applied RES model in various

engineering problems especially in the field of rock

mechanics. Castaldini et al. (1998) used a RES-based

model to evaluate the earthquake-induced surface effects

on the stability of natural slopes. In their research, neo-

tectonics, hydrogeology, tectonics, geology, seismology,

geomorphology, and soil/rock mechanics were selected and

utilized. They concluded that the RES is a robust tool for

evaluation of the surface effects induced by earthquake.

Latham and Lu (1999) utilized RES and Bond’s com-

minution theory at predicting blasting results for cases

where intrinsic rock properties are relatively constant. An

application of RES methodology in hazard assessment of

rockfalls was used in the study conducted by Zhang et al.

(2004). They indicated that RES is a useful method in

hazard assessment of rockfalls. A comprehensive study for

failure susceptibility zoning by RES and interaction

matrices (IM) methodology was presented by Ceryan and

Ceryan (2008). Frough and Torabi (2013) employed RES

approach and conventional statistical methods for predict-

ing tunnel boring machine (TBM) downtimes. The results

of their study revealed that the TBM downtimes values

predicted by RES are much closer to the actual values

compared to conventional statistical methods. An attempt

has been made to propose a rock groutability index (RGI)

based on the RES in the study carried out by Saeidi et al.

(2013). Saffari et al. (2013) utilized the RES to categorize

Table 1 Results of several fragmentation studies and their utilized soft computing models

Reference Technique Input No. of dataset R2

Monjezi et al. (2009) FS B, S, ST, SD, PF, HD, RD 415 0.96

Monjezi et al. (2010) ANN D, HD, BS, ST, N, PF, RC, MC 250 0.98

Bahrami et al. (2011) ANN B, S, ST, SD, PF, HD, MC, BI, D 220 0.97

Sayadi et al. (2013) ANN B, S, HD, SD, SC 103 0.85

Karami and Afiuni-Zadeh (2013) ANFIS B, PF, UCS, SB, N, ST/B, MC 30 0.83

Ebrahimi et al. (2015) ANN B, S, ST, HL, PF 34 0.78

Shams et al. (2015) FS B, S, D, ST, PF, J, Rn 185 0.92

Hole length (HL); spacing (S); burden (B); stemming (ST); powder factor (PF); specific drilling (SD); maximum charge per delay (MC); hole

diameter (D); hole depth (HD); rock density (RD); burden to spacing ratio (BS); number of row (N); blastability index (BI); specific charge (SC);

spacing to burden ratio (SB), Ratio of stemming/burden (ST/B), density of joint (J), Schmidt hammer rebound number (Rn), adaptive neuro-

fuzzy inference system (ANFIS), uniaxial compressive strength (UCS), artificial neural network (ANN), fuzzy system (FS), coefficient of

determination (R2)
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coal spontaneous combustion in coal regions. Based on

their results, the RES is an applicable tool to categorize

coal spontaneous combustion. Bahri Najafi et al. (2014)

presented a RES to predict the level of risk due to out-of-

seam dilution (OSD) in longwall faces. The RES model

was applied by Rafiee et al. (2015) to study rock mass

cavability in block caving mines. In their research, a fuzzy

system was also used to optimize the RES.

In the field of blasting environmental issues, Faramarzi

et al. (2013a) developed a RES model for risk assessment

and prediction of back-break resulting from blasting. Fur-

thermore, Faramarzi et al. (2014) used RES for flyrock risk

analysis and also prediction of flyrock distance. Based on

these studies, it was found that RES is a reliable method for

risk assessment and prediction of back-break and flyrock.

In the present study, RES is selected to develop a risk

assessment and predictive model for rock fragmentation

produced by blasting works in Sarcheshmeh copper mine,

Iran. In fact, proposing a model for risk evaluation and also

prediction, is advantage of RES compared to soft com-

puting techniques like ANN. In terms of rock fragmenta-

tion prediction, non-linear multiple regression (NLMR)

was also developed for comparison purposes.

Theory and method

Rock engineering system

The rock engineering systems (RES) is a powerful tool for

characterizing the effective parameters in the rock engi-

neering problems (Hudson 1992). The interaction matrix

device is the key element in RES approach. This matrix is

used for characterizing the principal parameters and the

interaction mechanisms in RES. To construct the interac-

tion matrix, the principal parameters influencing the system

(e.g., the effective parameters on rock fragmentation) are

located along the main diagonal of the matrix, while the

intensity of the influence of one parameter on the other

parameter, which assigned with coded values, are located

in the off-diagonal positions. Figures 1 and 2 illustrate a

2 9 2 interaction matrix and a general concept of the

coding of the interaction matrix, respectively.

One of the most powerful and useful procedures for the

coding interaction matrix is expert semi-quantitative (ESQ),

which was highlighted by Hudson (1992). According to this

procedure, the interaction between each two factors is

quantified using numbers zero (no interaction), one (weak

interaction), two (medium interaction), three (strong inter-

action) and four (critical interaction) as they can be seen in

Table 2 (Hudson 1992; Bahri Najafi et al. 2014).Fig. 1 A view of Sarcheshmeh copper mine

Fig. 2 A general view of

interaction matrix with two

parameters (Hudson 1992)
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The sum of each row in the interaction matrix is called

cause (C) while the sum of each column is called effect (E).

In other words, the influence of each parameter on the

system and the influence of the system on each parameter

are called C and E, respectively.

Cpi ¼
Xn

j¼1

Iij ð1Þ

Epj ¼
Xn

i¼1

Iij ð2Þ

Also, the sum and subtraction of the C and E values,

(C ? E, C - E) are called interactive intensity and dom-

inance, respectively. The parameter weighting factor (ai) is

formulated as follows (Benardos and Kaliampakos 2004):

ai ¼
ðCi þ EiÞ

ð
P

i Ci þ
P

i EiÞ
� 100 ð3Þ

where Ci is the cause of the ith parameter, Ei is the effect of

the ith parameter.

Non-linear multiple regression

The regression analysis is a statistical tool that can be

utilized to recognize the relationships between variables.

The purpose of multiple regressions is to learn more about

the relationships between several independent variables

and dependent variable(s) (Ceryan et al. 2013). Non-linear

multiple regression (NLMR) is a method to achieve a non-

linear relationship between independent and dependent

variables (Yagiz et al. 2009). In the NLMR technique, both

non-linear and linear relationships, e.g., exponential, log-

arithmic and power can be employed. The NLMR approach

has been used for the establishment of mathematical for-

mulas to solve many geotechnical applications. Yagiz et al.

(2009) used this technique for prediction of TBM perfor-

mance. In the other study, a NLMR equation was suggested

in the study carried out by Yagiz and Gokceoglu (2010) to

estimate rock brittleness. Shirani Faradonbeh et al. (2015)

utilized and developed NLMR model for prediction of

back-break induced by blasting. Jahed Armaghani et al.

(2015b) introduced this method for estimation of uniaxial

compressive strength (UCS) of granite rock type.

Site investigation and data source

To achieve the aim of this study, Sarcheshmeh copper

mine, Iran was selected. This mine is located in Kerman

province, the south of Iran, at latitude of 32�60000 and

longitude of 56�60000 (see Fig. 3). Considering the proved

reserve of the deposit (approximately 826 Mt), Sarchesh-

meh is the largest copper mine in Iran and one of the

largest copper mines in the world. Sarcheshmeh’ deposit is

mainly composed of folded and faulted Tertiary volcano

sedimentary rocks. The geology of Sarcheshmeh deposit,

first has been described by Bazin and Hubner (1969).

Based on their study, Eocene andesite is the oldest host

rock and the main minerals of the deposit are chalcopyrite,

pyrite and malachite. Also, the average grade of copper,

molybdenum, gold, silver, nickel and cobalt are 0.78,

0.03 %, 0.27, 1.14, 1.2 and 0.9 ppm, respectively. The

mine is extracted by open pit mining with height and slope

Table 2 ESQ method for

interaction matrix coding

(Hudson 1992)

Coding Description

0 No interaction

1 Weak interaction

2 Medium interaction

3 Strong interaction

4 Critical interaction

Fig. 3 A general view of coding values in the row and column through each parameter to establish the C and E (Hudson 1992)
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of the working benches of 12.5 m and 63.4�, respectively.

A range of 30� to 35� was observed for angle of the overall

slope. In addition, width and slope of the ramp are 30 m

and 5�, respectively. In this mine, drilling and blasting

method is used for excavating the rock mass. In these

blasting operations, ammonium nitrate fuel oil (ANFO) and

dynamite cartridges were used as main explosive and

priming, respectively. Also, the diameter and depth of

blast-holes are in the ranges of 152–225 mm and 12–15 m,

respectively.

Poor fragmentation is one of the adverse effects of

blasting operation. Therefore, evaluation of the level of the

risk induced by poor fragmentation as well as prediction of

fragmentation are important to avoid impact effects. For

risk assessment and prediction of fragmentation in this case

study, 52 blast events were considered, and in each blast-

ing, based on previous researches (e.g., Faramarzi et al.

2013b) for determining the effective parameters in the

intensity of fragmentation, the values of 10 key parameters

including burden (m), maximum instantaneous charge (kg),

specific charge (g/ton), spacing to burden ratio, stemming

to burden ratio (ST/B), stiffness factor, number of rows,

blast-hole inclination (�), blast-hole diameter (mm) and

burden to blast-hole diameter ratio were carefully mea-

sured. Also, in all of 52 blast events, the values of D80 of

fragmentation in terms of centimeter, as representative of

muck pile fragmentation size, were measured. Note that,

Stiffness is the ratio of bench height and burden and also

influences the resultant fragmentation (Singh and Sinha

2013). Also, rock mass stiffness controls distortion of blast-

hole wall and hence the pressure developed inside the blast

hole (Ghose and Joshi 2013).

The range of mentioned parameters for all of 52 blast

events, carried out in Sarcheshmeh copper mine, are given

in Table 3. To determine the D80 values, image processing

technique, due to its low-cost and quickly utilized, was

considered. In this regard, digital images with the help of

Split desktop software were used to analyze the size dis-

tributions of the fragmented rocks.

As suggested in the literature, all 52 datasets were

selected randomly for training and testing to develop pre-

dictive models. The idea of utilizing some data for testing

is to evaluate capability of the developed models. Swingler

(1996) suggested 20 % of whole datasets for testing pur-

pose, while this value was recommended as 25 % in the

study conducted by Looney (1996). Therefore, in the pre-

sent study, 80 % (42 datasets) of whole datasets (52 data-

sets) was chosen randomly for models development,

whereas the remaining 20 % (10 datasets) of data was

assigned to testing the models.

RES-based model for risk assessment
and predicting rock fragmentation

Benardos and Kaliampakos (2004) presented the vulnera-

bility index (VI) methodology for assessing geotechnical

hazards for TBM tunneling operation. In their research, the

VI was utilized for assessment of the risk level. In this

study, a similar procedure was used for assessment of the

risk level due to poor fragmentation as well as for pre-

dicting rock fragment size. To achieve the mentioned aims,

as the first step, the parameters that are effective on the risk

level were identified and evaluated, based on recommen-

dations in the literature and the RES principles.

In the second step, the level of risk corresponding to

poor fragmentation can be determined based on VI

Benardos and Kaliampakos (2004):

VI ¼ 100 �
X

i¼1

ai
Qi

Qmax

ð4Þ

where, ai and Qi are the weighting and rating value of the

ith parameter, respectively, and Qmax is the maximum

value assigned to the ith parameter.

Table 3 Description of the used parameters in the modeling of this study

Number Parameter Unit Symbol Min Max Mean Standard deviation

1 Burden m B 5 7.5 6.24 1.06

2 Max instantaneous charge kg MC 1173 16,680 4206.38 2793.32

3 Specific charge g/ton PF 136.4 240.15 185.24 27.31

4 Spacing to burden ratio – S/B 1.17 1.43 1.26 0.06

5 Stemming to burden ratio (ST/B) – ST/B 0.39 1.04 0.70 0.15

6 Stiffness factor – H/B 1.6 2.4 1.98 0.35

7 Number of rows – N 2 5 3.04 1.09

8 Blast-hole inclination degree INCL 80 90 89.62 1.92

9 Blast-hole diameter mm D 152.4 225 189.71 27.34

10 Burden to blast-hole diameter ratio – B/D 22.22 48.39 33.34 6.46

11 D80 of fragmentation cm F 13.8 38.8 26.03 6.75
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Considering Eq. 4, the level of overall risk corre-

sponding to fragmentation can be determined. According to

Benardos and Kaliampakos (2004), three main categories

are used for the classification of the VI (see Table 4). In the

third step, a relation between rock fragmentation size and

VI can be proposed. The higher values of VI reveal poorer

fragmentation and vice versa.

Parameters influencing rock fragmentation

Many parameters affect rock fragmentation as suggested

by previous investigators. In this study, based on litera-

ture’s recommendations (e.g., Faramarzi et al. 2013b;

Esmaeili et al. 2014; Shams et al. 2015) 10 key parameters

were applied to define the RES. These parameters together

with the parameter number are given in Table 5.

Interaction matrix

The ten main parameters (see Table 5) influencing on the

rock fragment size are arranged along the main diagonal of

the interaction matrix, while the intensity of the influence

of one parameter on the other parameter are arranged on

the off-diagonal positions. In the present study, to quantify

the off-diagonal cells, the ESQ coding method, according

to Hudson (1992), has been utilized. Based upon the sev-

eral previous researches and the authors’ experience, the

interaction matrix was constructed as given in Table 6.

Considering this matrix, the values of C, E, C ? E, C -

E and weight of each parameter (ai) for fragmentation aim,

are given in Table 7.

Aside from that, E–C plot for the effective parameters of

rock fragmentation is shown in Fig. 4. In this figure, the

parameters located in the bottom and top portions of the

C = E line are named dominant and subordinate parame-

ters. In other words, dominant and subordinate parameters

are dominant in the system and highly dominated by the

system, respectively. As it can be seen in Fig. 4, burden,

stiffness factor, blast-hole inclination, blast-hole diameter

and B/D ratio are dominant parameters, while max

instantaneous charge, specific charge, S/B ratio, ST/B ratio

and number of rows are subordinate parameters. In addi-

tion, the values of interactive intensity (C ? E) for each

parameter are displayed in Fig. 5. As shown in this figure,

burden has the most interaction in the system.

Rating of parameters

To determine the VI (based on Eq. 4), knowing the ranting

values of the effective parameters is necessary. In this

regard, a rating range of 0–5 was considered for the worst

and best cases, respectively. In the other words, zero

indicates the poor fragmentation, while five represents the

proper fragmentation. Table 8 tabulates the ranting of the

effective parameters, based on obtained results from the

other researchers and experts’ view.

The values of VI obtained from all 52 blasting events,

collected from Sarcheshmeh copper mine, are shown in

Fig. 6. As displayed in this figure, blast No. 39 shows the

maximum VI (or the maximum level of risk), while blast

No. 16 has the minimum VI (or the minimum level of risk).

Moreover, the overall level of risk of poor fragmentation

Table 4 Classification of the

VI
Risk description Low–medium Medium–high High–very high

Category I II III

Vulnerability index 0–33 33–66 66–100

Table 5 Effective parameters

on the rock fragmentation
Parameter no. Parameter Parameter no. Parameter

P1 Burden P6 Stiffness factor (H/B)

P2 Max instantaneous charge P7 Number of rows

P3 Specific charge (powder factor) P8 Blast-hole inclination

P4 S/B ratio P9 Blast-hole diameter

P5 ST/B ratio P10 B/D ratio

Table 6 The constructed interaction matrix

P1 2 2 2 2 2 2 2 0 0

0 P2 0 0 0 0 0 0 0 0

2 0 P3 2 0 0 0 0 0 2

0 2 2 P4 0 0 0 0 0 0

0 2 1 0 P5 0 0 0 0 0

2 2 2 3 2 P6 1 1 2 1

1 1 1 0 1 0 P7 0 0 0

2 3 2 0 1 0 0 P8 0 0

3 3 2 1 1 2 1 0 P9 2

3 1 2 0 0 2 1 0 0 P10
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was obtained as 54.04, which according to Table 4 is in the

second category (medium to high level of vulnerability).

To predict rock fragmentation, firstly, based on 42

blasting events (training datasets), a linear regression

analysis was developed (see Fig. 7) for estimating rock

fragmentation using VI values as presented in Eq. 5:

F ¼ 0:813 � VI � 17:786 ð5Þ

where, F is D80 of fragmentation (cm) and VI is the

vulnerability index or risk level. Considering the Eq. 5 and

also using the remained 10 blasting events (testing data-

sets), the performance of the developed RES model can be

evaluated. Figure 8 illustrates the predicted rock frag-

mentation by RES model and the measured one for

training and testing datasets. Coefficient of determination

(R2) of 0.866 and 0.859 for training and testing datasets,

respectively, indicate applicability level of the RES model

in predicting rock fragmentation. More details regarding

the performance prediction of the RES model are given

later.

Rock fragmentation estimation using NLMR

In this study, NLMR model was used and developed to

introduce a predictive model for rock fragmentation pre-

diction. In this regard, using simple regression between

independent and dependent variables and also considering

the same training and testing datasets, a NLMR equation

was proposed and presented as in Eq. 6. In constructing the

NLMR model, results of burden, max instantaneous

charge, specific charge, spacing to burden ratio, stemming

to burden ratio (ST/B), stiffness factor, number of rows,

blast-hole inclination, blast-hole diameter and burden to

blast-hole diameter ratio were used as model predictors.

NLMR model was built using statistical software package

of SPSS version 16 (SPSS Inc 2007).

F ¼ �16:63 � EXP ð0:224 � BÞ þ 0:001 � MC

þ 3370:247 � PF �0:962 þ 54:016 � ðS=BÞ þ 26:656

� EXP ð�1:199 � ðST=BÞÞ þ 90:134 � ðH=BÞ�1:187

þ 1:023 � N � 0:467 � INCL þ 60:749

� EXP ð0:002 � DÞ þ 0:977 � ðB=DÞ � 135:12:

ð6Þ

Table 7 Weighting of the

principal parameters affecting

rock fragmentation

No. Parameter C E C ? E C-E ai (%)

1 Burden 14 13 27 1 17.08

2 Max instantaneous charge 0 16 16 -16 10.12

3 Specific charge (powder factor) 6 14 20 -8 12.66

4 S/B ratio 4 8 12 -4 7.59

5 ST/B ratio 3 7 10 -4 6.33

6 Stiffness factor (H/B) 16 6 22 10 13.92

7 Number of rows 4 5 9 -1 5.69

8 Blast-hole inclination 8 3 11 5 6.96

9 Blast-hole diameter 15 2 17 13 10.76

10 B/D ratio 9 5 14 4 8.86

Sum 79 79 158 0 100

Fig. 4 Cause–Effect diagram

Fig. 5 Histogram of interactive intensity (C ? E)
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Table 8 The ranting of the

effective parameters in rock

fragmentation (Faramarzi et al.

2013b)

Parameter Values/description and ratings

1 Burden (m)

Value \3 3–5 5–7 7–9 [9

Rating 4 3 2 1 0

2 Maximum instantaneous charge (kg)

Value \500 500–1000 1000–2000 2000–3000 3000–4500 [4500

Rating 5 4 3 2 1 0

3 Specific charge (g/ton)

Value \125 125–150 150–175 175–210 210–300 [300

Rating 0 1 2 3 4 5

4 S/B ratio

Value \1 1–2 2–3 3–4 [4

Rating 0 3 2 1 0

5 ST/B ratio

Value \0.7 0.7–0.9 0.9–1.2 1.2–1.4 [1.4

Rating 0 2 4 3 1

6 Stiffness factor (H/B)

Value \1 1–2 2–3 3–4 [4

Rating 0 1 2 3 4

7 Number of rows

Value \3 3–5 5–6 6–7 [7

Rating 4 3 2 1 0

8 Blast-hole inclination (degree)

Value 90 90–80 80–70 70–65 \65

Rating 0 1 2 3 2

9 Blast-hole diameter (mm)

Value \100 100–150 150–200 200–250 250–300 [300

Rating 4 3 2 1 0 0

10 B/D ratio

Value \20 20–40 [40

Rating 2 1 0

Fig. 6 The values of VI for all blasting events
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Fragmentation value obtained from the Eq. 6 is

expressed as cm. Predicted rock fragmentation by NLMR

technique and measured rock fragmentation for training

and testing datasets is illustrated in Fig. 9. Results of R2

values presented in Fig. 9 express suitable performance

prediction of the proposed NLMR model. More discussion

regarding the evaluation of NLMR model is given in the

next section.

Results and discussion

In this paper, firstly, RES was developed for the risk

associated with poor fragmentation in the Sarcheshmeh

copper mine. In this regard, 52 blasting events in the

studies case were monitored and the values of the ten

influential parameters on the fragmentation were measured.

The results indicated that the burden was the most influ-

ential parameter on the fragmentation (see Table 7). Also,

it was found the maximum and minimum of the risk were

for blast. No 39 and 20 (risk39 = 67.72, risk20 = 38.86),

respectively. As a result, the level of overall risk

(riskoverall = 54.04) was in the range of medium to high

level.

Secondly, RES model was utilized to predict rock

fragmentation produced by blasting. For comparison pur-

poses, NLMR technique was also used and proposed by

using the same datasets. These models were constructed

using ten parameters as predictors. In this study, R2, vari-

ance account for (VAF) and root mean square error

(RMSE) were calculated to check the performance pre-

diction of the developed models. Theoretically, a predictive

model is excellent when R2 = 1, VAF = 100 % and

RMSE = 0. Table 9 shows the performance prediction of

the developed RES and NLMR models for training and

testing datasets based on the mentioned performance

indices. As shown in this table, RES model can provide

higher performance prediction for estimating rock frag-

mentation compared to NLMR. Considering testing data-

sets, values of 0.859, 85.243 and 1.950 were obtained for

R2, VAF and RMSE, respectively, indicate higher degree

of accuracy provided by RES model, while these values

were achieved as 0.556, 55.456 and 4.002 for NLMR

technique. To have a better comparison, the measured and

predicted fragmentation values using RES and NLMR

models are plotted for all datasets as shown in Fig. 10. This

figure demonstrates that obtained results by RES model are

closer to the measured rock fragmentation compared to

obtained results by NLMR predictive model. It should be

mentioned that the proposed predictive models in this study

are designed based on the blasting parameters operated in

the mentioned mine, hence, the direct use of these models

for rock fragmentation prediction of other condition is not

recommended.

Conclusions

The prediction of rock fragmentation and also analysis the

risk associated with poor fragmentation are crucial in mining

projects. In this paper, a RES was developed for risk

Fig. 7 Relation between VI and measured rock fragmentation

Fig. 8 Measured and predicted fragmentation for training and testing datasets using the developed RES model
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assessment and predicting the rock fragmentation. To do

this, Sarcheshmeh copper mine, Iran was selected and 52

blasting operations were investigated in the mentioned

mine. The values of burden, maximum instantaneous

charge, specific charge, spacing to burden ratio, stemming to

burden ratio (ST/B), stiffness factor, number of rows, blast-

hole inclination, blast-hole diameter and burden to blast-

hole diameter ratio were considered to propose RES model.

It is worth noting that all utilized parameters were related to

blasting design (controllable parameters) and because of

some limitations of data collection, rock mass properties

were not measured and used in the analysis of this study.

In the analysis of risk assessment, based on the RES

results, the ranges of VI values were obtained between

38.86 and 67.72. In the other word, the overall risk level

was achieved as 54.04, which is in the second category

(medium–high risk). In addition, it was found that the

burden is the most interaction factor in the rock fragmen-

tation. Note that, the use of a controlled blasting pattern

such as pre-splitting, cushion blasting can be very useful to

minimize the risk associated with poor fragmentation. It is

also important to mention that the obtained results of this

study should be used only in the Sarcheshmeh copper mine,

and the direct use of it is not recommended.

Fig. 9 Measured and predicted fragmentation for training and testing datasets using the developed NLMR model

Table 9 Performance

prediction of the developed RES

and NLMR models

Predictive model Training Testing

R2 VAF (%) RMSE R2 VAF (%) RMSE

RES 0.866 86.573 2.603 0.859 85.243 1.950

NLMR 0.777 77.411 3.376 0.556 55.456 4.002

Fig. 10 Comparison between measured and predicted rock fragmentation by RES and NLMR models for all 52 blasts
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In the case of rock fragmentation prediction, both RES

and NLMR models proposed. It was found that RES model

with a RMSE of 2.603 and 1.950, for training and testing

datasets, respectively, can predict rock fragmentation val-

ues with higher level of accuracy in comparison to NLMR

with a RMSE of 3.376 and 4.002, for training and testing

datasets, respectively.
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