
ORIGINAL ARTICLE

Heavy metal monitoring of beach sands through environmental
magnetism technique: a case study from Vengurla and Aravali
beaches of Sindhudurg district, Maharashtra, India

Venkata Lakshmi Bandaru1 • Praveen B. Gawali1 • Pramod T. Hanamgond2 •

Deenadayalan Kannan1

Received: 9 June 2015 / Accepted: 18 February 2016 / Published online: 11 April 2016

� Springer-Verlag Berlin Heidelberg 2016

Abstract Mineral magnetic, geochemical and statistical

analyses were carried on surface sediments collected from

Vengurla and Aravali beach, along west coast of India,

premonsoon (PreM), monsoon(M) and postmonsoon (PM).

Magnetic concentration parameters (vlf, ARM, SIRM and

HIRM) are strongly correlated within them PreM during M

and PM. Thermomagnetic analysis identifies titanomag-

netite, magnetite, maghemite and hematite as the dominant

magnetic mineralogy of the sediments. Strong correlation

was deciphered between magnetic parameters and heavy

metal (Cu, Cr, Zn and Ni) PreM and PM which obliterated

in M. This shows influx of magnetic minerals and heavy

metals is more in M than PreM and PM. The monsoonal

influx is more haphazard and random in M because of

enhanced weathering resulting in weak correlation between

different mineralogical and geochemical entities. This

finding outlines the efficacy of simple, rapid and non-de-

structive magnetic measurement which can be used as an

indicator for heavy metal contamination. It can act as a

proxy for measuring of heavy metal content in the coastal

and beach environment.

Keywords Mineral magnetic � Heavy metal � Statistical �
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Introduction

Investigating the compositional properties of rocks, sedi-

ments and soils using mineral magnetic measurements is

nowadays a routine form of analysis (Thompson and

Oldfield 1986; Walden et al. 1999; Maher and Thompson

1999; Oldfield 1999a, b). The technique has been applied

to various depositional environments (e.g. Arkell et al.

1983; Oldfield et al. 1985, 1999; White et al. 1997;

Walden et al. 1995, 1997; Schmidt et al. 1999; Wheeler

et al.1999). Many have also explored the relationship

between mineral magnetic measurements and chemi-

cal/physical properties of sediments and soils (Oldfield

et al. 1985; Oldfield and Yu 1994; Clifton et al. 1997,

1999; Chan et al. 1998; Petrovsky et al. 1998; Xie et al.

1999, 2000; Booth 2002). These investigations have

revealed mineral magnetic measurements to be a suit-

able tool for determining sediment provenance (Oldfield

and Yu 1994; Booth 2002; Gawali et al. 2010), sediment

transport pathways (Lepland and Stevens 1996), which

also serves as a proxy for geochemical, radioactivity,

organic matter content and particle size data (Bonnett

et al. 1988; Oldfield et al. 1993; Hutchinson and Prandle

1994; Clifton et al. 1997, 1999; Xie et al. 1999, 2000;

Zhang et al. 2001). The environmental magnetic method

has been successfully utilized for coastal investigations

that include sediment sources and transport pathways, and

determining contamination of heavy metals in estuaries

and tidal flats (Oldfield et al. 1985; Lees and Pethick

1995, Zhang et al. 2001). Environmental magnetic

methods (magnetic fingerprinting and magnetic inclu-

sions) are extensively used to resolve various coastal

research problems including investigating particulate

pollution, to identify and characterize the sediment sour-

ces and to examine sediment dynamics in coastal
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environments (Maher et al. 2008, 2009; Maher and Kin-

nersely 2010, 2011; Maher and Hatfield 2009).

Recently environmental magnetic methods have been

used to map the distribution of heavy minerals and to

assess their degree of sorting (Cioppa et al. 2010). Studies

by Hatfield et al. (2010) used environmental magnetics to

identify and monitor areas of erosion and deposition on a

coastal foreland. Gallaway et al. (2012) investigated the

mechanism of magnetic mineral transport and highlighted

the role of burial mechanism in magnetite enrichment in

swash zones. However, the processes controlling magnetic

mineral enrichment and transport in coastal depositional

environments are not yet well enough understood to make

detailed predictions about their distribution patterns and to

draw deductions on the governing local hydrodynamic

conditions. This paper presents magnetic and geochemical

analyses of beach sediments along Vengurla and Aravali

beaches of Sindhudurg district, Maharashtra. The purpose

of this investigation is to critically examine the potential of

applying mineral magnetic parameters as a proxy for heavy

mineral concentration.

Study area

The two beaches, Vengurla and Aravali, stretch for more

than 8 km in length and are located in the Sindhudurg

district, the southernmost part of the Maharashtra state

(Fig. 1). These beaches are microtidal and are under the

influence of semi-diurnal tides. They are part of the Kon-

kan Coast, which has morphological features distinct from

those of the rest of the Indian coast (Chandramohan et al.

1992). The entire coastal stretch of Konkan was tectoni-

cally active during the Miocene–Pliocene period. Since

then, exogenetic processes are seen to be dominating

(Tandale 1993). The study area has Vengurla Beach

(Vengurla-Kepadevi, Stations 1–4; width 30–150 m) and

Aravali Beach (Mochemad-Kerwada, Stations 5–9; width

50–185 m). The rainfall ranges between 300 and 470 cm/

year, and wave height reaches up to 1.0 m, with an average

wave period of 5 to 6 s. The predominant wave activity is

of plunging type with multiple breakers.

The geology of the area (Fig. 1) consists of banded

hematite quartzite, varieties of schist, and granitic rocks

(Deendar 2003). Vengurla has a moderate to bold relief

with hills and deep valleys. It has a coastline on its western

side with a NNW–SSE trend. The coastline to the north of

Vengurla is rocky, but it is not so in the south. River Karli

flows from east to west and borders the northern part. River

Talvada flows from north-east to south-west and joins the

sea at Mochemad. River Redi, which marks the southern

border of Vengurla, has a north–south flow on the eastern

side and abruptly changes to an east–west direction near

Shiroda to join the sea. The general trend of the major

rivers in the area is from east to west, where they join the

Arabian Sea. Two more rivers join the sea at the Vengurla

port hill, situated on the northern and southern sides of the

hill. These rivers have a major east–west trend. The

important rock units in the region are banded hematite

quartzite, quartzite, and schist (amphibolite and garnet), as

well as granitic rocks. The area is structurally disturbed and

influences the geology and the drainage pattern to a large

extent (Deendar 2003). Faulting is a major factor influ-

encing the deformation and rock alterations, facilitating the

formation of residual ore deposits and iron ore containing

rocks in the area. The sustainable iron ore deposit of Redi,

thus formed, has supported large-scale mining operations

over a long period, with workable reserves of about 48

metric tons (Hiremath 2003).

Materials and methods

The upper 3–4 cm of surface sediment samples were col-

lected from the beaches seasonally premonsoon (PreM;May

2003), during monsoon (M) (July 2003), and postmonsoon

(PM; November 2003) at nine stations (3–4 samples from

each station) along Vengulra and Aravali beaches of the

study area (Fig. 1). The samples were collected in a poly-

thene bag. In the laboratory, sample were dried at 40 �C,
weighed and packed tightly into 8 cm3 plastic bottles before

the measurements. Initial, low-frequency, mass-specific

magnetic susceptibility (vlf) was measured using MFK1-FA

Kappa bridge (AGICO). The percentage frequency depen-

dence susceptibility vfd % is calculated using the formula

vfd % = (vlf - vhf)/vlf 9 100. Anhysteric remanent mag-

netization (ARM) was measured after demagnetization in an

alternate field (AF) field of 100mT, inducing Direct Current

biasing field of 0.05mT usingMolspinAF demagnetizer and

was measured on the Molspin magnetometer. Isothermal

remanent magnetization (IRM) acquisition curves in steps

from 10 to 1000 mT; backfield application to the saturation

isothermal remanent magnetization (SIRM) and evaluation

of the remanent coercive force (Hcr) were performed using

Molspin pulse magnetizer. After a sample has acquired an

IRM it is often possible to (partially) demagnetize the

sample by exposing it to a magnetic field of reversed

direction. Such a partial demagnetization can yield infor-

mation about the ease of remanence acquisition, or the

coercivity of a sample. The results are expressed as S ratio

(S300 = IRM-300/SIRM) and hard isothermal remanent

magnetization (HIRM = SIRM-IRM-300, being IRM-300
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the acquired IRM at a backfield of 300 mT). In order to

identify magnetic mineralogy, temperature dependent

magnetic susceptibility (v–T curves) using AGICO KLY-4S

Kappabridge attached to CS-3/CSL furnaces and SIRM

thermal demagnetization measurements using a MMTD-80

thermal demagnetizer (Magnetic Measurements Ltd.) were

carried out on 10 samples.

Geochemical analysis for some samples was performed

using X-ray fluorescence (XRF) for determining elemental

concentrations. For sample preparation 8 gm of dried

sediment was ground, of which 4 g was used for geo-

chemical analysis using Spectro XEPOS XRF spectrom-

eter (AMETEK) by the Turboquant-Powders method

(http://www.ametek.com). For analysis, the standard

MCA calibration sample from Fluxana (http://www.flux

ana.com) was used. The whole set of data (environmental

magnetic and geochemical data) in this study was ana-

lyzed by multivariate statistical methods, including cor-

relation matrix. All the data processing for statistical

analysis was done with the statistical software SPSS for

Windows (Ver. 16).

Results and discussion

Environmental magnetic analysis

Magnetic concentration parameters vlf, SIRM and ARM

are sensitive to changes in the concentration of magnetic

minerals (e.g. Anderson and Rippey 1988; Lanci et al.

1999; Geiss et al. 2004). Superparamagnetic (SP) particles

record high vlf and relatively high values for multidomain

(MD) grains (Thompson and Oldfield 1986). ARM is more

sensitive than SIRM to single domain (SD) grains (Turner

1997). The total v of a sample is the sum of the ferri-

magnetic, paramagnetic or diamagnetic contributions,

whereas SIRM and ARM are independent of paramagnetic

minerals. SIRM is highly dependent on the make-up of

different types of magnetic minerals (e.g., magnetite has

measurements two orders of magnitude higher than

hematite). Therefore, all three parameters should be studied

simultaneously to infer changes in magnetic concentration.

Mineral magnetic data for PreM, M, and PM are pre-

sented in Fig. 2. The vlf values show considerable variation

Fig. 1 a Location map and

Geology (modified after

Deendar 2003) of the study area.

REDI is the location of iron ore

deposit
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PreM (0.02–2.05 9 10-7 m3/kg), during M (0.02–2.17 9

10-7 m3/kg) and PM (0.12–6.03 9 10-7 m3/kg) exhibiting

low concentration of magnetic minerals at all stations,

except at 8 and 9 stations where a sudden rise is observed

PreM, during M and PM (Fig. 2a). Samples from PreM, M

and PM of stations 1 and 2 indicate high ARM values

(Fig. 2c, 1.5 9 10-5, 1.20–1.74 9 10-5 and 0.94–1.57 9

10-5 Am3/kg). Samples from stations 3, 4, 5 and 6 contain

moderate and low to moderate ARM (PreM-

0.28–0.58 9 10-5, M-0.17–0.86 9 10-5 and PM-

0.19–0.99 9 10-5 Am3/kg) values. Stations 7, 8 and 9

exhibit variable concentration of stable SD magnetic

minerals with moderate to very high ARM values in all

three seasons. SIRM values for PreM, M and PM samples

from stations 1–7 indicate very low to low concentrations

of all remanence-carrying magnetic minerals (Fig. 2b). By

contrast, stations 8 and 9 show SIRM concentration to be

moderate PreM (581 and 564 9 10-5 Am3/kg), low to

moderate in M (80 and 996 9 10-5 Am3/kg) and low to

moderate PM (31 and 690 9 10-5 Am3/kg).

Changes in magnetic mineralogy can be determined by

using IRM acquisition curves, Hcr, v–T curves, SIRM

thermal demagnetization, S ratio and Hard IRM. S ratio is a

dimensionless parameter that discriminates content of fer-

rimagnetic with respect to antiferromagentic minerals;

values close to 1 correspond to the predominance of fer-

rimagnetic minerals. Magnetic minerals in sediments can

also be identified as soft and hard fractions. The hard

fraction has high coercivity and can be used to estimate the

total concentration of canted antiferromagnetic minerals

(hematite; Oldfield and Richardson 1990). The variation of

S ratio (Fig. 2h) is from 0.4 to 0.8, 0.2 to 0.8 and from 0.3

0
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Fig. 2 a–i Plot of vlf, SIRM, ARM,ARM/vlf, ARM/SIRM, SIRM/vlf, vfd %, S ratio and HIRM vs. sampling stations
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to 0.8 for PreM, M and PM with an average value of 0.5.

Hard IRM varies from 20 to 3767 9 10-5 Am3/kg PreM,

10 to 8401 9 10-5 Am3/kg during M and from 22 to

7498 9 10-5 Am3/kgPM. Figure 2i shows that there is a

lower concentration of HIRM up to station 8, whereas at

station 9 higher concentrations exist. This gives an idea

that soft magnetic minerals are present up to station 8 and a

subordinate hard component at station 9. Figure 3a–f

shows typical curves for IRM acquisition, back field and v–
T curves. For most samples, \95 % of saturation is

achieved at *200 mT, indicating a predominantly low

coercivity mineral contribution (Fig. 3a).This is supported

by Hcr values ranging from 30 to 60 mT (Fig. 3b). All the

samples from stations present a curie temperature from 580

to 620 �C suggesting the dominance of magnetite and

maghemite minerals. At stations 3 and 9, there is a small

decrease of v between 250 and 350 �C and increasing

thereon with a peak at around 450 �C, suggesting

titanomagnetite.

Samples collected at Station 1, M and PreM display

SIRM decrease at unblocking temperature (Tb) of about

300, 400 and 675 �C (Fig. 4a). This could be due to

titanomagnetite and hematite. Samples collected at station

2 during the M and PM campaigns display a spectra of

decrease in SIRM, with temperature reaching a Tb of about

300, 580, and 680 �C (Fig. 4b), indicating titanomagnetite,

magnetite and hematite, respectively. The SIRM thermal

demagnetization of samples collected at Station 3, PM and

PreM display a distinct change in behavior from 200 to

400 �C (Fig. 4c). A drop in SIRM occurs in the PM sample

at 250 �C, after which a gradual decrease is seen to about

675 �C. This could be due to titanomagnetite and hematite.
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The PreM sample has one magnetic mineral phase with

(Tb) of about 400 �C, denoting the presence of titano-

magnetite, and the other is magnetite with a Tb of about

580 �C. On demagnetization, the sample collected in M

season at Station 5 shows a Tb of around 450 �C and

675 �C (Fig. 4d), denoting the presence of titanomagnetite

and hematite, respectively. The sample collected at Station

9, during M season is seen to display two phases of mag-

netic mineralogy (Fig. 4e), one with a Tb at 420 �C (ti-

tanomagnetite) and the other with a Tb that lies between

580 and 600 �C. This could be magnetite. The PM sample

at Station 9, displays a Tb of 580 �C, i.e., magnetite

(Fig. 4e). Overall the magnetic mineralogy of the sedi-

ments is variable in Titanomagnetite, magnetite and

hematite.

Changes in magnetic grain size and the interparametric

ratios of ARM/vlf, ARM/SIRM and SIRM/vlf can be used

for grain size interpretation. The ARM/vlf ratio can be

used to distinguish particle size of sediments in general

and magnetic minerals in particular (Banerjee et al. 1981).

Low ratios indicate coarse grain sizes, whereas high

values suggest fine magnetic grain sizes. At stations 1, 2,

3, 4 and 6, ARM/vlf values (Fig. 2d) show increasing

trend except at station 5 and then decreasing trend at 7, 8

and 9 is seen PreM. In M, initially there is a decreasing,

then increasing and again a decreasing trend. PM, there is

a increasing and decreasing trend. The ARM/SIRM ratio

is the best estimator of changes in magnetic grain size

because neither of the two parameters depends on para-

magnetic minerals (Turner 1997). The ARM/SIRM

(Fig. 2e) values for PreM and M are seen to fluctuate up

to station 5 and then exhibit decreasing trend. There is an

increasing trend up to station 4 and then decreasing trend

PM (Fig. 2e). The decreasing trend of ARM/SIRM values

towards Aravali stations signifies increase in grain size

(coarser) as compared to finer at Vengurla stations. The

SIRM/vlf displays high values where smaller, SD grains

are present (Peters and Dekkers 2003; Heider et al. 1996).

Fig. 4 Thermal

demagnetization of selected

samples for PreM, M and PM.

Open circles, squares and

diamonds represent M, PM and

PreM, respectively
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However values[70 kA/m are considered to be an indi-

cator of the iron sulfide greigite (Fassbinder and Stanjek

1994; Blanchet et al. 2009; Roberts et al. 2011). SIRM/vlf
varies from 11 to 43, 6–45 and 4.6–17.8 kA/m PreM, M

and PM, respectively (Fig. 2f). vfd %, which is an indi-

cator of SP grains, can also be used as a proxy for grain

size. Values of vfd % \4.0 % indicates virtually no SP

and dominant MD and SSD grains while vfd %[10.0 %

reflects high content of SP grains (Dearing 1999). vfd %

is seen to vary from 0.03 to 2.6 % with an average value

of 1.27 % PreM; 0.05 to 8.2 % with an average of 3.9 %

in M and 0.09–7.0 % with an average of 4.7 % PM

(Fig. 2g). Mean values of vfd % are lesser than 10 % and,

therefore, indicate that SP minerals are not dominant in

these samples. All the above referred grain size parame-

ters suggest these beach sediments are dominated by SD

and MD minerals.

Descriptive statistics and inter-parametric correlations

for beach sediments are presented in Tables 1 and 2. The

mass-specific susceptibility (vlf), ARM and SIRM show

notable increase PM, during M and PreM, respectively.

The mean values of ARM/SIRM, S ratio and HIRM do not

show any significant change in PreM, M and PM periods.

ARM/vlf values for PM are relatively high suggesting

presence of coarser and larger grain size sediments relative

to PreM samples. vfd % mean values during PreM, M and

PM fall in the range of SD and MD. The inter-parametric

correlations (Table 2) indicate significant positive corre-

lation (supported by P values at cut off level 0.05) between

vlf and ARM PreM; and good correlation in M and PM. vlf
also show good correlation with SIRM and HIRM preM

during M and PM.

Geochemical analysis

Figure 5 depicts the concentration of abundant (Fe, Mg and

Al) and heavy metals (Cu, Cr, N and Zn). The concentra-

tion ranges of abundant elements Al, Fe, and Mg are

1.2–2.1, 0.77–18.88, and 0.20–0.60 % PreM;

0.70–3.36,0.18–0.72 and 1.31–2.16 % for M and

0.77–17.68, 0.27–1.05 and 1.33–2.25 % PM, respectively

(Fig. 5a, c and e). As can be deciphered from Fig. 5a, c and

e, Fe is more PreM and PM for station 8 and 9 of Aravali

beach. The concentrations of heavy metals in beach sedi-

ments are Cu: 4.1–18.6 ppm (PreM), 3.5–8.4 (M) and

3.2–15.1 ppm (PM); Cr: 21.9–286.6 ppm (PreM),

Table 1 Descriptive statistics of various magnetic parameters

vlf PreM M PM vfd % PreM M PM

Mean 0.508 0.4436 0.9157 Mean 1.2742 3.8899 4.6534

SD 0.75963 0.72244 1.92136 SD 0.98248 2.84195 2.35185

Minimum 0.02 0.02 0.12 Minimum 0.03 0.05 0.09

Maximum 2.05 2.17 6.03 Maximum 2.58 8.23 7.01

ARM PreM M PM SIRM PreM M PM

Mean 1.2225 1.5537 1.2096 Mean 140.6002 130.4547 94.0682

SD 0.93826 2.44466 1.20900 SD 245.53723 325.54145 224.30494

Minimum 0.28 0.17 0.19 Minimum 4.40 2.86 4.87

Maximum 3.24 7.91 4.23 Maximum 580.94 996.24 690.84

S ratio PreM M PM HIRM PreM M PM

Mean 0.5276 0.5446 0.5284 Mean 1054.3744 1011.4886 893.8641

SD 0.22050 0.20462 0.22105 SD 1986.33750 2773.78139 2477.41794

Minimum 0.07 0.15 0.09 Minimum 21.71 10.06 22.29

Maximum 0.79 0.78 0.82 Maximum 5224.02 8401.64 7498.92

ARM/v PreM M PM ARM/SIRM PreM M PM

Mean 9.1118 6.0415 3.1910 Mean 0.0558 0.0441 0.0556

SD 6.06515 2.76010 1.46677 SD 0.03495 0.02185 0.03314

Minimum 1.82 1.20 0.51 Minimum 0.01 0.01 0.01

Maximum 22.48 9.94 5.41 Maximum 0.10 0.07 0.12

PreM premonsoon, M monsoon, PM postmonsoon. Units: vlf = 10-7 m3/kg, ARM = 10-5 Am2/kg, SIRM = 10-5 Am2/kg, ARM/v = 102 A/

m, and HIRM = 10-5 Am2/kg
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25.3–100.2 ppm (M) and 17.6–310.7 (PM); Ni:

5.8–20.7 ppm (PreM), 5.2–10.2 ppm (M) and

5.6–17.8 ppm (PM); Zn: 6.2–37.9 ppm (PreM), 5.3–16.9

(M) and 5.6–132.8 ppm (PM) (Fig. 5b, d and f). Cr is more

dominant in stations 8 and 9 PreM and PM periods than M.

Correlation analysis was carried out to identify rela-

tionship, if any, that exists between magnetic parameters

and heavy metal concentration. The concentrations of four

heavy metals (Cu, Cr, Ni and Zn) are plotted against vlf,
SIRM and HIRM for three seasons (Figs. 6, 7), where

correlation coefficients between the heavy metal concen-

trations and magnetic susceptibility are also given. Table 3

shows Pearson’s correlation coefficient values (r) between

mineral magnetic parameters and heavy metals for PreM,

M and PM periods. Significant correlations (supported by P

values at cut off level 0.05) exist between vlf, SIRM, HIRM

and heavy metal concentration PreM and PM (Figs. 6a–h,

7e–h). However, each of these relationships is absent in M.

No significant correlation between any of the mineral

magnetic and heavy metal concentration is seen during M.

ARM shows good correlation with heavy metal

concentration only PM. S ratio shows a strong negative

correlation with heavy metal concentration PreM and PM

(Fig. 7a–d).

The Sindhudurg beaches, just like other Konkan bea-

ches, receive sediments from a number of sources. The

bedrock is broken into smaller fragments by water, wind

and other climatic processes operative through physical

comminution and chemical weathering. Hydrodynamic

processes are an important source of placer formations

across the beaches (Kurian et al. 2000) along with

alongshore and cross-shore movement of sediments

(Chandrasekar et al. 2003). Li et al. (2002) consider

sediment transport processes in the swash zone are

important to beach morphology and shoreline stability.

Heavy mineral accumulation depends on source and is

controlled by shoreline configuration and seasonal wave

climate (Chandrasekar et al. 2005). Strong winnowing

action of waves is responsible for heavy mineral con-

centration rather than the selective transport through

alongshore currents (Hegde et al. 2006). The Vengurla

and Aravali beaches are exposed to variable

Table 2 Correlation coefficient values of mineral magnetic parameters

vfd % ARM SIRM S ratio HIRM ARM/v

Premonsoon

vfd % 20.719 (0.029)

ARM 0.798 (0.010) 20.857 (0.003)

SIRM 0.983 (0.000) -0.664 (0.051) 0.685 (0.042)

S ratio 20.818 (0.007) 0.403 (0.282) -0.635 (0.066) 20.779 (0.013)

HIRM 0.994 (0.000) -0.654 (0.056) 0.759 (0.018) 0.980 (0.000) 20.841 (0.005)

ARM/v 20.694 (0.038) 0.555 (0.120) -0.630 (0.069) 20.681 (0.044) 0.340 (0.370) -0.659 (0.054)

ARM/SIRM 20.827 (0.006) 0.573 (0.107) -0.634 (0.067) 20.830 (0.006) 0.778 (0.014) 20.807 (0.009) 0.623 (0.073)

Monsoon vfd % 20.748 (0.020)

ARM 0.926 (0.000) -0.643 (0.062)

SIRM 0.927 (0.000) -0.558 (0.119) 0.983 (0.000)

S ratio 20.678 (0.045) 0.344 (0.364) -0.627 (0.071) 20.721 (0.028)

HIRM 0.916 (0.001) -0.532 (0.141) 0.978 (0.000) 0.999 (0.000) 20.729 (0.026)

ARM/v 20.791 (0.011) 0.769 (0.015) -0.630 (0.069) -0.651 (0.058) 0.625 (0.072) -0.638 (0.065)

ARM/SIRM 0.685

(0.042)

-0.357 (0.346) 0.815 (0.007) 0.852 (0.004) -0.640 (0.063) 0.860 (0.003) -0.607 (0.083)

Postmonsoon

vfd % 20.728 (0.026)

ARM 0.957 (0.000) 20.774 (0.014)

SIRM 1.000 (0.000) 20.724 (0.027) 0.955 (0.000)

S ratio 20.719 (0.029) 0.326 (0.393) -0.538 (0.136) 20.724 (0.028)

HIRM 0.998 (0.000) 20.726 (0.027) 0.940 (0.000) 0.998 (0.000) 20.747 (0.021)

ARM/v 20.691 (0.039) 0.055 (0.887) -0.579 (0.102) 20.692 (0.039) 0.801 (0.009) 20.689 (0.040)

ARM/SIRM -0.550 (0.125) 0.156 (0.688) -0.552 (0.124) -0.558 (0.118) 0.629 (0.070) -0.540 (0.133) 0.766 (0.016)

Correlation is significant (in bold) at the 0.05 level and derived using SPSS software. The p values of significant correlation are produced in

brackets
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environmental conditions which are reflected in the

detrital pattern of accumulation and/or erosion. Though

they seem to share similar geochemical realm, the heavy

metal as well as abundant element characteristics some-

times are seen to be at variance with each other. The

heavy metal concentration shares significant correlation

with magnetic parameters PreM and PM. This correlation

is completely lost during M. S ratio, on the other hand,

shows a strong negative correlation with heavy metals

PreM and PM. Overall the Aravali beach has more con-

centration of magnetic minerals than the Vengurla beach.

The strong association of heavy metals with magnetic

mineral concentration indicates their interrelationship. Ti

and Fe are reckoned to have been released from the

banded hematite formations. The hinterland is likely

having some deposits of chromite. Our results underline

the presence of Cr in the beach samples, especially

towards the end of Aravali beach. Gujar et al. (2010)

studied heavy mineral placers from Vijaydurg to Redi and

found opaques to contain ilmenite (43.07 % in areas of

significant concentration and 11.02 % in areas of local-

ized concentration), magnetite (58.15 and 8.72 %) and

chromite (up to 10.09 %). The metamorphic rocks of the

hinterland contribute substantially to the sands of the

beaches, apart from the Deccan traps. The significance of

temperature dependent susceptibility and SIRM measure-

ments backs our contention regarding the presence of both

magnetite and hematite along the Vengurla and Aravali

beaches. The pathways for antiferromagnetic minerals

coming from the hinterland are obvious. The metamor-

phic rocks in the vicinity of these two beaches are

brought down in remnants through wear and tear during

the transit. The iron ore mines are also found to be active

around the Redi area. The ore material spills during the

transportation adding the antiferromagnetic material to

these beaches. But, the presence of magnetite and titano

magnetite can be attributed to the longshore currents

prevailing along these beaches, which bring the eroded

particles from the Deccan traps.

The Vengurla–Aravali beaches are perceived to receive

their detrital input from the surrounding region. The

hinterland is seen to be dominated by hematitic mineral

assemblage. The present mineral magnetic study provides

a strong support for this, which brings out the domination

of antiferromagnetic minerals. It must also be noted that

oxidation of magnetite and Ti-magnetite can result in the
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(Al), Copper (Cu), Chromium

(Cr), Nickel (Ni) and Zink (Zn)

at different stations for PreM, M

and PM. a, b Fe, Mg, Al, Cu,
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and Zn for PM
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formation of maghemites (Barron and Torrent 2002) by

the process called maghemitization (Dunlop and Ozdemir

1997). The small size of authigenic magnetite crystals can

be oxidized in periods when the soil is aerated (van der

Marel 1951; Schwertmann and Heinemann 1959; Murad

and Schwertmann 1993) to form maghemite. Maghemite

can form from magnetite because of their structural

similarities (Fasiska 1967). Maghemite is relatively

abundant in well-aerated tropical soils containing high

hematite/goethite ratio (Fontes and Weed 1991; da Costa

1996), which is in appreciable abundance around Ven-

gurla–Aravali beaches. Maghemitization is a widespread

process reported from different environments and in nat-

ural samples magnetic evidence for maghemite with a

thermal stability around 597 �C has been reported from

basaltic rocks (Gee and Nakanishi 1995; Chévrier et al.

2006). The high heavy metal concentration and Fe preM

and PM at Aravali beach reveals that source is from south

of Aravali beach in which sediment transport, delivery

and flux play a major role in this process. Iron ore

deposits are transported from near Redi beach which is

situated to the south of Aravali beach (Gawali et al.

2010). Iron ore in the Redi and surrounding areas is

associated with banded ferruginous quartzites and Pre-

cambrian ferruginous phyllites. The iron ore consists

essentially of hematite and partly of magnetite, limonite,

and goethite, which occur as reefs and lentoid bodies.

This further strengthens our results regarding source of

the sediments. Our studies also bring out the interrela-

tionship of heavy metals and magnetic parameters. Thus,

the geology and geomorphology of the area plays a big

role in accumulation of sands at these beaches, which are

reworked by the prevalent wind and current regime.

The beach environment all over the world is under stress

and being polluted by heavy metals. The fast and inex-

pensive magnetic measurements can be used to screen
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heavy metal hotspots for further detailed analyses. Mag-

netic parameters can thus act as proxy for heavy metals.

Conclusions

The Aravali and Vengurla beach sediments are dominated

by magnetite, maghemite, titanomagnetite and hematite

magnetic minerals which contain SD and MD grains.

Strong correlation is evident between heavy metal con-

centration and magnetic concentration dependent parame-

ters (v, SIRM and HIRM) preM and PM. This correlation

ceases to exist in M. Magnetic concentration dependent

parameters are observed to covary with heavy metals,

suggesting magnetic mineral and heavy metal input to

beach sediments is from same source, especially from

south of Aravali beach. The prevalence of heavy metals at

Aravali is governed by geomorphological changes in the

coastal tract. Significant correlation that exists between

heavy metals and magnetic parameters has a huge potential
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in aiding in magnetic screening/monitoring of heavy metal

pollution in coastal sediments in a rapid and cost effective

manner.
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