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Abstract This study evaluated and compared ground-

water spring potential maps produced with two different

models—namely multivariate adaptive regression spline

(MARS) and random forest (RF)—using geographic

information system (GIS). In total, 234 spring locations

were identified in the Boujnord, North Khorasan, Iran and a

GIS spring inventory map was prepared. Of these, 176

(70 %) locations were employed to produce spring poten-

tial maps (training), while the remaining 58 (30 %) cases

were used to validate the model. The explanatory variables

used to predict spring location were altitude, slope aspect,

slope degree, slope length, topographic wetness index

(TWI), plan curvature, profile curvature, land use, lithol-

ogy, distance to rivers, drainage density, distance to faults,

and fault density. Furthermore, the spatial relationships

between spring occurrence and explanatory variables were

performed using a Certainty Factor (CF) model. For vali-

dation, area under a receiver operating characteristics

(ROC) curves (AUC) was used. The validation results

showed that the AUC for calibration is almost identical

(0.79) in both models, while for prediction, the MARS

model (73.26 %) performed better than RF (70.98 %)

model. These results indicate that the MARS and RF

models are good estimators of groundwater spring potential

in the study area. These groundwater spring potential maps

can be applied to groundwater management and ground-

water resource exploration.

Keywords Groundwater potential mapping � Multivariate

adaptive regression spline � Random forest � GIS � Iran

Introduction

Groundwater is one of the most precious natural resour-

ces, which supports human civilization (Bera and

Bandyopadhyay 2012). Its essential qualities make it an

immensely important and dependable source of water

supplies in all climatic regions including both urban and

rural areas of developed and developing countries (Wai-

kar and Nilawar 2014). Geological strata act both as

conduits for transmission of and reservoirs for ground-

water. The suitability for exploitation of groundwater in a

geological formation primarily depends on storage and

transmissivity of the formation. High relief and downhill

slopes impart higher runoff, while topographical depres-

sions enhance groundwater recharge (Waikar and Nilawar

2014). Areas of high drainage density also increase sur-

face runoff. Surface water bodies like rivers and ponds

can operate as recharge zones (Murugesan et al. 2012;

Waikar and Nilawar 2014).

Groundwater is not an unlimited resource so its use

should be properly planned based on the understanding of

the groundwater systems behavior in order to ensure its

sustainable use (Bera and Bandyopadhyay 2012).

Assessing the potential zone of groundwater recharge is
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therefore important to protect water quality and manage

groundwater use. Groundwater recharge zones can be

demarcated with the help of remote sensing (RS) and GIS

techniques (Waikar and Nilawar 2014). One key advan-

tage of RS data for hydrological investigations and

monitoring is its capability to generate information in

spatial and temporal domains, which is valuable for

analysis, prediction, and validation (Waikar and Nilawar

2014). In addition, GIS technology provides suitable al-

ternatives for efficient management of large and complex

geospatial databases (Waikar and Nilawar 2014). Several

studies have been conducted on groundwater evaluation

using GIS and RS techniques (Jaiswal et al. 2003; Solo-

mon and Quiel 2006; Jha et al. 2007; Ganapuram et al.

2009; Saha et al. 2010; Pourtaghi and Pourghasemi 2014;

Naghibi et al. 2014; Davoodi Moghaddam et al. 2013;

Rahmati et al. 2015). For example, Oh et al. (2011),

Ozdemir (2011), Kaliraj et al. (2013) and Pourtaghi and

Pourghasemi (2014) published various studies that have

applied RS and GIS to groundwater spring potential

mapping. Extending these techniques, numerous statistical

modeling techniques are able to predict the potential

distribution of a phenomenon from a set of independent

variables: such as logistic multiple regression (LMR: Mair

and El-Kadi 2013), generalized additive model (GAM:

Sorichetta et al. 2013), random forest (RF: Rodriguez-

Galiano et al. 2014; Naghibi and Pourghasemi 2015;

Naghibi et al. 2016), and multivariate adaptive regression

splines (MARS: Gutiérrez et al. 2009). In recent years,

with the rapid development of information technology and

database technology, data mining algorithms have seen

applications beyond information technology into other

societal applications (Yao et al. 2013). Data mining is a

process of extracting potentially helpful information and

knowledge, unknown in advance, from a large, incom-

plete, and noisy, fuzzy and random practical dataset (Yao

et al. 2013). Although the MARS (multivariate adaptive

regression spline) and RF (random forest) methods have

been applied for landslide susceptibility mapping (Yous-

sef et al. 2015), gully erosion modeling (Gutiérrez et al.

2009), and regional or local assessments of nitrate and

pesticide contamination (Rodriguez-Galiano et al. 2014);

this approach (MARS) and its comparison with a RF has

not yet been used for groundwater spring potential

mapping.

This study evaluates the GIS-based MARS and RF

models for groundwater spring potential mapping at the

Bojnurd Township in northern Khorasan Province, Iran

(Fig. 1). The main objective of the study is to contribute

towards systematic groundwater studies utilizing RF and

MARS models to delineate groundwater spring potential

areas which could be applied in other similar areas.

Study area

The study area, as shown in Fig. 1, lies in the southern

region of Bojnourd Township in North-Khorasan Province,

Iran, known as the Bojnourd Plain. This 1243 km2 area is

located between 55�44 and 56�18 longitude, and 38�170 to

37�130 latitude. The area’s elevation varies from 887 to

2967 m above mean sea level (m.s.l.) and the annual

rainfall in the area is approximately 266.4 mm. The study

area slopes gently from south to north and forms foothills

for mountains to the north. The Bojnourd Plain is located in

Kopet-Dagh geological formation that mainly covered by

Quaternary sediments. The groundwater elevation in wells

in the study area is between 1025 and 1074 m m.s.l. The

groundwater depth varies between 4 and 80 m, and

groundwater flows from the south and southwest to the

north and northeast.

Methodology

Figure 2 shows a flowchart of the methodology applied in the

current study. This figure demonstrates the explanatory

variables used in the analysis and the processes applied

according to the models. In the first step, the dataset for

model development and application were assembled. Next, a

certainty factor (CF) model was applied to determine spatial

relationships among spring occurrence and explanatory

variables. Then, MARS and RF models were applied to map

groundwater spring potential. Finally, constructed models

were validated and tested using the receiver operating

characteristic (ROC) curve (success rate and prediction rate

curves).

Dataset for models development and application

Dataset and construction of a spatial database of explanatory

variables are important parts of any research (Pourghasemi

et al. 2013; Davoodi Moghaddam et al. 2013). At first, the

spring locations were compiled from Iranian Department

Water Resources Management (http://www.wrm.ir/index.

php?l=EN) and extensive field surveys. In total, 234 springs

were detected in Boujnurd watershed, North Khorasan, Iran

(Fig. 1). 176 (70 %) of the spring locations were used for

groundwater spring potential mapping and 58 (30 %) were set

aside for validation. For conducting a spring potential map

(SPM), it is necessary to evaluate mappable explanatory

variables with the spring inventory map (Davoodi Moghad-

dam et al. 2013). In this study, 13 such explanatory variables

were considered. These were; altitude, slope aspect, slope

degree, slope-length (LS), topographic wetness index (TWI),
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plan curvature, profile curvature, land use, lithology, distance

to rivers, drainage density, distance to faults, and fault density.

A digital elevation model (DEM) was created using topo-

graphical maps at 1:50,000 scale. The DEM has a cell size of

30 m with 1284 rows and 1768 columns. The DEM was used

to derive the altitude, slope aspect, slope degree, LS, TWI,

plan curvature, and profile curvature values. The altitude map

for the study area with cell size 30 m 9 30 m was produced

from the DEM and classified into five classes (Fig. 3a). Slope

aspect strongly affects hydrologic processes via evapotran-

spiration (Sidle and Ochiai 2006) and has been categorized

into nine classes (Fig. 3b). The slope map of the study area is

obtained from the DEM using the slope function in ILWIS-

GIS (http://www.ilwis.org/). These slope values (in degree)

are divided into four classes (Fig. 3c). Slope-length (LS) is the

combination of slope steepness (S) and slope length (L) which

is implemented to represent soil loss potential from the

combined slope properties (Fig. 3d). The LS factor was cal-

culated according to Eq. 1 (Moore and Burch 1986) and

classified into four categories.

LS ¼ Bs

22:13

� �0:6

� sinb

0:0896

� �1:3

; ð1Þ

where Bs = specific catchment’s area, b = slope angle.

Another topographic factor is TWI which is defined in

Eq. 2 (Beven and Kirkby 1979; Moore et al. 1991):

(a)

(b)

(c)

Fig. 1 Location of the study area; a Iran map, b North Khorasan Province map, c spring location map of study area
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TWI ¼ ln
a

tanb

� �
ð2Þ

where a = is the cumulative up slope area from a point

(per unit contour length) and b = is the slope angle at the

point (Fig. 3e). The plan curvature demonstrates the mor-

phology of the topography. A positive curvature represents

that the surface is upwards convex at that cell, and a

negative curvature shows that the surface is upwards con-

cave at that cell. A value of zero indicates a flat surface (Oh

and Lee 2010) (Fig. 3f). The profile curvature shows the

flow acceleration, erosion (negative values)/deposition

(positive values) rate and it controls the change of speed of

mass flowing down the slope (Yesilnacar 2005; Talebi

et al. 2007). In this study, the profile curvature was pre-

pared and classified into three groups based on common

standard classification scheme (Pourghasemi et al. 2013)

(Fig. 3g).

A land use layer was produced from Landsat-7/ETM?

satellite images using a supervised classification and

maximum likelihood algorithm (Rahmati et al. 2016). The

area is covered by six land use types; forest, rangeland,

TWI
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Fig. 2 Flow chart of methodology used in spring potential mapping

cFig. 3 Maps of explanatory variables in the study area; a altitude

(m), b slope aspect, c slope degree, d slope length (LS), e topographic

wetness index (TWI), f plan curvature (100/m), g profile curvature

(100/m)
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dray farming, irrigation farming, residential area, and bare

land. The details of land use type are shown in Fig. 4 and

summarized in Table 1. Lithological features of study

region are represented in the geologic map (Fig. 5), which

is derived from the geologic map at 1:100,000-scale pre-

pared by Geological Survey of Iran (Geology Survey of

Iran (GSI) 1997), digitized in ILWIS-GIS (version 3.8),

and divided into 12 classes (Table 1).

The distance to rivers was calculated using the vector

river lines by manually applying the distance function in

ArcGIS (version 9.3). Five classes corresponding to dis-

tance to rivers were calculated at 200-m intervals (Fig. 6a).

The drainage density exhibits the flow of water through the

study area and is defined as the ratio of sum of the drainage

lengths in the cell and the area of the corresponding cell

(Sarkar and Kanungo 2004; Pourghasemi et al. 2013). The

drainage density was computed for each 30 9 30 m grid

cell which ranges from 1.81 to 7.99 km/km2 and is clas-

sified into four classes (Fig. 6b). The distance to faults map

was extracted from geologic maps at 1:100,000 scale, and

then the buffer categories were defined (Fig. 7a). Finally,

the fault density map was produced. The length of the

faults from geological maps at 1:100,000 scale of the study

area were extracted and divided by area for each

30 9 30 m grid cell with results ranging from 1.81 to

15.94 km/km2. The results were classified into four classes

(Fig. 7b).

Models

Certainty factor (CF) model

In this study, the CF model was implemented to demon-

strate the spatial link joining spring occurrence and

explanatory variables. The CF (an approach that has seen

widespread use in rule-based expert systems), is based on

probabilistic reasoning (Chung and Leclerc 1994). This is

one strategy to handle the problem of blending of different

data layers and the heterogeneity and unreliability of the

input data. The CF, defined as a function of probability, was

originally suggested by Shortliffe and Buchanan (1975) and

later modified by Heckerman (1986) (Kanungo et al. 2011):

CF ¼

ppm � ppn

ppmð1 � ppnÞ
if ppm � ppn

ppm � ppn

ppnð1 � ppmÞ
if ppm\ppn

8><
>: ð3Þ

where, ppm is the conditional probability of having a

number of spring events occurring in category m and ppn is

the prior probability of having the total number of spring

events occurring in the study area. The range of variation

of the CF is [-1.0 to 1.0], where a positive value means an

increasing certainty in spring occurrence, while a negative

value corresponds to a decreasing certainty in spring

occurrence. A value close to 0 means that the prior

Fig. 4 Land use map of study

area
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probability is very similar to the conditional one, so it is

difficult to give any indication about the certainty of the

spring occurrence. The favorability values (ppm, ppn) are

derived from overlaying each data layer with the existing

spring distribution layer in GIS environment and calculat-

ing the spring occurrence frequency. CF values are then

calculated for each layer and their sub-classes in Microsoft

Excel 2010 (Kanungo et al. 2011).

Table 1 Lithology of the study area

Code Lithology Age Era

Qft1 High level piedmont fan and valley terrace deposits Quaternary Cenozoic

Qft2 Low level piedmont fan and valley terrace deposits Quaternary Cenozoic

Ksr Ammonite Bearing shall and thin layers of siltstone and sandstone Early

Cretaceous

Mesozoic

Ksn Grey to black shale and thin layers of siltstone and sandstone Early

Cretaceous

Mesozoic

Ktr Grey oolitic and bioclastic orbitolina limestone Early

Cretaceous

Mesozoic

JKsj Pale red argillaceous limestone, marl, Gypsiferous marl, sandstone and conglomerate Jurassic-

Cretaceous

Mesozoic

Kat Olive green glauconitic sandstone and shale Cretaceous Mesozoic

Mur Red marl, Gypsiferous marl, sandstone and conglomerate Miocene Cenozoic

Jl Light grey, thin-bedded to massive limestone Jurassic-

Cretaceous

Mesozoic

TRJs Dark grey shale and sandstone Triassic-

Jurassic

Mesozoic

DCkh Yellowish, thin to thick-bedded, Fossileferous argillaceous limestone, dark grey limestone, greenish marl

and shale, locally including gypsum

Devonian Paleozoic

Jd Well-bedded to thin-bedded, greenish-grey argillaceous limestone with intercalations of calcareous shale Jurassic Mesozoic

Sn Greenish grey, shale, sandstone, sandy-lime, coral limestone and dolomite (Niur Formation) Silurian Paleozoic

Fig. 5 Lithology map of study

area
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Random forest (RF) model

‘‘Random forest is an ensemble method which compounds

multiple decision tree algorithms to produce repeated

predictions of the same phenomenon. Random forests (RF)

are very flexible ensemble classifiers based on decision

trees, first developed by Breiman (2001)’’ (Breiman 2001;

Catani et al. 2013; Micheletti et al. 2014). Decision trees

can be separated to classification trees and regression trees

(Rodriguez-Galiano et al. 2014). A regression tree (RT)

indicates a set of restrictions or conditions which are

hierarchically structured, and which are successively

applied from a root to a terminal node or leaf of the tree

(Breiman et al. 1984; Quinlan 1993). In order to derive the

RT, recursive partitioning and multiple regressions are

carried out from the dataset. From the root node, the data

splitting process in each internal node of a rule of the tree is

consecutive until a stop condition previously specified is

reached. Each of the terminal nodes, or leaves, has joined

to it a simple regression model which applies in that node

only. Once the tree’s exaction process is finished, pruning

can be applied with the aim of improving the tree’s gen-

eralization capacity by reducing its structural complexity.

The number of cases in nodes can be derived as pruning

criteria (Rodriguez-Galiano et al. 2014).

The RF algorithm handles random binary trees which

use a subset of the observations through bootstrapping

techniques: from the original data set a random choice of

Fig. 6 a Distance to rivers (m), b drainage density (Km/Km2) in the study area

Fig. 7 a Distance to faults (m), b fault density (Km/Km2) in the study area

665 Page 8 of 19 Environ Earth Sci (2016) 75:665

123



the training data is sampled and used to build the model,

the data not included are referred to as ‘‘out-of-bag’’

(OOB) (Breiman 2001; Catani et al. 2013). Furthermore, a

random selection of predictor variables is applied to split

each node of the trees. Each tree is expanded to minimize

classification errors, but the random selection influences

the results, thus making a single-tree classification very

unstable. The RF algorithm estimates the importance of a

variable by looking for how much the prediction error

increases when OOB data for that variable is permuted

while all others are left unchanged (Liaw and Wiener 2002;

Catani et al. 2013). This capability can be profitably

applied to study the relative importance of the different

explanatory variables, a critically important but often

neglected aspect of SPM (spring potential mapping). In the

R statistical package application of RF used in this work

(the ‘‘randomForest’’ package in R 2.0.3 (Breiman and

Cutler 2006)), the model output is a membership proba-

bility to one of the two possible classes ‘‘Spring’’ and ‘‘No

spring’’. Random forests need two parameters to be tuned

by the user: (1) the number of trees T, (2) the number of

variables m to be stochastically chosen from the available

set of features. It is suggested (Breiman 2001; Micheletti

et al. 2014) to pick a large number of trees and the square

root of the dimensionality of the input space for

m (Micheletti et al. 2014). Based on two parameters, the

number of trees in RF has been fixed to 1000 after an

introductory analysis and the number m of variables sam-

pled at each node has been selected to be three to analyze

the conjunct contribution of subsets of features while

maintaining fast convergence during iterations. Moreover,

two types of error were calculated: mean decrease in

accuracy and mean decrease in node impurity (mean

decrease Gini). These importance measures can be used for

ranking variables and for variable selection (Calle and

Urrea 2010).

Multivariate adaptive regression spline (MARS)
model

The MARS models (implemented in this work using the

‘‘earth’’ package in R 3.0.2 (Milborrow 2012). Use a

nonparametric modeling approach that does not require

assumptions about the form of the relationship between the

independent and dependent variables (Friedman 1991;

Balashi et al. 2009). The MARS algorithm works by

division the ranges of the explanatory variables into

regions and by producing, for each of these regions, a

linear regression equation. Breaks values between regions

are called ‘‘knots’’, while the term ‘‘basis function’’ (BF) is

used to demonstrate each distinct interval of the predictors.

BFs are functions of the following form (Eq. 4):

max 0; x�kð Þ or max 0; k�xð Þ ð4Þ

where x is an independent variable and k is a constant cor-

responding to a knot. The general formulation of MARS is:

ŷ ¼ f̂ xð Þ ¼ bþ
XM
m¼1

amHmðxÞ ð5Þ

where, y is the dependent variable predicted by the function

f(x), b is a constant, and M is the number of terms, each of

them formed by a coefficient am and Hm(x) is an individual

basis function or a product of two or more BFs (Conoscenti

et al. 2014). The MARS models were developed in two

steps. In the first step—the forward algorith—basis func-

tions are presented to define Eq. 5. Many basis functions

are added in Eq. 5 to get better performance. The devel-

oped MARS can experience overfitting due to large a

number of basic functions. To mitigate this problem, the

second step—the backward algorithm—prevents over fit-

ting by removing redundant basis functions from Eq. 5.

MARS adopts Generalized Cross-Validation (GCV) to

delete the redundant basis functions (Craven and Wahba

1979; Samui and Kothari 2012). The expression of GCV is

written as follows (Eq. 6):

GCV ¼
1
N

PN
i¼1 yi � f̂ ðxiÞ

� �2

1 � CðHÞ
N

h i2
ð6Þ

where N is the number of data and C(K) is a complexity

penalty that increases with the number of basis function

(BF) in the model and which is defined as (Eq. 7):

C Hð Þ ¼ H þ 1ð Þ þ dH ð7Þ

where d is a penalty for each BF included into the model

and H is number of basic functions in Eq. 5 (Friedman

1991; Samui and Kothari 2012).

Results

Application of certainty factor model

The results of spatial relationship between spring occur-

rence and explanatory variables using the CF technique are

shown in Table 2. Based on Table 2, for altitude, for

example, the 1575–1881 m class has the highest CF value

(0.33). CF values generally increased with increasing alti-

tude in the study area, and then spring occurrence proba-

bility decreases at altitudes above 2189 m. For slope

aspect, most of the springs occurred in south and north-

west facing slopes, while north east-facing slopes have the

lowest abundance. In the study area, the drainage density,

rivers, and faults are in the south and north-west facing

parts of the study area, so these sites are considered as
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Table 2 Spatial relationship between each spring explanatory variable and springs by certainty factor (CF) model

Factors Class No. of

pixel

%

pixel

No. of

spring

%

spring

FR Ppa PPs Final weight

(CF)

Altitude (m) \1293 375,275 27.16 34 19.32 0.71 9.06E-05 0.0001 -0.29

1293–1575 332,365 24.05 39 22.16 0.92 0.0001 0.0001 -0.08

1575–1881 310,603 22.48 59 33.52 1.49 0.0002 0.0001 0.33

1881–2189 272,704 19.74 44 25 1.27 0.0002 0.0001 0.21

2189–2967 90,789 6.57 0 0 0 0 0.0001 -1

Slope aspect Flat 5329 0.39 0 0 0 0 0.0001 -1

North 268,923 19.46 22 12.5 0.64 8.18E-05 0.0001 -0.36

North East 214,071 15.49 16 9.09 0.59 7.47E-05 0.0001 -0.41

East 171,483 12.41 14 7.95 0.64 8.16E-05 0.0001 -0.36

South East 149,669 10.83 23 13.07 1.21 0.0002 0.0001 0.17

South 166,474 12.05 34 19.32 1.60 0.0002 0.0001 0.38

South West 119,584 8.65 20 11.36 1.31 0.0002 0.0001 0.24

West 122,874 8.89 19 10.8 1.21 0.0002 0.0001 0.18

North West 163,329 11.82 28 15.91 1.35 0.0002 0.0001 0.26

Slope degree \5 399,460 28.91 47 19.42 0.67 0.0001 0.0001 -0.08

5–15 620,236 44.89 99 40.91 0.91 0.0002 0.0001 0.20

15–30 305,833 22.13 90 37.19 1.68 0.0003 0.0001 0.57

[30 56,207 4.07 6 2.48 0.61 0.0001 0.0001 -0.16

Slope-length (m) 0–3.32 731,542 52.94 88 50 0.94 0.0001 0.0001 -0.06

3.32–8.39 415,216 30.05 60 34.09 1.13 0.0001 0.0001 0.12

8.39–15.91 182,699 13.22 22 12.5 0.95 0.0001 0.0001 -0.05

[15.91 52,279 3.78 6 3.41 0.90 0.0001 0.0001 -0.10

TWI \10.03 682,022 49.36 65 36.93 0.75 9.53E-05 0.0001 -0.25

10.03–12.40 471,608 34.13 68 38.64 1.13 0.0001 0.0001 0.12

12.40–16.19 174,426 12.62 24 13.64 1.08 0.0001 0.0001 0.07

16.13–25.65 53,680 3.88 19 10.8 2.78 0.0004 0.0001 0.64

Plan curvature (100/m) Concave 590,728 42.75 96 54.55 1.28 0.0002 0.0001 0.22

Flat 168,527 12.2 20 11.36 0.93 0.0001 0.0001 -0.07

Convex 622,481 45.05 60 34.09 0.76 9.64E-05 0.0001 -0.24

Profile curvature (100/m) \-0.001 623,840 45.15 64 36.36 0.81 0.0001 0.0001 -0.19

-0.001 to ?0.001 87,448 6.33 5 2.84 0.45 5.72E-05 0.0001 -0.55

[?0.001 670,448 48.52 107 60.8 1.25 0.0002 0.0001 0.20

Land use Forest 7550 5.18 4 2.27 0.44 0.0005 0.0001 0.76

Rangeland 515,867 37.33 33 18.75 0.50 6.40E-05 0.0001 -0.50

Dry farming 602,337 43.59 71 40.34 0.93 0.0001 0.0001 -0.07

Irrigation farming 173,374 12.55 68 38.64 3.08 0.0004 0.0001 0.68

Residential area 15,973 1.16 0 0 0 0 0.0001 -1

Bare land 2635 0.19 0 0 0 0 0.0001 -1

Lithology Qft2 118,279 8.56 11 6.25 0.73 9.30E-05 0.0001 -0.27

Ktr 375,592 27.18 30 17.05 0.63 7.99E-05 0.0001 -0.37

JKsj 79,875 5.78 29 16.48 2.85 0.0004 0.0001 0.65

Ksr 71,741 5.19 3 1.7 0.33 4.18E-05 0.0001 -0.67

Ksn 526 0.04 0 0 0 0 0.0001 -1

Kat 12,982 0.94 0 0 0 0 0.0001 -1

Qft1 111,619 8.08 17 9.66 1.20 0.0002 0.0001 0.161

Mur 160,095 11.59 14 7.95 0.69 8.74E-05 0.0001 -0.31
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likely zones of groundwater recharge. The north and west

regions have lower drainage density and fault values. These

areas fall under low suitability for infiltration (Davoodi

Moghaddam et al. 2013). For slope angles, the 5�–15� and

15�–30� classes have the highest CF values (0.57 and 0.20,

respectively). Slope always plays a very important role in

groundwater potential mapping and at the same time the

slope increases, the runoff increases as well (Israil et al.

2006) leading to less infiltration (Jaiswal et al. 2003;

Davoodi Moghaddam et al. 2013). For slope length index,

the 3.32–8.39 m class has the highest CF value (0.12). The

CF value for TWI clearly showed that class of 16.13–25.65

has the most effect on spring locations. The TWI factor

illustrates the effect of topography on the location and size

of saturated source areas of runoff generation under the

steady-state assumption and uniform soil properties (i.e.,

transmissivity is constant throughout the catchments and

equal to unity) (Pourghasemi et al. 2013; Davoodi

Moghaddam et al. 2013). The relation between plan cur-

vature and spring locations showed that concave class has

the highest value of CF (0.22), and for profile curvature,

the[0.001 class shows a high CF value (0.20). A concave

slope contains more water and holds this water for a longer

period especially during heavy rainfall (Lee and Pradhan

2006; Davoodi Moghaddam et al. 2013). In the case of land

use, the highest CF value was for the forest land use type

(0.76). When comparing the relationship between spring

location and lithology, the CF values were positive for the

classes of JKsi (Pale red argillaceous limestone, marl,

Gypsiferous marl, sandstone and conglomerate) and Jl

(Light grey, thin-bedded to massive limestone). In the case

of distance to rivers, the 0 and 200 m class has a CF score

of 0.21. The drainage density class\1.81 km/km2 has a

CF value of 0.10. In general, we observed that as the

drainage density increases, the spring frequency decreases.

The drainage density depends on the slope, nature, and

attitude of bedrock and the existing regional and local

fracture templates. It is a reflection of the lithology and

structure of a given area and can be of great value for

groundwater resources evaluation (Godebo 2005; Davoodi

Moghaddam et al. 2013). Assessment of distance to faults

showed that the\2509 m class has high correlation with

spring occurrence. Lineaments are linearly fractured zones

in the geological structure of an area, such as faults and

dykes, and they can control the exchange of water between

surface and subsurface (Davoodi Moghaddam et al. 2013).

Finally, for fault density, the 1.87–5.91 km/km2 class has a

CF value of 0.47.

Table 2 continued

Factors Class No. of

pixel

%

pixel

No. of

spring

%

spring

FR Ppa PPs Final weight

(CF)

Jl 432,568 31.31 71 40.34 1.29 0.0002 0.0001 0.22

TRJs 13,419 0.97 0 0 0 0 0.0001 -1

DCkh 3995 0.29 1 0.57 1.97 0.0003 0.0001 0.49

Jd 188 0.01 0 0 0 0 0.0001 -1

Sn 857 0.06 0 0 0 0 0.0001 -1

Distance to rivers (m) 0–200 1,015,757 73.51 164 93.18 1.27 0.0002 0.0001 0.21

200–400 342,138 24.76 11 6.25 0.25 3.21E-05 0.0001 -0.75

400–600 22,171 1.6 1 0.57 0.36 4.51E-05 0.0001 -0.65

600–800 1577 0.11 0 0 0 0 0.0001 -1

[800 93 0.01 0 0 0 0 0.0001 -1

Drainage density (km/km2) \1.81 365,793 26.47 52 29.55 1.12 0.0001 0.0001 0.10

1.81–2.77 594,115 43 82 46.59 1.08 0.0001 0.0001 0.08

2.77–4.55 325,750 23.58 36 20.45 0.87 0.0001 0.0001 -0.13

4.55–7.99 96,078 6.95 6 3.41 0.49 6.24E-05 0.0001 -0.51

Distance to faults (m) \2509 465,360 33.68 76 43.18 1.28 0.0002 0.0001 0.22

2509–5449 364,994 26.42 37 21.02 0.80 0.0001 0.0001 -0.20

5449–8747 259,796 18.8 37 21.02 1.12 0.0001 0.0001 0.11

8747–12,547 166,330 12.04 18 10.23 0.85 0.0001 0.0001 -0.15

12,547–18,355 125,256 9.07 8 4.55 0.50 6.39E-05 0.0001 -0.50

Fault density (km/km2) \1.87 1,220,870 88.36 149 84.66 0.96 0.0001 0.0001 -0.04

1.87–5.91 74,325 5.38 18 10.23 1.90 0.0002 0.0001 0.47

5.91–10.71 31,498 2.28 5 2.84 1.25 0.0002 0.0001 0.20

10.71–15.94 55,043 3.98 4 2.27 0.57 7.27E-05 0.0001 -0.43
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Application of random forest model

The results of spatial relationship between springs and

explanatory variables using the RF model are shown in

Tables 3, 4 and Figs. 8, 9. The aggregate OOB predic-

tions are presented in Fig. 8 and Table 3 (confusion

matrix). The OOB results indicate a prediction error rate

of about 30.11 %. In other words, the model can be

considered 69.89 % accurate. Overall measure of accu-

racy is then followed by a confusion matrix that records

the conflict between that final model’s predictions and

the present outcomes of the training observations. The

present observations are the rows (Table 3), whilst the

columns correspond to the model predictions collocated

with the observations: the number reflect the counts in

each box (Williams 2011). The model incorrectly pre-

dicted springs where they were actually absent in 56

cases (type I error) and the absence of springs when they

were actually present in 50 cases (Type II error). The

model correctly predicted the absence of springs for 120

cases and the presence of springs for 126 cases. Results

from variable selection for the RF model are presnted in

Fig. 9. This shows the 13 variables ordered by two

specific importance measures (mean decrease accuracy

and mean decrease Gini). Based on Fig. 9 and Table 4,

the higher values indicate that the variable is relatively

more important (Williams 2011). The accuracy measure

(mean decrease) lists distance to rivers (32.75), altitude

(22.29), and land use (18.49) as the most important. The

distance to rivers (14.78), altitude (14.13) and distance

to faults (10.89) have the highest importance according

to the Gini measure. Aside from the first two most

important measures, the rankings are different according

to the Gini measure relative to the Mean Decrease

Accuracy measure.

A full Spring Potential Map for the area was created

using the RF model in ArcGIS 9.3 and categorize based on

a natural break classification plan (Ozdemir 2011;

Table 3 Confusion matrix for

the RF model (0 = spring

absent, 1 = spring present)

Predicted

0 1 Class error

Actual

0 120 56 0.32

1 50 126 0.28

Table 4 Relative influence of explanatory variables in the RF model (0 = spring absent, 1 = spring present)

Variable Spring absent Spring present Mean decrease accuracy Mean decrease Gini

Altitude (m) 13.06 19.17 22.29 14.13

Slope aspect 6.90 7.15 9.62 6.77

Slope degree (degree) 4.46 4.23 6.80 8.12

Slope-length (m) 5.38 4.90 8.00 8.35

TWI 8.89 7.90 12.00 10.7

Plan curvature (100/m) -5.44 3.77 -0.86 6.94

Profile curvature (100/m) -2.78 2.23 -0.33 7.16

Land use 13.30 12.71 18.49 6.74

Lithology 4.06 10.91 11.49 4.32

Distance to rivers (m) 23.78 24.36 32.75 14.78

Drainage density (km/km2) 11.07 9.21 14.23 10.59

Distance to faults (m) 8.35 14.02 16.02 10.89

Fault density (km/km2) 4.23 2.30 5.13 2.44

Fig. 8 The error rate of the overall RF model (OOB out-of-bag

(black line), 0 spring absent (red dash line), and 1 spring present

(green dash line)
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Pourghasemi et al. 2013; Zare et al. 2013; Pourtaghi and

Pourghasemi 2014) into low, moderate, high and very high

potential categories. These results were represented in

Fig. 10 and Table 6.

Application of multivariate adaptive regression

spline model

The optimal MARS model presents 20 terms and includes

20 BF (the term created during the forward pass were 96),

with a GCV of 0.18. Only ten of the 13 independent

variables were used in the optimal model (Table 5),

because MARS only uses the necessary independent vari-

ables (Gutiérrez et al. 2009). In Table 5, nsubset is an

index vector specifying which cases to use, i.e., which rows

in x to use (default is NULL, meaning all), gcv is gener-

alized cross validation (GCV) of the model (aggregated

over all responses) (the GCV is calculated using the pen-

alty argument) and rss is residual sum-of-squares (RSS) of

the model. So, based on Table 5, the most important

variable is distance to rivers. Other important variables to

explain the spatial distribution of springs in the study area

are altitude, land use, slope aspect, distance to faults and

TWI. In this kind of model the importance of the inde-

pendent variables should be interpreted with caution

(Donati and Turrini 2002; Gutiérrez et al. 2009). The

groundwater spring potential map produced by the MARS

model was created according to Eq. (8), and is presented in

Fig. 11, and Table 6.

Fig. 9 The error rate of the overall RF model (OOB out-of-bag, 0

spring absent and 1 spring present)

SpmMARS ¼ ½ þ1:039548ð Þ � 0:268 �max 0; Landuse-5ð Þ þ 0:129 � max 0; FaultDens-6:098443ð Þ
� 0:00007 � max 0; 14689:25-FaultDisð Þ � 0:029 � max 0; 5-Landuseð Þ � max 0; 6-Aspectð Þ
� 0:047 � max 0; 5-Landuseð Þ � max 0; FaultDens-2:266543ð Þ
þ 0:000009 � max 0; Landuse-2ð Þ � maxð0; 14689:25 -FaultDisÞ
� 0:00009 � max 0; 5-Landuseð Þ � max 0; FaultDis-10642:18ð Þ
þ 0:004 � max 0; Aspect-6ð Þ � max 0; RiverDis-323:1099ð Þ
� 0:015 � max 0; Aspect-6ð Þ � max 0; Slope-14:22205ð Þ
þ 0:001 � max 0; 1754-Demð Þ � maxð0; 2:09658-RiverDensÞ
� 0:0005 � max 0; 1754-Demð Þ � max 0; 3:109633-Slopeð Þ
� 0:00009 � max 0; 1754-Demð Þ � max 0; 17:7175-TWIð Þ
þ 0:00005 � max 0; 6:098443-FaultDensð Þ � maxð0; FaultDis-13788:58Þ
� 0:0000003 � max 0; 14689:25-FaultDisð Þ � max 0; RiverDis-161:5549ð Þ
þ 0:00001 � max 0; 8813:518-FaultDisð Þ � max 0; 13:54917-LSð Þ
þ 0:0000004 � max 0; 14689:25-FaultDisð Þ � max 0; LS-3:2082ð Þ
� 0:013 � maxð0;RiverDens-2:123947Þ � max 0; 13:54917-LSð Þ
� 0:047 � max 0; 2:123947-RiverDensð Þ � max 0; 13:54917-LSð Þ
þ 0:002 � max 0; 60-RiverDisð Þ � max 0; 13:2875 TWIð Þ:

ð8Þ
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Validation of groundwater spring potential models

A key step in statistical modeling is an assessment of its

quality is validation (Chung-Jo and Fabbri 2003). In this

study, the spring potential model quality was validated

using an independent dataset that was not used for con-

structing and building of model. From the 234 springs

identified, 176 (70 %) locations were employed to produce

spring potential maps, while the remaining 58 (30 %) cases

were withheld for model validation. To determine the

accuracy of applied models (MARS and RF), two verifi-

cation methods—success rate and prediction rate curves—

were used by comparing the existing spring locations with

the two spring potential maps (Figs. 12, 13).

One method to represent the quality of deterministic and

probabilistic models is the receiver operating characteristic

(ROC) curve (Swets 1988). The area under the ROC curve

(AUC) shows the forecast model quality by describing the

model’s capability to forecast correctly the occurrence or

non-occurrence of pre-defined ‘‘events’’ (Negnevitsky

2002). The ROC curve draws the false positive rate on the

X axis and the true positive rate on the Y axis and evaluates

the trade-off between the two rates (Negnevitsky 2002). To

obtain values for each prediction pattern, the calculated

index values of all cells in the study area were sorted in

descending order (Pradhan et al. 2010a, b). If the area

under the ROC curve (AUC) is close to 1.0, the result of

the test would be excellent. On the contrary, AUC of 0.5

indicates performance equivalent to random chance. Using

the spring potential map grid cells in the training dataset,

the success-rate results were calculated. The success rate

curves were gained using the 70 % training dataset (176

spring locations). Figure 12a, b illustrates the ROCs for the

two spring potential maps in this study. The FR and MARS

models have nearly the same area under the curve (AUC)

Fig. 10 Spring potential map

produced by the random forest

(RF) model

Table 5 The distribution of the explanatory variables and areas with

respect to the spring occurrence potential zones

Factor nsubset GCV RSS

Distance to rivers (m) 19 100.00 100.00

Altitude (m) 18 83.30 88.80

Land use 17 76.20 83.30

Slope aspect 17 76.20 83.30

Distance to faults (m) 17 76.20 83.30

TWI 17 76.20 83.30

Slope-length (m) 16 69.80 78.30

Slope degree (degree) 15 63.30 73.40

Drainage density (km/km2) 14 56.20 68.30

Fault density (km/km2) 12 46.00 60.10
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values (0. 79). The success rate alone is not a suit-

able technique for judging the models prediction power

(Tien Bui et al. 2012), however, because the success rate

technique utilize the training spring pixels that have

already been employed for constructing the spring models.

However, the prediction rate method may help to under-

stand how well the resulting spring potential maps have

classified the areas of existing spring (Tien Bui et al. 2012).

The prediction rate describes how well the model and

predictor variables predict the spring (Lee and Pradhan

2007; Tien Bui et al. 2012; Pourghasemi et al. 2012). The

results of the ROC curve test or prediction rate are shown

in Fig. 13a, b. These curves show that the MARS model

has relatively higher prediction performance

(AUC = 0.7326) than the RF model (AUC = 0.7098).

Discussion and conclusion

Groundwater occurrence and movement are most basically

controlled by the aquifer’s permeability and the lithology

of the underlying strata (Shahid et al. 2000; Ozdemir

2011). Especially in a fractured bedrock aquifer, movement

of groundwater is governed by many other factors includ-

ing topography, lithology, geological structures, fractures

(density, aperture and connectivity), secondary porosity,

groundwater recharge, drainage pattern, land-forms, land

cover, and climatic conditions (Oh et al. 2011). Assessment

of spring occurrence potential has become a valuable

subject for water resource management authorities, and for

regional land-use planning and environmental preservation.

In the past, various methods have been applied to this task.

In this study, groundwater potential maps were identified

using MARS and RF models, predicting spring occurrence

based on mappable explanatory variables. At first, using

compiled information of Iranian Department Water

Resources Management and extensive field investigations,

a spring inventory map was prepared. Then, 13 data layers

(altitude, slope aspect, slope degree, slope length, TWI,

plan curvature, profile curvature, land use, lithology, dis-

tance to rivers, drainage density, distance to faults and fault

Fig. 11 Spring potential map

produced by the multivariate

adaptive regression spline

(MARS) model

Table 6 The relative distribution of spring occurrence categories

obtained by the two modeling approaches

Spring potential mapping RF MARS

Area (%) Area (%)

Low 24.38 23.63

Moderate 25.28 22.99

High 25.43 25.57

Very high 24.92 27.81
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density) were derived from the spatial database for use as

explanatory variables. Using these explanatory variables,

groundwater spring potential maps were produced using

statistical modeling techniques random forest (RF) and

multivariate adaptive regression spline (MARS). Carranza

and Hale (2002) noted that expert knowledge is required to

divide the dataset into training and validation data. For this

reason, of 234 observed spring locations, 176 (70 %) cases

were used as training data and the remaining 58 (30 %)

was used for validation. AUC curves were prepared for the

two models to test their accuracy. The validation results

indicated that the MARS model has rather better predica-

tion accuracy (73.26 %) than the RF (70.98 %) model. The

RF technique has several the advantages that growing large

numbers of trees does not overfit the data, and random

predictor selection keeps bias low, providing better models

for prediction (Prasad et al. 2006). However, the RF model

is prone to over fitting for some very noisy datasets and it

do perform well when a majority of input variables are

irrelevant (Breiman 2001). The MARS technique has

advantages over traditional regression-based analyses.

MARS picks only the most important explanatory variables

Fig. 12 Receiver operating characteristic (ROC) curve for the spring potential maps produced by a RF and b MARS model

Fig. 13 Prediction Receiver operating characteristic (ROC) curve for the spring potential maps produced by a RF and b MARS model
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from a user specified order. That is, the user may choose to

include multiple variables at the beginning of the analysis

and MARS will select out only the most important ones to

include in the final result. This pruning process omits

variables that have limited efficacy in the prediction of the

outcome measure (Kennison and Cox 2013).

These techniques can be used in other areas, but they

must be tuned to regions with similar characteristics to

reflect the diversity of settings in which spring occur.

However, other statistical modeling techniques may be

suitable and more comparison would help guide selection

of the best technique for a given. As a final conclusion,

groundwater spring potential maps can be useful for

planners and engineers in water-resource management and

land-use planning. These spring potential maps can be

applied to groundwater management and groundwater

resource exploration, and the ability to create the maps

using statistical modeling techniques shows great promise

in wider application of spring potential mapping.

Acknowledgments The authors would like to thank Dr. Michael

Fienen at the USGS Wisconsin Water Science Center for revising of

language of manuscript. Also, we gratefully acknowledge of Editor-

in-Chief Prof. James W. LaMoreaux and the two anonymous

reviewers for their helpful comments on the previous version of the

manuscript.

References

Balashi MS, McGuirez AD, Duffy P, Flannigan M, Walsh J, Melillo J

(2009) Assessing the response of area burned to changing

climate in western boreal North America using a Multivariate

Adaptive Regression Splines (MARS) approach. Glob Change

Biol 15:578–600. doi:10.1111/j.1365-2486.2008.01679.x

Bera K, Bandyopadhyay J (2012) Ground water potential mapping in

Dulung watershaed using remote sensing and GIS techniques,

West Bangal, India. Int J Sci Res Publ 2(12):1–7

Beven K, Kirkby MJ (1979) A physically based, variable contributing

area model of basin hydrology. Hydrol Sci Bull 24:43–69

Breiman L (2001) Random forests. Mach Learn 45(l):5–32

Breiman L, Cutler A (2006) Random Forests. http://stat-www.

berkeley.edu/users/breiman/RandomForests/cchome.htm

Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification

and regression trees. Chapman & Hall/CRC

Calle ML, Urrea V (2010) Letter to the editor: stability of random

forest importance measures. Brief Bioinform 12(1):86–89

Carranza EJM, Hale M (2002) Evidential belief functions for data-

driven geologically-constrained predictive mapping of gold

potential, Baguio district, Philippines. Ore Geol Rev 22:117–132

Catani F, Lagomarsino D, Segoni S, Tofani V (2013) Landslide

susceptibility estimation by random forests technique: sensitivity

and scaling issues. Nat Hazards Earth Syst Sci 13:2815–2831

Chung CF, Leclerc Y (1994) A quantitative technique for zoning

landslide hazard. International Association for Mathematical

Geology Annual Conference, Quebec, pp 87–93

Chung-Jo F, Fabbri AG (2003) Validation of spatial prediction

models for landslide hazard mapping. Nat Hazards 30:451–472

Conoscenti CH, Ciaccio M, Caraballo-Arias NA, Gómez-Gutiérrez A,
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