ORIGINAL ARTICLE

Natural and fallout radioactivity levels and radiation hazard evaluation in soil samples

M. Karataşlı¹ · Ş. Turhan² · A. Varinlioğlu³ · Z. Yeğingil¹

Received: 20 December 2014/Accepted: 9 July 2015/Published online: 24 February 2016 © Springer-Verlag Berlin Heidelberg 2016

Abstract The present study aims to obtain the baseline data on natural and fallout radioactivity and to evaluate radiation hazards caused by ionizing radiation emitted from ²²⁶Ra, ²³²Th, ²²²Rn, ⁴⁰K and ¹³⁷Cs in surface soil samples collected from Mersin province and Akkuyu nuclear power plant region. The activity concentrations of ²²⁶Ra, ²³²Th, ⁴⁰K and ¹³⁷Cs were measured using a gamma spectrometer with HPGe detector. The activity concentrations of ²²⁶Ra, ²³²Th, ⁴⁰K and 137 Cs varied from 14.1 \pm 0.7 to 65.4 \pm 2.9, 12.0 \pm $0.8-51.7 \pm 2.1, 172.2 \pm 15.8-511.1 \pm 37.8$ and <MDA to 86.2 ± 1.4 Bq kg⁻¹, respectively. The average concentrations of radon in soil and air were estimated as 23.9 kBg m^{-3} and 76 Bq m⁻³. The radiological parameters such as absorbed gamma dose rate in outdoor air (DRout), annual effective dose rate from external exposure (E_{Ext}), annual effective dose rate from inhalation of radon (E_{Inh}) and lifetime cancer risk (LTCR) were calculated to evaluate radiological hazards. The average values of DR_{out} , E_{Ext} , E_{Inh} and LTCR were found to be 51 nGy h^{-1} , 62 μ Sv year⁻¹, 715 μ Sv year⁻¹ and 2.2 \times 10⁻⁴, respectively.

S. Turhan serefturhan63@gmail.com

M. Karataşlı mkaratasli01@gmail.com

- ¹ Department of Physics, Faculty of Science and Letters, University of Cukurova, 01330 Adana, Turkey
- ² Department of Physics, Faculty of Science and Letters, Kastamonu University, 37150 Kastamonu, Turkey
- ³ Çekmece Nuclear Research and Training Center, P.O. Box 1, 34831 Istanbul, Turkey

Keywords Soil · Natural radioactivity · Fallout radioactivity · Radon · Gamma dose rate · Annual effective dose rate · Lifetime cancer risk

Introduction

The inevitable ionizing radiation exposure to human being mainly stems from natural and anthropogenic radioactive sources. Natural radiation exposure is caused by cosmogenic and terrestrial radionuclides. Terrestrial radionuclides contain the radioactive series of uranium-radium (²³⁸U-²²⁶Ra), thorium (²³²Th) and radioactive potassium (40K) in the earth's crust. The average annual dose to human being is 2.8 mSv of which over 85 % is from natural radiation sources with about half coming from radon (²²²Rn) decay products (UNSCEAR 2008). Soil is the most important source of the terrestrial radionuclides whose activity concentrations depend primarily on the geological and geochemical conditions of each region in the world (UNSCEAR 2008). Major anthropogenic radionuclide sources which contribute to the radionuclide contamination of the environment contain nuclear weapon tests, nuclear power plants, commercial fuel reprocessing and geological repository of high level nuclear wastes. The majority of the global fallout radionuclides resulted from atmospheric nuclear weapon tests conducted from 1945 to 1963 and nuclear accidents. Among different fallout radionuclides, ¹³⁷Cs (half-life 30.1 years) is the most prominent isotope detected by its gamma energy (661.8 keV) on the earth's surface. During the Chernobyl nuclear accident in 1986 about 3.8×10^{16} Bq of ¹³⁷Cs was released to the atmosphere and carried across the international boundaries (Mohapatra et al. 2015; UNSCEAR 1988). Also the nuclear accident in Fukusima plays a major role in fallout release

Fig. 1 Geological map of Mersin province (Duran 2014)

Fig. 2 Location of sampling in Mersin province and Akkuyu NPP region

Table 1 Positions of the soilsamples locations in Mersin andAkkuyu NPP region

Sample code	Location	Position		
		Latitude (N)	Longitude (E)	
S1	Mediterranean Municipal	36°48′10.72″	34°37′51.31″	
S2	İsmet İnonu Boulevard	36°47′26.61″	34°36'5.45"	
S3	Limonluk Quarter	36°47′55.09″	34°35′48.33″	
S4	Palmiye Quarter	36°46′52.54″	34°36'35.13"	
S5	Dumlupinar Quarter	36°46′43.48″	34°35′16.26″	
S6	Eğriçam Quarter	36°46′20.71″	34°34′0.80″	
S7	Mezitli Municipal	36°44′58.04″	34°31′51.24″	
S8	Viranşehir Quarter	36°44′40.07″	34°32′22.07″	
S9	Yenişehir Municipal	36°48'14.23"	34°34′56.55″	
S10	Barbaros Quarter	36°47′2.47″	34°34′49.94″	
S11	Güvenevler Quarter	36°47'17.88"	34°35′16.64″	
S12	Zekiayan Quarter	36°49′2.52″	34°36′28.83″	
S13	Selçuklar Quarter	36°49′17.97″	34°37′36.36″	
S14	Güneş Quarter	36°49′54.08″	34°39′1.74″	
S15	Tırtıl Sanayi	36°46′46.40″	34°34′30.31″	
S16	Yenitaşkent Municipal	36°47′50.62″	34°37′29.96″	
S17	Gülnar	36°20'25.84"	33°23'33.05″	
S18	Sırsavul	36°19′14.29″	33°25′37.86″	
S19	Delikkaya	36°17′55.80″	33°27′58.07″	
S20	Kayabaşı	36°18'37.09"	33°27′7.47″	
S21	Suyun Gözü	36°17′11.27″	33°29′19.64″	
S22	Büyükeceli	36°10′2.04″	33°33'21.53"	
S23	100 m from Akkuyu NPP	36°8′53.96″	33°32'37.40"	
S24	200 m from Akkuyu NPP	36°8′57.16″	33°32′37.95″	
S25	300 m from Akkuyu NPP	36°8′59.08″	33°32′36.49″	
S26	400 m from Akkuyu NPP	36°9′1.18″	33°32′39.85″	
S27	500 m from Akkuyu NPP	36°9′3.39″	33°32′41.91″	
S28	600 m from Akkuyu NPP	36°9′5.52″	33°32′44.79″	
S29	700 m from Akkuyu NPP	36°9′8.03″	33°32′49.12″	
S30	800 m from Akkuyu NPP	36°8′52.99″	33°32′42.29″	
S31	900 m from Akkuyu NPP	36°8′56.53″	33°32′40.22″	
S32	1000 m from Akkuyu NPP	36°8′59.11″	33°32′43.45″	

of ¹³⁷Cs. Gamma radiation emitted from terrestrial and fallout radionuclides is the main external exposure to human beings. Hence determination of the terrestrial and fallout radioactivity levels in various environmental samples such as soil, plants, foods, rocks, etc. is very important for evaluation of public exposure, storage reference data records on radionuclides for producing a radiation map of the country and ascertaining possible changes in environmental radioactivity due to anthropogenic activities (Turhan et al. 2012).

Soil which contains the major sources of natural radionuclides (²³⁸U, ²³²Th, ²²⁶Ra, ²²²Rn, ²¹⁰Pb, ⁴⁰K etc.) and fallout radionuclides (^{137,134}Cs, ^{89,90}Sr, ³H, etc.) is a direct radiation source in the environment (Cho et al. 2014; Lee et al. 1995). Hence, it is critically important to assess

the amount of radioactivity in the soil because of its major influence on the terrestrial ecosystem and humans (Cho et al. 2014). Moreover, the baseline concentration is needed when examining incidents in nuclear power plant facilities to determine the characteristics and behavior of the radiation environment, and to conduct research on the geological features and soil (Jun et al. 1990; Velasco et al. 2012; Cho et al. 2014). Recently, many studies related to measurement of the activity concentrations of the terrestrial and fallout radionuclides were published in the literature (Srilatha et al. 2015; Santawamaitre et al. 2014; Sivakumar 2014; Dusane et al. 2014; Aközcan 2014; Miller and Voutchkov 2014; Ajmal et al. 2014; Rajeshwari et al. 2014; Kunovska et al. 2013; Manohar et al. 2013; Dhawal et al. 2013; Khan et al. 2012). However, there are few studies related to the activity concentrations of terrestrial and fallout radionuclides in environmental samples collected from Mersin province in literature (Özmen et al. 2014; Kurt and Berker 2014).

Mersin province is near the Mediterranean Sea in southern of Turkey. It is located at the Cukurova region and situated between 32 56'-35 11'E and 37 26'-36 01'N (Fig. 1). Mersin has a population of 1,727,255 as of 2014 and occupies 15.853 km². Mersin is one of Turkey's most important cities with its economy determined by agriculture, trade, tourism and industry. Akkuyu nuclear power plant (NPP) having 4×1200 MW VVER units to be the first nuclear power plant in Turkey will be built in Büyükeceli which is one of the districts of Mersin (Özmen et al. 2014). The aim of the study is to determine the activity concentrations of ²²⁶Ra, ²³²Th, ²²²Rn, ⁴⁰K and ¹³⁷Cs in soil samples collected from Mersin and Akkuyu nuclear power plant (NPP) region. The measurements of the activity concentrations of ²²⁶Ra, ²³²Th, ⁴⁰K and ¹³⁷Cs were performed by high-resolution gamma-ray spectrometer with a hyper pure germanium (HPGe) detector. An evaluation of the radiation hazards for human beings due to the natural and fallout radioactivity arising from soil samples was determined in terms of the absorbed gamma dose rate in outdoor air (DR_{out}), annual effective dose rate from external exposure (E_{Ext}) , annual effective dose rate from inhalation of radon (E_{Inh}) and lifetime cancer risk (LTCR).

Materials and methods

Sample processing and activity measurements

Surface soil (0–5 cm) samples were collected randomly from 32 undisturbed sites in Mersin province and around Akkuyu NPP region (Fig. 2). The surface soil samples were properly coded according to the location of the sampling site (Table 1). The soil samples were dried in a temperature-controlled furnace at 105 °C for 24 h to remove moisture. After homogenization, samples were sieved, placed in plastic containers, weighed and hermetically sealed. Before starting the gamma spectrometric measurements, the sealed samples were stored for 4 weeks to reach radioactive equilibrium of the ²²⁶Ra, ²³²Th and their decay products.

Activity measurements were performed by a high-resolution gamma-ray spectrometer at the Gülten Günel Nuclear Physics Research laboratory in Physics Department of Çukurova University. The gamma-ray spectrometer is equipped with a coaxial p-type HPGe detector (GX5020) with a relative efficiency of 50 %. The HPGe detector's energy resolution is 2.0 keV at 1332.5 keV. For gamma-ray shielding, a front opening split-top shield was used to reduce the background. The detector was interfaced to the digital spectrum analyzer (DSA-1000), which was a full-featured 16K channel multichannel analyzer on advanced digital signal processing (DSP) techniques. DSA-1000 operates through Genie-2000 gamma spectroscopy software including peak searching, peak evaluation, energy/efficiency calculation mode, nuclide identification (Uğur et al. 2013). Each soil sample was placed on the top of the detector and counted for 24 h. Background measurements were taken under the same conditions of sample

 Table 2 The activity concentrations of terrestrial and fallout radionuclides in the soil samples

Sample no.	Activity concentration (Bq kg ⁻¹)			
	²²⁶ Ra	²³² Th	⁴⁰ K	¹³⁷ Cs
S1	14.1 ± 0.7	13.7 ± 0.6	255.0 ± 14.2	<mda< td=""></mda<>
S2	14.8 ± 1.2	12.0 ± 0.8	365.9 ± 16.8	21.8 ± 1.1
S 3	19.9 ± 1.1	24.8 ± 1.2	352.9 ± 15.8	4.6 ± 0.6
S4	23.6 ± 1.0	32.2 ± 1.0	424.0 ± 15.6	3.2 ± 0.4
S5	16.7 ± 0.9	24.7 ± 1.3	326.0 ± 14.7	2.3 ± 0.4
S6	19.3 ± 1.4	29.2 ± 1.5	388.4 ± 17.8	5.4 ± 0.7
S7	22.8 ± 0.7	41.3 ± 1.2	368.5 ± 14.8	5.1 ± 0.3
S 8	23.2 ± 1.4	28.5 ± 1.6	438.2 ± 18.3	<mda< td=""></mda<>
S9	21.1 ± 0.8	38.1 ± 1.3	370.7 ± 15.1	5.0 ± 0.4
S10	21.4 ± 1.3	36.3 ± 1.0	367.2 ± 16.9	10.4 ± 1.2
S11	20.9 ± 0.8	41.0 ± 1.4	383.2 ± 15.5	<mda< td=""></mda<>
S12	17.4 ± 0.9	24.1 ± 1.9	284.9 ± 15.3	4.5 ± 0.6
S13	26.7 ± 0.9	41.9 ± 1.4	437.1 ± 15.5	5.6 ± 0.3
S14	14.8 ± 1.2	13.8 ± 1.7	370.6 ± 16.6	<mda< td=""></mda<>
S15	22.1 ± 0.8	38.6 ± 1.2	425.5 ± 15.1	<mda< td=""></mda<>
S16	21.0 ± 1.5	34.8 ± 1.9	382.5 ± 17.4	7.4 ± 0.8
S17	65.4 ± 2.9	50.0 ± 1.1	490.7 ± 45.3	3.1 ± 0.2
S18	40.7 ± 2.0	36.5 ± 2.1	342.7 ± 27.6	10.6 ± 1.0
S19	41.6 ± 1.6	51.7 ± 2.1	412.6 ± 41.1	7.7 ± 1.8
S20	36.0 ± 1.7	40.4 ± 1.9	356.8 ± 27.1	19.1 ± 1.5
S21	22.4 ± 0.9	40.3 ± 1.3	371.1 ± 26.3	19.0 ± 1.0
S22	25.3 ± 1.1	31.6 ± 1.4	172.2 ± 15.8	<mda< td=""></mda<>
S23	39.0 ± 1.9	27.1 ± 1.1	184.0 ± 31.2	28.5 ± 0.9
S24	36.4 ± 1.3	38.2 ± 1.9	385.4 ± 40.2	49.3 ± 1.4
S25	22.0 ± 1.4	41.0 ± 1.6	431.7 ± 33.6	49.8 ± 1.0
S26	32.5 ± 1.5	35.0 ± 1.0	495.2 ± 36.5	7.5 ± 0.3
S27	27.9 ± 1.1	34.1 ± 1.8	511.1 ± 37.8	18.7 ± 1.2
S28	25.5 ± 1.6	35.3 ± 1.1	391.9 ± 32.0	12.7 ± 1.1
S29	36.2 ± 1.4	36.5 ± 1.7	365.9 ± 36.9	86.2 ± 1.4
S30	40.5 ± 1.5	45.4 ± 1.5	232.5 ± 31.9	27.2 ± 1.9
S31	24.9 ± 1.7	36.3 ± 1.3	386.1 ± 32.0	57.0 ± 1.7
S32	30.4 ± 1.3	44.8 ± 1.3	384.8 ± 35.5	11.2 ± 0.8
Min	14.1	12.0	172.2	<mda< td=""></mda<>
Max	65.4	51.7	511.1	86.2
Average	27.1	34.3	370.5	18.6
SD	10.7	9.6	78.1	20.6
SE	1.9	1.7	13.8	3.6

measurements and subtracted in order to get net counts for the sample. The HPGe detector was calibrated for energy and efficiency using reference materials RGU-1 (U-ore), RGTh-1 (Th-ore) and RGK-1 (K₂SO₄) supplies by International Atomic Energy Authority (IAEA). The activity concentration of ²²⁶Ra was derived from the average of the activities of the gamma-ray line of 609.3 keV from ²¹⁴Bi and 351.9 keV from ²¹⁴Pb, while the gamma-ray lines of 911.2 keV from ²²⁸Ac and 583.2 keV from ²⁰⁸Tl were used to determine the activity concentration of ²³²Th. The activity concentrations of ⁴⁰K and ¹³⁷Cs were measured from 1460.8 and 661.6 keV direct gamma-ray lines, respectively.

The combined standard uncertainty of the activity concentration is calculated by the next formula:

$$\Delta A = A \times \sqrt{\left(\frac{\Delta C_{\rm R}}{C_{\rm R}}\right)^2 + \left(\frac{\Delta I}{I}\right)^2 + \left(\frac{\Delta \varepsilon}{\varepsilon}\right)^2 + \left(\frac{\Delta M}{M}\right)^2} \qquad (1)$$

where A and ΔA is the activity concentration and its uncertainty; $C_{\rm R}$ and $\Delta C_{\rm R}$ is the count rate and its uncertainty; I and ΔI is the gamma emission probability and its uncertainty, ε and $\Delta \varepsilon$ is the absolute efficiency of the detector and its uncertainty; M and ΔM is the mass and its uncertainty.

The minimum detectable activity (MDA) of the gammaray measurement system at 95 % confidence level was calculated using the following formula:

$$MDA = \frac{4.66 \times \sqrt{B}}{\varepsilon \times I \times T \times M}$$
(2)

where *B* is the background counts, ε is the absolute efficiency of the detector, *I* is the gamma emission probability

and *T* is the counting time (s) and *M* is the mass of the sample (kg). The average value of the MDA for 226 Ra, 232 Th, 40 K and 137 Cs was found as 0.3, 0.4, 5.4 and 1.8 Bq kg⁻¹, respectively.

Results and discussion

Radioactivity measurement

Thirty-two surface soil samples collected from the study area were analyzed for terrestrial and fallout radionuclides using the gamma-ray spectrometer with the HPGe detector. The activity concentrations of ²²⁶Ra, ²³²Th, ⁴⁰K and ¹³⁷Cs measured in the soil samples are given in Table 2. The average concentrations of ²²⁶Ra, ²³²Th, ⁴⁰K and ¹³⁷Cs were measured as 27.1 \pm 1.9 Bq kg⁻¹ (range 14.1 \pm 0.7–65.4 \pm 2.9 Bq kg⁻¹), 34.3 ± 1.7 Bq kg⁻¹ (range 12.0 ± 0.8 – 51.7 ± 2.1 Bq kg⁻¹), 370.5 ± 13.8 Bq kg⁻¹ (range 172.2 \pm $15.8-511.1 \pm 37.8 \text{ Bg kg}^{-1}$ and $18.6 \pm 3.6 \text{ Bg kg}^{-1}$ (range <MDA to 86.2 ± 1.4 Bq kg⁻¹), respectively. The highest value of ²²⁶Ra. ²³²Th and ⁴⁰K was observed at the location of Gülnar (S17), Delikkaya (S19) and Akkuyu (S27), while the lowest value of 226 Ra, 232 Th and 40 K was found at the location of Mediterranean Municipal (S1), Ismet Inonu Boulevard (S2) and Kayabaşı (S22), respectively. The world average value of 226 Ra, 232 Th and 40 K is 33, 45 and 420 Bq kg⁻¹, respectively (UNSCEAR 2008). The average activity concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K measured in the soil samples are lower than the world average values because the significant part of the province

Country	Activity concentration (Bq kg ⁻¹)			References	
	²²⁶ Ra	²³² Th	⁴⁰ K		
Algeria	50	25	370	UNSCEAR (2008)	
Armenia	51	30	360	UNSCEAR (2008)	
Azerbaijan	25	33	120	UNSCEAR (2008)	
Bulgaria	45	30	400	UNSCEAR (2008)	
Greece	29	28	383	UNSCEAR (2008)	
Croatia	43	37	423	UNSCEAR (2008)	
Egypt	17	18	320	UNSCEAR (2008)	
India	29	64	400	UNSCEAR (2008)	
Iran	30	39	640	UNSCEAR (2008)	
Turkey (Kastamonu)	37	27	431	Kam and Bozkurt (2007)	
Turkey (Kırklareli)	37	40	667	Taşkın et al. (2009)	
Turkey (Sanliurfa)	21	25	299	Bozkurt et al. (2007)	
Turkey (Osmaniye)	10	12	243	Uğur et al. (2013)	
Turkey (Kilis)	16	15	206	Canbazoğlu et al. (2013)	
Turkey (Yalova)	22	27	419	Kapdan et al. (2011)	
Turkey (Mersin)	27	34	371	Present study	

Table 3 Comparison of the
activity of 226 Ra, 232 Th and 40 K
in soil samples with those
reported for different regions of
Turkey and other countries

is formed by the limestone related to the geological process (Duran 2014). It is known that the activity concentration levels of terrestrial radionuclides are related to the types of rock from which the soils originate (UNSCEAR 2000). In general, basalts and most limestones have relatively low radium contents (UNSCEAR 2000). The measured average activity of ²²⁶Ra, ²³²Th and ⁴⁰K were compared with the values reported in different parts of Turkey and other countries as shown in Table 3. As seen in Table 3, the natural radionuclide concentrations were comparable with the other reported values. It can be seen from Table 2 that the activity concentrations of ¹³⁷Cs were below the lower the MDA measured for six soil samples (S1, S8, S11, S14, S15 and S22). The activity concentrations of ¹³⁷Cs varied from MDA (<1.8 Bq kg⁻¹) to 86.2 \pm 1.4 Bq kg⁻¹ with an average of 18.6 \pm 3.6 Bq kg⁻¹. The highest value of ¹³⁷Cs was observed at location of Akkuyu (S29).

Estimation of radon concentration in soil and air

The concentration of radon in soil gas (A_{Rnsoil} in Bq m⁻³) in the absence of radon transport is as follows (UNSCEAR 2000):

$$A_{\text{Rnsoil}} = \frac{A_{\text{Ra}} \times f \times \rho \times (1 - \varepsilon)}{\varepsilon}$$
(3)

where $A_{\rm Ra}$ is the activity concentration of ²²⁶Ra measured for the soil samples, f is the emanation factor (0.21), ρ is the density of soil (1800 kg m⁻³) and ε is the total porosity (0.3).

The concentration of radon in the air (A_{Rnair} in Bq m⁻³) was estimated by the below equation:

$$A_{\rm Rnair} = A_{\rm Rnsoil} \sqrt{\frac{d_{\rm Soil}}{D_{\rm Air}}} \tag{4}$$

where A_{Rnsoil} is the concentration of ²²²Rn in the soil given in Eq. (3), d_{Soil} is the diffusion rate constant of ²²²Rn in the soil (0.5 × 10⁻⁴ m² s⁻¹) and D_{Air} is the diffusion rate constant of ²²²Rn in the air (5 m² s⁻¹). The activity concentrations of ²²²Rn estimated for the soil samples and air are given in Table 4. The values of A_{Rnsoil} and A_{Rnair} varied from 12.4 to 57.7 kBq m⁻³ with an average of 23.9 kBq m⁻³ and 39–182 Bq m⁻³ with an average of 76 Bq m⁻³, respectively. Results show that 75 % of the A_{Rnair} values are lower than the reference level of 100 Bq m⁻³ recommended by WHO (2009).

Evaluation of the radiation hazards

Absorbed gamma dose rate in outdoor air (DR_{out})

The external terrestrial gamma dose rate in outdoor air at 1 m height from the ground in each sampling locations was

 Table 4 The activity concentrations of ²²²Rn estimated for soil samples and air

Soil Air S1 12436 39 S2 13054 41 S3 17552 56 S4 20815 66 S5 14729 47 S6 17023 54 S7 20110 64 S8 20462 65 S9 18610 59 S10 18875 60 S11 18434 58 S12 15347 49 S13 23549 74 S14 13054 41 S15 19492 62 S16 18522 59 S17 57683 182 S18 35906 114 S19 36656 116 S20 31726 100 S21 19757 62 S22 2288 70 S23 34354 109 S24 32131 102	Sample no.	Radon concentration (Bq m^{-3})			
S1 12436 39 S2 13054 41 S3 17552 56 S4 20815 66 S5 14729 47 S6 17023 54 S7 20110 64 S8 20462 65 S9 18610 59 S10 18875 60 S11 18434 58 S12 15347 49 S13 23549 74 S14 13054 41 S15 19492 62 S16 18522 59 S17 57683 182 S18 35906 114 S19 36656 116 S20 31726 100 S21 19757 62 S22 2288 70 S23 34354 109 S24 32131 102 S25 19386 61 S26 28665 91 S30 <t< th=""><th></th><th>Soil</th><th>Air</th></t<>		Soil	Air		
S2 13054 41 S3 17552 56 S4 20815 66 S5 14729 47 S6 17023 54 S7 20110 64 S8 20462 65 S9 18610 59 S10 18875 60 S11 18434 58 S12 15347 49 S13 23549 74 S14 13054 41 S15 19492 62 S16 18522 59 S17 57683 182 S18 35906 114 S19 36656 116 S20 31726 100 S21 19757 62 S22 2288 70 S23 34354 109 S24 32131 102 S25 19386 61 S26 28665 91 S27 24590 78 S28 <	S1	12436	39		
S3 17552 56 S4 20815 66 S5 14729 47 S6 17023 54 S7 20110 64 S8 20462 65 S9 18610 59 S10 18875 60 S11 18434 58 S12 15347 49 S13 23549 74 S14 13054 41 S15 19492 62 S16 18522 59 S17 57683 182 S18 35906 114 S19 36656 116 S20 31726 100 S21 19757 62 S22 22288 70 S23 34354 109 S24 32131 102 S25 19386 61 S26 28665 91 S27 24590 78 S28 22491 71 S29	S2	13054	41		
S4 20815 66 S5 14729 47 S6 17023 54 S7 20110 64 S8 20462 65 S9 18610 59 S10 18875 60 S11 18434 58 S12 15347 49 S13 23549 74 S14 13054 41 S15 19492 62 S16 18522 59 S17 57683 182 S18 35906 114 S19 36656 116 S20 31726 100 S21 19757 62 S22 2228 70 S23 34354 109 S24 32131 102 S25 19386 61 S26 28665 91 S27 24590 78 S28 22491 71 S30 35677 113 S31 2	S3	17552	56		
S5 14729 47 S6 17023 54 S7 20110 64 S8 20462 65 S9 18610 59 S10 18875 60 S11 18434 58 S12 15347 49 S13 23549 74 S14 13054 41 S15 19492 62 S16 18522 59 S17 57683 182 S18 35906 114 S19 36656 116 S20 31726 100 S21 19757 62 S22 2228 70 S23 34354 109 S24 32131 102 S25 19386 61 S26 28665 91 S27 24590 78 S28 22491 71 S29 31928 101 S30 35677 113 S31	S4	20815	66		
S6 17023 54 S7 20110 64 S8 20462 65 S9 18610 59 S10 18875 60 S11 18434 58 S12 15347 49 S13 23549 74 S14 13054 41 S15 19492 62 S16 18522 59 S17 57683 182 S18 35906 114 S19 36656 116 S20 31726 100 S21 19757 62 S22 22288 70 S23 34354 109 S24 32131 102 S25 19386 61 S26 28665 91 S27 24590 78 S28 22491 71 S29 31928 101 S30 35677 113 S31 21944 69 S32	S5	14729	47		
S7 20110 64 S8 20462 65 S9 18610 59 S10 18875 60 S11 18434 58 S12 15347 49 S13 23549 74 S14 13054 41 S15 19492 62 S16 18522 59 S17 57683 182 S18 35906 114 S19 36656 116 S20 31726 100 S21 19757 62 S22 22288 70 S23 34354 109 S24 32131 102 S25 19386 61 S26 28665 91 S27 24590 78 S28 22491 71 S29 31928 101 S30 35677 113 S31 21944 69 S32 26848 85 Min	S6	17023	54		
S8 20462 65 S9 18610 59 S10 18875 60 S11 18434 58 S12 15347 49 S13 23549 74 S14 13054 41 S15 19492 62 S16 18522 59 S17 57683 182 S18 35906 114 S19 36656 116 S20 31726 100 S21 19757 62 S22 22288 70 S23 34354 109 S24 32131 102 S25 19386 61 S26 28665 91 S27 24590 78 S28 22491 71 S29 31928 101 S30 35677 113 S31 21944 69 S32 26848 85 Min 12436 39 Max <td>S7</td> <td>20110</td> <td>64</td>	S7	20110	64		
S9 18610 59 S10 18875 60 S11 18434 58 S12 15347 49 S13 23549 74 S14 13054 41 S15 19492 62 S16 18522 59 S17 57683 182 S18 35906 114 S19 36656 116 S20 31726 100 S21 19757 62 S22 2288 70 S23 34354 109 S24 32131 102 S25 19386 61 S26 28665 91 S27 24590 78 S28 22491 71 S30 35677 113 S31 21944 69 S32 26848 85 Min 12436 39 Max 57683 182 Average 23878 76 SD<	S8	20462	65		
S10 18875 60 S11 18434 58 S12 15347 49 S13 23549 74 S14 13054 41 S15 19492 62 S16 18522 59 S17 57683 182 S18 35906 114 S19 36656 116 S20 31726 100 S21 19757 62 S22 22288 70 S23 34354 109 S24 32131 102 S25 19386 61 S26 28665 91 S27 24590 78 S28 22491 71 S30 35677 113 S31 21944 69 S32 26848 85 Min 12436 39 Max 57683 182 Average 23878 76 SD 9412 30 SE<	S9	18610	59		
S111843458S121534749S132354974S141305441S151949262S161852259S1757683182S1835906114S1936656116S2031726100S211975762S222228870S2334354109S2432131102S251938661S262866591S272459078S282249171S2931928101S3035677113S312194469S322684885Min1243639Max57683182Average2387876SD941230SE16645	S10	18875	60		
S12 15347 49 S13 23549 74 S14 13054 41 S15 19492 62 S16 18522 59 S17 57683 182 S18 35906 114 S19 36656 116 S20 31726 100 S21 19757 62 S22 22288 70 S23 34354 109 S24 32131 102 S25 19386 61 S26 28665 91 S27 24590 78 S28 22491 71 S29 31928 101 S30 35677 113 S31 21944 69 S32 26848 85 Min 12436 39 Max 57683 182 Average 23878 76 SD 9412 30 SE 1664 5	S11	18434	58		
\$132354974\$141305441\$151949262\$161852259\$1757683182\$1835906114\$1936656116\$2031726100\$211975762\$222228870\$2334354109\$2432131102\$251938661\$262866591\$272459078\$282249171\$2931928101\$3035677113\$312194469\$322684885Min1243639Max57683182Average2387876\$D941230\$E16645	S12	15347	49		
\$141305441\$151949262\$161852259\$1757683182\$1835906114\$1936656116\$2031726100\$211975762\$222228870\$2334354109\$2432131102\$251938661\$262866591\$272459078\$282249171\$2931928101\$3035677113\$312194469\$322684885Min1243639Max57683182Average2387876\$D941230\$E16645	S13	23549	74		
\$151949262\$161852259\$1757683182\$1835906114\$1936656116\$2031726100\$211975762\$222228870\$2334354109\$2432131102\$251938661\$262866591\$272459078\$282249171\$3035677113\$312194469\$322684885Min1243639Max57683182Average2387876\$D941230\$E16645	S14	13054	41		
\$161852259\$1757683182\$1835906114\$1936656116\$2031726100\$211975762\$222228870\$2334354109\$2432131102\$251938661\$262866591\$272459078\$282249171\$2931928101\$3035677113\$312194469\$322684885Min1243639Max57683182Average2387876\$D941230\$E16645	S15	19492	62		
\$1757683182\$1835906114\$1936656116\$2031726100\$211975762\$222228870\$2334354109\$2432131102\$251938661\$262866591\$272459078\$282249171\$2931928101\$3035677113\$312194469\$322684885Min1243639Max57683182Average2387876\$D941230\$E16645	S16	18522	59		
S18 35906 114 S19 36656 116 S20 31726 100 S21 19757 62 S22 22288 70 S23 34354 109 S24 32131 102 S25 19386 61 S26 28665 91 S27 24590 78 S28 22491 71 S29 31928 101 S30 35677 113 S31 21944 69 S32 26848 85 Min 12436 39 Max 57683 182 Average 23878 76 SD 9412 30 SE 1664 5	S17	57683	182		
\$1936656116\$2031726100\$211975762\$222228870\$2334354109\$2432131102\$251938661\$262866591\$272459078\$282249171\$2931928101\$3035677113\$312194469\$322684885Min1243639Max57683182Average2387876\$D941230\$E16645	S18	35906	114		
S20 31726 100 S21 19757 62 S22 22288 70 S23 34354 109 S24 32131 102 S25 19386 61 S26 28665 91 S27 24590 78 S28 22491 71 S29 31928 101 S30 35677 113 S31 21944 69 S32 26848 85 Min 12436 39 Max 57683 182 Average 23878 76 SD 9412 30 SE 1664 5	S19	36656	116		
S21 19757 62 S22 22288 70 S23 34354 109 S24 32131 102 S25 19386 61 S26 28665 91 S27 24590 78 S28 22491 71 S29 31928 101 S30 35677 113 S31 21944 69 S32 26848 85 Min 12436 39 Max 57683 182 Average 23878 76 SD 9412 30 SE 1664 5	S20	31726	100		
S22 22288 70 S23 34354 109 S24 32131 102 S25 19386 61 S26 28665 91 S27 24590 78 S28 22491 71 S29 31928 101 S30 35677 113 S31 21944 69 S32 26848 85 Min 12436 39 Max 57683 182 Average 23878 76 SD 9412 30 SE 1664 5	S21	19757	62		
S23 34354 109 S24 32131 102 S25 19386 61 S26 28665 91 S27 24590 78 S28 22491 71 S29 31928 101 S30 35677 113 S31 21944 69 S32 26848 85 Min 12436 39 Max 57683 182 Average 23878 76 SD 9412 30 SE 1664 5	S22	22288	70		
S24 32131 102 S25 19386 61 S26 28665 91 S27 24590 78 S28 22491 71 S29 31928 101 S30 35677 113 S31 21944 69 S32 26848 85 Min 12436 39 Max 57683 182 Average 23878 76 SD 9412 30 SE 1664 5	S23	34354	109		
S25 19386 61 S26 28665 91 S27 24590 78 S28 22491 71 S29 31928 101 S30 35677 113 S31 21944 69 S32 26848 85 Min 12436 39 Max 57683 182 Average 23878 76 SD 9412 30 SE 1664 5	S24	32131	102		
S26 28665 91 S27 24590 78 S28 22491 71 S29 31928 101 S30 35677 113 S31 21944 69 S32 26848 85 Min 12436 39 Max 57683 182 Average 23878 76 SD 9412 30 SE 1664 5	S25	19386	61		
S27 24590 78 S28 22491 71 S29 31928 101 S30 35677 113 S31 21944 69 S32 26848 85 Min 12436 39 Max 57683 182 Average 23878 76 SD 9412 30 SE 1664 5	S26	28665	91		
S28 22491 71 S29 31928 101 S30 35677 113 S31 21944 69 S32 26848 85 Min 12436 39 Max 57683 182 Average 23878 76 SD 9412 30 SE 1664 5	S27	24590	78		
S29 31928 101 S30 35677 113 S31 21944 69 S32 26848 85 Min 12436 39 Max 57683 182 Average 23878 76 SD 9412 30 SE 1664 5	S28	22491	71		
S30 35677 113 S31 21944 69 S32 26848 85 Min 12436 39 Max 57683 182 Average 23878 76 SD 9412 30 SE 1664 5	S29	31928	101		
S31 21944 69 S32 26848 85 Min 12436 39 Max 57683 182 Average 23878 76 SD 9412 30 SE 1664 5	S30	35677	113		
S32 26848 85 Min 12436 39 Max 57683 182 Average 23878 76 SD 9412 30 SE 1664 5	S31	21944	69		
Min 12436 39 Max 57683 182 Average 23878 76 SD 9412 30 SE 1664 5	S32	26848	85		
Max 57683 182 Average 23878 76 SD 9412 30 SE 1664 5	Min	12436	39		
Average 23878 76 SD 9412 30 SE 1664 5	Max	57683	182		
SD 9412 30 SE 1664 5	Average	23878	76		
SE 1664 5	SD	9412	30		
	SE	1664	5		

estimated using data and formulae provided by the UNSCEAR report (2008).

$$DR_{Out}(nGy h^{-1}) = 0.462 \times A_{Ra} + 0.604 \times A_{Th} + 0.0417 \times A_K + 0.1243 \times A_{Cs}$$
(6)

where A_{Ra} , A_{Th} , A_K and A_{Cs} are the activity concentrations of ²²⁶Ra, ²³²Th, ⁴⁰K and ¹³⁷Cs in Bq kg⁻¹, respectively. The estimated values of DR_{out} are given in the second

 Table 5
 Outdoor absorbed

 gamma dose rate, annual
 effective dose rates and lifetime

 cancer risk
 filterime

Page 7 of 9 424

Sample no.	$DR_{out} (nGy h^{-1})$	Annual effective dose rate (μ Sv year ⁻¹)		LTCR
		$E_{\rm Ext}$	E _{Inh}	
S1	26	31	372	1.1E-04
S2	32	39	391	1.4E-04
S 3	39	48	525	1.7E-04
S4	48	59	623	2.1E-04
S5	37	45	441	1.6E-04
S6	43	53	510	1.9E-04
S7	51	63	602	2.2E-04
S8	46	57	613	2.0E-04
S9	49	60	557	2.1E-04
S10	48	59	565	2.1E-04
S11	50	62	552	2.2E-04
S12	35	43	459	1.5E-04
S13	57	69	705	2.4E-04
S14	31	38	391	1.3E-04
S15	51	63	584	2.2E-04
S16	48	58	555	2.0E-04
S17	81	100	1727	3.5E-04
S18	56	69	1075	2.4E-04
S19	69	84	1097	2.9E-04
S20	58	71	950	2.5E-04
S21	53	64	591	2.3E-04
S22	38	47	667	1.6E-04
S23	46	56	1028	2.0E-04
S24	62	76	962	2.7E-04
S25	59	73	580	2.5E-04
S26	58	71	858	2.5E-04
S27	57	70	736	2.5E-04
S28	51	63	673	2.2E-04
S29	65	79	956	2.8E-04
S30	59	73	1068	2.5E-04
S31	57	69	657	2.4E-04
S32	59	72	804	2.5E-04
Min	26	31	372	1.1×10^{-4}
Max	81	100	1727	3.5×10^{-4}
Average	51	62	715	2.2×10^{-4}
SD	12	14	282	5.0×10^{-5}
SE	2	2	36	6.5×10^{-6}

column of Table 5. The values of DR_{out} varied from 26 to 81 nGy h⁻¹ with an average of 51 nGy h⁻¹. The minimum and maximum value of DR_{out} was estimated for the samples of S1 (Mediterranean Municipal) and the sample of S17 (Gülnar), respectively. The average percentage contribution of the natural and fallout radionuclides to the outdoor absorbed gamma dose rate is shown in Fig. 3. The average value of DR_{out} is 14 % lower than the world average outdoor absorbed gamma dose rate of 59 nGy/h (UNSCEAR 2008).

Annual effective dose rates due to external exposure and inhalation of radon

The annual effective dose rate due to external exposure (E_{Ext}) was estimated from outdoor external gamma radiation dose rate (DR_{out}) taking into account the conversion factor for adults (0.7 Sv Gy⁻¹) and the outdoor occupancy (0.2) implying that 20 % of time is spent outdoors. The E_{Ext} was estimated using the following equation proposed by the UNSCEAR report (1982).

Fig. 3 Percentage contribution of natural and fallout radionuclides in the soil samples to the outdoor absorbed gamma dose rate

$$E_{\text{Ext}} = \text{DR}_{\text{Out}} \times 0.7 \times 8766 \times 0.2 \times 10^{-3} \tag{6}$$

where DR_{Out} is the outdoor gamma absorbed gamma dose rate given in Eq. (5).

Annual effective dose rates due to inhalation of radon (E_{Inh})

The annual effective dose rate (E_{Inh}) coming from inhalation of radon gas was estimated taking into account the equilibrium factor (0.6 for outdoors), the conversion factor for radon (9 nSv h⁻¹ per Bq m⁻³) and the outdoor occupancy (0.2) implying that 20 % of time is spent outdoors (UNSCEAR 2008).

$$E_{\rm Inh} = A_{\rm Rnair} \times 0.6 \times 9 \times 8766 \times 0.2 \times 10^{-3} \tag{7}$$

where A_{Rnair} is the concentration of ²²²Rn in the air given in Eq. (4).

The estimated values of E_{Ext} and E_{Inh} are given in the third and fourth column of Table 5. The values of E_{Ext} varied from 31 to 100 µSv year⁻¹ with an average of 62 µSv year⁻¹ which is lower than the world average of 70 µSv year⁻¹ (UNSCEAR 2008). The values of E_{Inh} varied from 372 to 1727 µSv year⁻¹ with an average of 715 µSv year⁻¹ which is lower than the UNSCEAR (2008) recommended radon dose.

Lifetime cancer risk (LTCR)

The LTCR caused by the annual effective dose rate due to external exposure (E_{Ext}) was estimated using following equation (ICRP 1990):

$$LTCR = E_{Ext} \times AL \times RF \tag{8}$$

where E_{Ext} is the annual effective dose rate given in Eq. (6), AL is the average life time (70 years) and RF is the risk factor (0.05). The estimated values of LTCR are given in the fifth column of Table 5. The values of LTCR varied from 1.1×10^{-4} to 3.5×10^{-4} with an average of 2.2×10^{-4} which is less than the world average (2.9×10^{-4}) .

Conclusions

The activity concentrations of natural and fallout radionuclides (²²⁶Ra, ²³²Th, ⁴⁰K and ¹³⁷Cs) in the soil samples collected from Mersin and Akkuyu NPP region were determined to evaluate the possible changes in environmental radioactivity caused by nuclear activities in the future. The activity concentrations of radon in soil gas and air were estimated using the activity concentrations of ²²⁶Ra measured in the soil samples. The results of the activity measurements have shown that the average activity concentrations of natural radionuclides are lower than the world average values reported UNCEAR (2008) as the significant part of the province is formed by the limestone. As known, ¹³⁷Cs is released into the environment and can be transferred by some meteorological events such as wind to thousands of kilometers. In the study the average concentration of ¹³⁷Cs due to Chernobyl accident and around 500 atmospheric nuclear weapons tests conducted until 1980 was 18.6 Bq kg⁻¹. The highest value of ¹³⁷Cs was observed at the location of Akkuyu (S29).

The radiological hazard information of the average outdoor absorbed gamma dose rate, annual effective dose rate from external exposure, annual effective dose rate from inhalation of radon and lifetime cancer risk for each adult person living in the region was 51 nGy h⁻¹, 62 μ Sv year⁻¹, 715 μ Sv year⁻¹ and 2.2 $\times 10^{-4}$, respectively. These values do not exceed the recommended values.

Acknowledgments This study was carried out within the framework of a doctoral thesis conducted at Çukurova University. The authors remember Prof. Dr. Gülten Günel with respect.

References

- Ajmal PY, Bhangare RC, Tiwari M, Sahu SK, Pandit GG (2014) External gamma radiation levels and natural radioactivity in soil around a phosphate fertilizer plant at Mumbai. J Radioanal Nucl Chem 300:23–27
- Aközcan S (2014) Natural and artificial radioactivity levels and hazards of soils in the Kücük Menderes Basin, Turkey. Environ Earth Sci 71:4611–4614

- Bozkurt A, Yorulmaz N, Kam E, Karahan G, Osmanlioglu AE (2007) Assessment of environmental radioactivity for Sanliurfa region of Southeastern Turkey. Radiat Meas 42:1387–1391
- Canbazoğlu C, Turhan Ş, Bakkal S, Uğur FA, Gören E (2013) Analysis of gamma emitting radionuclides (terrestrial and anthropogenic) in soil samples from Kilis province in south Anatolia, Turkey. Ann Nucl Energy 62:153–157
- Cho JH, Lee HK, Dong KR, Ju YJ, Chung WK, Han DK, Kim MH (2014) A study on the measurement and analysis of radioactivity concentration and the ambient dose rate in soil on the playgrounds of elementary schools in the Gwangju area. Environ Earth Sci 71:2391–2397
- Dhawal SJ, Phadatare MR, Thorat ND, Kulkarni GS, Pawar SH (2013) Natural radioactivity study in soil samples of South Konkan, Maharashtra, India. Radiat Prot Dosim 157(2):225–233
- Duran C (2014) Relationship between rainfall distribution and physical geography elements within Mersin province, Turkey. Proced Soc Behav Sci 120:740–748
- Dusane CB, Mishra S, Sahu SK, Pandit GG (2014) Distribution of ²³⁸U, ²²⁶Ra, ²³²Th and ⁴⁰K in soil samples around Tarapur, India. J Radioanal Nucl Chem 302:1435–1440
- ICRP (1990) Recommendations of the International Commission on Radiological Protection, vol 212 No. 1–3, publication 60
- Jun JS, Chai HS, Lee BY, Kim HC, Lee DJ, Kim DS, Um DH (1990) Study on the assessment of total dose (effective dose equivalent) from natural environmental radiation. New Phys: Sae Mulli 30(1):483–495
- Kam E, Bozkurt A (2007) Environmental radioactivity measurements in Kastamonu Region of northern Turkey. Appl Radiat Isot 65:440–444
- Kapdan E, Varinlioğlu A, Karahan G (2011) Radioactivity levels and health risks due to radionuclides in the soil of Yalova, Northwest Turkey. Int J Environ Res 5(4):837–846
- Khan MS, Srivastava DS, Azam A (2012) Study of radium content and radon exhalation rates in soil samples of northern India. Environ Earth Sci 67(5):1363–1371
- Kunovska B, Ivanova K, Stojanovska Z, Vuchkov D, Zaneva N (2013) Measurements of radon concentration in soil gas of urban areas, Bulgaria. Rom J Phys 58:172–179
- Kurt K, Berker S (2014) Measurement of natural radioactivity in beach sand of Akkuyu Mersin, Turkey. J Nat Sci Res 4(17):83–89
- Lee MH, Lee CW, Hong KH, Choi YH, Kim SB, Park DW, Lee JH (1995) A study on distribution of Cs-137 and Sr-90 in soils around Taejon region. J Korea Assoc Radiat Prot 20(2):123–128
- Manohar SN, Meijer HAJ, Herber MA (2013) Radon flux maps for the Netherlands and Europe using terrestrial gamma radiation derived from soil radionuclides. Atmos Environ 81:399–412
- Miller M, Voutchkov M (2014) Evaluation of gamma activities of naturally occurring radioactive materials in uncontaminated surface soils of Jamaica. J Radioanal Nucl Chem 300:303–313
- Mohapatra S, Sahoo SK, Dubey JS, Patra AC, Thakur VK, Tripathy SK, Vidyasagar D, Godbole SV, Ravi PM, Tripathi RM (2015)

On the radiological assessment of natural and fallout radioactivity in a natural high background radiation area at Odisha, India. J Radioanal Nucl Chem 303:2081–2092

- Özmen SF, Boztosun I, Yavuz M, Tunç MR (2014) Determination of gamma radioactivity levels and associated dose rates of soil samples of the Akkuyu/Mersin using high-resolution gamma-ray spectrometry. Radiat Prot Dosim 158(4):461–465
- Rajeshwari T, Rajesh S, Kerur BR, Anilkumar S, Krishnan N, Pant AD (2014) Natural radioactivity studies of Bidar soil samples using gamma spectrometry. J Radioanal Nucl Chem 300:61–65
- Santawamaitre T, Malain D, Al-Sulaiti HA, Bradley DA, Matthews MC, Regan PH (2014) Determination of ²³⁸U, ²³²Th and ⁴⁰K activity concentrations in riverbank soil along the Chao Phraya river basin in Thailand. J Environ Radioact 138:80–86
- Sivakumar R (2014) An assessment of natural radioactivity levels and radiation hazards in the soil of Coonoor, South India. Environ Earth Sci 72:5063–5071
- Srilatha MC, Rangaswamy DR, Sannappa J (2015) Measurement of natural radioactivity and radiation hazard assessment in the soil samples of Ramanagara and Tumkur districts, Karnataka, India. J Radioanal Nucl Chem 303:993–1003
- Taşkin H, Karavus M, Ay P, Topuzoglu A, Hidiroglu S, Karahan G (2009) Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J Environ Radioact 100:49–53
- Turhan Ş, Köse A, Varinlioğlu A, Şahin NK, Arıkan I, Oğuz F, Yücel B, Özdemir T (2012) Distribution of terrestrial and anthropogenic radionuclides in Turkish surface soil samples. Geoderma 187–188:117–124
- Uğur FA, Turhan Ş, Gören E, Gezer F, Yeğingil Z, Şahan H, Şahan M, Tel E, Karahan G (2013) A survey of distribution of terrestrial radionuclides in surface soil samples in and around Osmaniye province, Turkey. Radiat Prot Dosim 154:483–489
- UNSCEAR (1982) Ionizing radiation: sources and biological effects. United Nations Scientific Committee on the effects of atomic radiation. United Nations Publication, New York
- UNSCEAR (1988) Sources and effects of ionizing radiation. United Nations Scientific Committee on the effects of atomic radiation. United Nations Publication, New York
- UNSCEAR (2000) Sources and effects of ionizing radiation. United Nations Scientific Committee on the effects of atomic radiation. United Nations Publication, New York
- UNSCEAR (2008) Sources and effects of ionizing radiation. United Nations Scientific Committee on the effects of atomic radiation. United Nations Publication, New York
- Velasco H, Cid AS, Anjos RM, Zamboni CB, Rizzotto M, Valladares DL, Juri Ayub J (2012) Variability of ¹³⁷Cs and ⁴⁰ K soil-to-fruit transfer factor in tropical lemon trees during the fruit development period. J Environ Radioact 104:64–70
- WHO (2009) Handbook on indoor radon. A public health perspective.WHO library cataloguing-in-publication data NLM classification: WN 615, France