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Abstract The purpose of this study is to evaluate and

compare the results applying the statistical index and the

index of entropy methods for estimating landslide suscep-

tibility in Gongliu County, China. In order to do this, first, a

landslide inventory map was constructed mainly based on

earlier reports and aerial photographs as well as by carrying

out field surveys. Then the landslide inventory was ran-

domly divided into two datasets 70 % (163 landslides) for

training the models and the remaining 30 % (70 landslides)

was used for validation purpose. The landslide condition-

ing factors consist of slope angle, slope aspect, altitude,

general curvature, plan curvature, profile curvature, dis-

tance to rivers, distance to roads, normalized difference

vegetation index, sediment transport index, rainfall, and

lithology. The relationships between landslide distributions

and these parameters were analyzed using the two models,

and the results of both the models were then used to cal-

culate the landslide susceptibility of the entire study area.

Finally, the accuracy of the landslide susceptibility maps

was evaluated based on the area under the curve (AUC)

method. The validation results showed that the statistical

index model (AUC = 82.51 %) is slightly lower than the

index of entropy model (AUC = 82.80 %) for success rate.

Nevertheless, for the prediction rate, it was found that the

statistical index model (AUC = 77.90 %) is slightly lower

than the index of entropy model (AUC = 77.41 %). The

landslide susceptibility maps produced from this study

were successful and can be useful for preliminary general

land use planning and hazard mitigation purpose.

Keywords Landslide � Susceptibility mapping �
Statistical index (SI) � Index of entropy (IOE)

Introduction

Landslides are one of the most damaging hazards causing

extensive damage of roads, bridges, human dwellings,

agricultural lands, forests, communication network, etc.,

thereby resulting in injuries, loss of life, or damages to the

property and environment (Kannan et al. 2015). Globally,

landslides cause approximately 1000 deaths per year and

property damage of about 4 billion (Lee and Pradhan

2007). In China, landslides happen rather frequently due to

the topographical, geological, and environmental factors. It

is reported that more than 30,737 hazards associated with

landslides occurred in 2012, 2013 and 2014, which caused

a total of 1256 people dead or missing, and a direct eco-

nomic loss of 15.41 billion CNY (http://www.cigem.gov.

cn). In order to mitigate or control such damage caused by

landslides, it is necessary to study landslide phenomena

including susceptibility mapping, hazard mapping, and risk

assessment systematically (Bijukchhen et al. 2013).

Different researchers have employed different geo-

graphic information system (GIS) methods for assessing

landslide susceptibility and hazard throughout the world

(Lee and Pradhan 2007; Bijukchhen et al. 2013; Kannan

et al. 2015; Wang et al. 2015). Many of the recent studies

have applied probabilistic models (Lee and Dan 2005; Lee

and Sambath 2006; Yilmaz 2009; Akgun et al. 2008). The

statistical models, such as the logistic regression, bivariate

and multivariate models, have also been applied to land-

slide susceptibility mapping (Ayalew and Yamagishi 2005;

Lee 2005a; Yesilnacar and Topal 2005; Lee and Sambath

2006; Van Den Eeckhaut et al. 2006; Pradhan 2010).
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Varieties of classifications techniques such as fuzzy sys-

tems (Ercanoglu and Gokceoglu 2002, 2004; Kanungo

et al. 2006; Pourghasemi et al. 2012a; Pradhan et al. 2010)

and neural networks (Lee et al. 2003, 2004; Ermini et al.

2005; Pradhan and Lee 2010) etc., have also been men-

tioned in the various literature. These methods all belong to

quantitative methods which are based on a comparison of a

set of conditioning factors with spatial distribution of

registered landslides. At present, the quantitative methods

become more and more popular with the advances in

computer and GIS technology. In addition, the qualitative

methods such as analytic hierarchy process (Yalcin 2008;

Komac 2006; Pourghasemi et al. 2012a; Yalcin et al. 2011;

Ayalew et al. 2004) and weighted linear combination

models (Ayalew et al. 2004; Akgun et al. 2008) etc., have

also been widely used to landslide susceptibility mapping.

The qualitative methods are based on heuristic approaches,

which depend mainly on the experience of experts (Erener

et al. 2015).

The Gongliu County of northwestern China, which is

one of serious area in Xinjiang that happened landslide

disaster, was selected as suitable for this study. This area

had a great deal of landslide damage after heavy rain.

These landslides were mainly shallow soil slips and debris

flows and tend to occur in low and middle mountain steep

area, which often cause enormous property damage and

occasionally result in loss of life in this study area. For

instance the Mohuer landslide, located in the middle of

county, occurred on March 23, 1990; eight people lost their

lives; a lot of livestock were buried. A landslide, taking

place in the shadow of a freeway of area, killed eight

people in April 9, 2004. In this study area, a total of 233

landslides were identified and mapped in the study area

(Fig. 1). Up to date, few studies have been carried out on

landslide susceptibility analysis in Gongliu. Therefore, it is

necessary to assess and manage the study area that is

susceptible to landslides to decrease landslide damage

carrying out suitable mitigation measures.

In this paper, landslide susceptibility analysis was

determined using two techniques including statistical index

(SI) and index of entropy (IOE) models to prepare landslide

susceptibilitymap and assess the most suitable results for the

study area. For this purpose, the SI and IOE models to

acquire the landslide susceptibility map using the ArcGIS

10.0 software (ESRI Inc., Redlands, CA, USA) were

developed, applied, verified, and compared in the study area.

Study area

The study area lies in Xinjiang Uygur Autonomous Region of

northwestern China and is bounded by the latitudes 42�540
and 43�380N and the longitudes 81�340 and 83�350E (Fig. 1).

The altitude of the area ranges from 767 m a.s.l. to as high as

4217 m a.s.l. and the total study area is about 4124 km2. The

terrain of the study area consists predominantly of the plain

region, the mountain region, and the hill region, out of which

mountainous and hilly region accounted for about 72.6 % of

the total area. The local climate of the area is influenced by

altitude. The area is characterized by the typical continental

semi-arid climate, the winter is dry and cold, but the summer

is hot and rainy. The maximum temperature reaches up to

37–39 �C during the summer, whereas the temperature falls

down to-37 �C during the winter. The mean annual rainfall

according to local weather station in a period of 40 years is

around 200–700 mm, and the most rainfall appears in April–

July [C.H. of China Meteorological Administration (CMA)

2014]. The main streams in the region are Jill essential

Langhe and Nanshan Rivers, and these rivers and their

tributaries form dentritic drainage system due to topograph-

ical and geological features of the area. The population of the

county was about 196,400 in 2011 year. Major settlements

are mainly distributed in the middle of area. Landslides are

very common phenomenon in this area due to the coupling

effects of special geological and climatic conditions and the

influences of human engineering activities.

Data collection and database construction

The landslide inventory map, providing information for the

assessment of the influence of different causative factors on

landslide occurrence, is essential for the landslide suscep-

tibility analysis (Ozdemir and Altural 2013; Jaafari et al.

2014; Shahabi et al. 2015). It can be prepared by using

different techniques, such as field survey, aerial pho-

tograph, and satellite image interpretation, and literature

search for historical landslide records (Lee and Talib 2005;

Pradhan and Kim 2014; Solaimani et al. 2013). The relia-

bility and accuracy of the collected data also affect the

success of the applied method (Akgun et al. 2008). For

landslide susceptibility assessment, the landslide inventory

map of the region was prepared by using 1:50,000 scale

aerial-photo (acquired in 2008) interpretation and extensive

field surveys. Besides, the historical landslides records

obtained from the internet and published literature were

also used (Qin 2007). A total of 233 landslides were

identified (Fig. 1). The landslide data set was randomly

divided in two parts: 163 (70 %) cases are used for

assessment and 70 (30 %) cases are kept for validating the

landslide susceptibility map. In this study, the 12 factors

contributing to landslide occurrence are slope angle, slope

aspect, altitude, general curvature, plan curvature, profile

curvature, distance to rivers, distance to roads, NDVI, STI,

rainfall, and lithology. At first, a 30 m 9 30 m digital

elevation model (DEM) was collected from the advanced
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space-borne thermal emission and reflection radiometer

(ASTER) acquired in 2010. Based on DEM, slope angle,

slope aspect, altitude, general curvature, plan curvature,

profile curvature, and STI maps were prepared. The dis-

tance to rivers and distance to roads maps were calculated

by Euclidean distance tool of ArcGIS 10.0 based on the

drainage and road maps (1:50,000-scale), respectively. The

NDVI map was extracted from Landsat 7 ETM? satellite

image with 30-m resolution acquired on 12 November

2010. The lithology map was obtained from a 1:50,000-

scale geologic map. All data layers were transformed in

raster format with pixel size of 30 9 30 meters, hence the

area grid was 3356 rows by 5830 columns with a total of

6430,157 pixels.

Slope angle is one of the parameters controlling the for-

mation of mass movements and movement distance of

mobilizing material (Demir et al. 2013). Because the slope

angle is directly related to the landslides, it is frequently used

in landslide susceptibility studies (Dai et al. 2001;

Dragićević et al. 2015) In this study, the slope angle was

divided into seven classes (Fig. 2a) considering the steep-

ness of the terrain (Liu et al. 2014; Kayastha et al. 2013).

Slope aspect is also considered as an important factor in

landslide studies since aspect affects parameters such as

rainfall, discontinuities and exposure to sunlight (Süzen and

Doyuran 2004; He et al. 2012). Generally, the slope facing

towards the sunlight and rainfall zone have a greater ten-

dency of landslide hazard in comparisonwith the slope in the

rain shadow zone (Bijukchhen et al. 2013). The slope aspect

of the present study area was grouped into nine classes

(Fig. 2b): flat (-1), north (337.5�–360�, 0�–22.5�), north-
east (22.5�–67.5�), east (67.5�–112.5�), southeast (112.5�–
157.5�), south (157.5�–202.5�), southwest (202.5�–247.5�),
west (247.5�–292.5�), and northwest (292.5�–337.5�).

Generally speaking, the elevation or altitude affects

temperature, vegetable, rainfall, and gravitational energy of

landslides. In turn, these conditions have the potential

impact on slope stability (Meng et al. 2015; Kavzoglu et al.

Fig. 1 The location map of the

study area
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2014). The altitude is one of the frequently used significant

landslides conditioning parameter (Youssef et al. 2015;

Ercanoglu et al. 2004; Rozos et al. 2011). In this study area,

the elevation of ranges from 767 to 4217 m and was

divided into five categories using an interval of 600 m

(Fig. 2c). The slope curvature is an important variable that

controls the superficial and subsurface hydrological regime

of the slope. The characterization of slope morphology and

flow can be analyzed with the help of the general curvature

map (Nefeslioglu et al. 2008). The plan curvature is

described as the curvature of a contour line formed by

intersection of a horizontal plane with the surface. The

profile curvature is the vertical plane parallel to the slope

direction (Kannan et al. 2013). In the present study, the

general curvature, plan curvature, and profile curvature

were calculated in ArcGIS 10.0 based on DEM data and

were divided into three classes, respectively (Fig. 2d–f).

Two proximity parameters including distance to rivers

and distance to roads were taken into account in the study.

The distance to rivers is also considered as one of the most

important factor for the landslide susceptibility analysis.

Drainages adversely affect the stability of slope by satu-

rating it and by eroding the toe of slopes (Bijukchhen et al.

2013; Dragićević et al. 2015). Similarly, the distance to

roads is one of the causal factors for landslides since the

load in the toe of slope can be reduced by road-cuts (Yalcin

et al. 2011). In this study, both the proximity parameters

were divided into five different buffer zones, respectively

(Fig. 2g, h).

The normalized difference vegetation index (NDVI) is

often considered as a controlling factor in landslide sus-

ceptibility mapping. In this study, the NDVI value was

calculated using the formula NDVI = (IR - R)/(IR ? R),

where IR is the infrared portion of the electromagnetic

spectrum, and R is the red portion of the electromagnetic

spectrum (Youssef et al. 2015). The NDVI map of this area

was grouped into four classes (Fig. 2i). The sediment

transport index (STI) characterizes the process of erosion

and deposition (Devkota et al. 2013). STI is defined as in

Eq. (1):

STI ¼ AS

22:13

� �0:6
sin b
0:0896

� �1:3

ð1Þ

where, AS is the specific catchment’s area (m2/m), and b
the slope gradient. In the present study, STI was calculated

as shown in Fig. 2j.

bFig. 2 a The slope angle map of the study area. b The slope aspect

map of the study area. c The altitude map of the study area. d The

general curvature map of the study area. e The plan curvature map of

the study area. f The profile curvature map of the study area. g The

distance to rivers map of the study area. h The distance to roads map

of the study area. i The NDVI map of the study area. j The STI map of

the study area. k The rainfall map of the study area. l The lithology

map of the study area

Fig. 2 continued
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Rainfall, associated with landslide initiation by means of

its influence on runoff and pore water pressure, is also a

very important controlling factor (Shahabi et al. 2014; Van

Westen et al. 2006; Yang et al. 2015). In the present study,

the annual rainfall was reclassified into seven classes:

\300, 300–400, 400–500, 500–600, [600 mm/year

(Fig. 2k). Lithology plays an important role in landslide

susceptibility studies since landslides are controlled by the

rock properties of the land surface and different lithological

units have different susceptibility values (Yesilnacar and

Topal 2005; Yalcin et al. 2011). In this study, the litho-

logical map was extracted from the geology database of the

area. The study area is covered with various types of

lithological units (Fig. 2l). Their names, lithologic char-

acteristics, and ages of the geological units are provided in

Table 1.

Methods

Statistical index model

The statistical index approach is considered as the simplest

and quantitatively suitable method in landslide suscepti-

bility mapping. It was introduced by van Westen et al.

(1997) for landslide susceptibility analyses and has been

adopted by various researchers (Yesilnacar 2005; Long

2008; Regmi et al. 2014). In this method, the weighting

value for each categorical unit is defined as the natural

logarithm of the landslide density in the categorical unit

divided by the landslide density in the whole studied area

(Kavzoglu et al. 2015; Regmi et al. 2014). This method is

based upon the formula given by Van Westen (1997) as

follows:

Wij ¼ ln
Eij

E

� �
¼ ln

Nij

�
Sij

N=S

� �
ð2Þ

where, Wij is the weight given to a certain class i of

parameter j; Eij is the landslide density within class i of

parameter j; E is the total landslide density within the entire

map; Nij is the number of landslides in a certain class i of

parameter j; Sij is the number of pixels in a certain class i of

parameter j; N is the total number of landslides in the entire

map; S is the total pixels of the entire map. In this study,

the resultant weights for each thematic map for the statis-

tical index model were calculated in ArcGIS 10.0 and

Microsoft Excel, and the results are shown in Table 1. The

higher resultant weight, the higher is the possibility that a

mass movement occurs within the area covered by the

considered class.

Index of entropy model

The second model used for landslide susceptibility analysis

in the current study is index of entropy model (Devkota

et al. 2013). The entropy indicates the extent of the insta-

bility, disorder, imbalance, and uncertainty of a system

(Youssef et al. 2015). The entropy of a landslide refers to

the extent that various factors influence the development of

a landslide (Youssef et al. 2015; Jaafari et al. 2014). Sev-

eral important factors provide additional entropy into the

index system. As a result, the entropy value can be used to

calculate objective weights of the index system (Yang et al.

2010; Pourghasemi et al. 2012b; Youssef et al. 2015;

Bednarik et al. 2010). The equations used to calculate the

information coefficient Wj representing the weight value

for the parameter as a whole (Bednarik et al. 2010; Dev-

kota et al. 2013) are given as follows:

Pij ¼
b

a
ð3Þ

Pij

� �
¼ PijPSj

j¼1 Pij

ð4Þ

where a and b are the domain and landslide percentages,

respectively; Sj is the number of classes; (Pij) is the prob-

ability density. Here, Hj and Hjmax represent entropy values

(Eqs. 5, 6).

Table 1 Description of geological units of the study area (Qin 2007)

No. Formation Code Lithology

A – Qh, Qp Cohesive soil, sand gravel, pebbles, loess and gravel

B Wulang, Shuixi Xiaoquangou P1, J1–2, T2–3 Argillaceous siltstone, sandstone, quartz sandstone, quartzite, mudstone, carbonaceous

mudstone

C Tuokuzidaban, Ishrick C1, T, C2 Conglomerate, limestone, siltstone, volcanic clastic limestone, sandy shale, clay shale

D Akshak, Dahalajunshan C1, Qp Carbonate, clastic rocks, glutenite, limestone, rhyolitic porphyry, basaltic porphyrite

E Shawan D Granite, granodiorite, plagioclase granite, granite porphyry, diorite

F The Permian granite, Tekes P Monzonitic granite, intermediate-acid igneous rocks, neutral volcanic clastic rock

G Xingditag, Tekes Ch, Pt Quartzite, quartz-schist, siltstone, phyllite, limestone and marble rock

H Keketiekedaban S Limestone, pyroclastic rocks, monzonitic granite
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Hj ¼ �
XSj
i¼1

Pij

� �
log2 Pij

� �
; j ¼ 1; 2; . . .; n ð5Þ

Hjmax ¼ log2 Sj ð6Þ

Ij is the information coefficient (Eq. 7) and Wj represents

the resultant weight value for the parameter as a whole

(Eq. 8).

Ij ¼
Hjmax � Hj

Hjmax

I ¼ 0; 1ð Þ; j ¼ 1; 2; . . .; n ð7Þ

Wj ¼ IjPij ð8Þ

The complete calculation of weight determination for

individual parameters is presented in Table 2. The final

landslide susceptibility map is prepared based on the

Eq. (9) using the ArcGIS 10.0 software.

YIOE ¼
Xn
i

z

mi

� C �Wj ð9Þ

where, YIOE is the sum of all the classes; i is the number of

particular parametric map (1, 2,…, n); z is the number of

classes within parametric map with the greatest number of

classes; mi is the number of classes within particular

parametric map; C is the value of the class after secondary

classification and Wj is the weight of a parameter. The

result of this summation represents the various levels of the

landslide susceptibility (Bednarik et al. 2010; Devkota

et al. 2013; Jaafari et al. 2014).

Results and discussion

Application of statistical index (SI) model

in landslide susceptibility mapping

The correlation between the location of landslides and the

landslide conditioning factors performed by statistical

index model is shown in Table 2. From Table 2, it is seen

that the slope angle in ranges of 0�–8� and 8�–16� has the
high values of SI with the positive values (0.39 and 0.21),

and other classes have negative value. The reason for this

may be that the resistant lithologic units exist in the steep

slopes and they are not covered by highly and completely

weathered lithologic units which are more susceptible to

landslide occurrence (Akgun et al. 2008; Yalcin et al.

2011). In the case of slope aspect, the SI value is highest

for south facing with the positive value (0.39) The north-

facing slopes are less prone to landslides as it has lower SI

value (-0.34). The SI values of altitude show that they are

positive for the ranges of 1000–1600, 1600–2200 m, with

the highest value (0.57) for the altitude ranging between

1600 and 2200 m. However, it is clear that the landslide

susceptibility increases by the increase in altitude up to a

certain extent (1600–2200 m) and then it decreases. In the

case of general curvature, the SI values for each class were

similar, which indicates that these classes have no obvious

effect on the occurrence of landslides. The relation

between plan curvature and landslide probabilities showed

that -0.05 to 0.05 class has the highest value of SI (0.26),

and for profile curvature, the class of\-0.05 shows a high

SI value (0.11). In the case of distance to rivers, the dis-

tance of 200–400 m of rivers has highest correlation with

landslide occurrence. For distance to roads, the SI values

show that when the distance increases, the probability of

landslides decreases. The highest probability for landslide

occurrence is within distances less than 1000 m. The SI

value for NDVI clearly showed that ranges of[0.043 have

the most effect on landslide occurrence. The STI factor

shows that the range of\5 is relatively conducive (high

susceptible) to landslide occurrence. With regard to rain-

fall, the classes of 400–500, 500–600 mm/year seem to

have the highest impact on landslide occurrence. Their SI

values are 1.49 and 0.74, respectively. For the lithology,

the class of D has highest SI value with the positive value

(1.19). This indicates that lithological unit of the carbonate,

clastic rocks, glutenite, limestone, rhyolitic porphyry, and

basaltic porphyrite has the highest influence in triggering

landslides.

In this study, the landslide susceptibility map (Fig. 3)

was constructed using the landslide susceptibility index

(LSI) value by the software of ArcGIS 10.0. The calculated

LSI values for SI model of the study area range from about

-7.98 to 6.27. Obviously, larger LSI values indicate a

higher susceptibility for landsliding. The index values were

reclassified as very low, low, moderate, high, and very high

susceptibility classes using natural break approach in

ArcGIS software. The distribution of observed landslides

falling into various susceptibility classes of different

landslide susceptibility zonation maps was counted in

Fig. 5a. It can be observed from Fig. 5a that 16.95 % of the

study area was placed in the group with very low suscep-

tibility. Low, moderate and high susceptibility landslide

classes comprised of 31.05, 23.61, and 16.38 % of the area,

respectively. In all, 12.01 % of the region was placed in the

class with very high landslide susceptibility. Meanwhile,

the results show that the percentages of the total landslides

in very low, low, moderate, high, and very high suscepti-

bility classes are 1.29, 3.43, 22.32, 24.89, and 48.07 %,

respectively.

Application of index of entropy (IOE) model

in landslide susceptibility mapping

The density (Pij) of the landslide occurrence in each class

was calculated. The resultant weights for each thematic

Environ Earth Sci (2016) 75:599 Page 7 of 13 599

123



Table 2 Spatial relationship between each landslide conditioning factor and landslide by SI and IOE models

Factors Classes Percentage of

landslide (%)

Percentage of

domain (%)

SI (Pij) Hj Hjmax Ij Wj

Slope angle (�) 0 to 8 36.81 24.90 0.39 0.30 2.40 2.81 0.15 0.11

8 to 16 26.99 21.93 0.21 0.25

16 to 24 20.25 21.34 -0.05 0.19

24 to 32 10.43 16.82 -0.48 0.12

32 to 40 4.29 10.23 -0.87 0.08

40 to 48 1.23 3.85 -1.14 0.06

[48 0.00 0.94 0.00 0.00

Slope aspect Flat 10.43 9.18 0.13 0.12 3.14 3.17 0.01 0.01

North 9.20 12.86 -0.34 0.08

Northeast 13.50 14.16 -0.05 0.10

East 11.66 12.25 -0.05 0.10

Southeast 9.20 9.21 0.00 0.11

South 11.04 7.49 0.39 0.16

Southwest 11.66 9.91 0.16 0.13

West 12.88 11.96 0.07 0.12

Northwest 10.43 12.98 -0.22 0.09

Altitude (m) \1000 0.00 2.12 0.00 0.00 1.55 2.32 0.34 0.23

1000 to 1600 18.41 16.77 0.09 0.32

1600 to 2200 66.87 37.71 0.57 0.51

2200 to 2800 13.50 25.84 -0.65 0.15

[2800 1.23 17.56 -2.66 0.02

General curvature \-0.05 40.49 40.16 0.01 0.34 1.59 1.59 0.00 0.00

-0.05 to 0.05 19.63 20.25 -0.03 0.33

[0.05 39.88 39.59 0.01 0.34

Plan curvature \-0.05 32.52 35.30 -0.08 0.30 1.56 1.59 0.02 0.02

-0.05 to 0.05 37.42 28.89 0.26 0.42

[0.05 30.06 35.82 -0.18 0.28

Profile curvature \-0.05 39.26 35.20 0.11 0.37 1.58 1.59 0.01 0.01

-0.05 to 0.05 30.06 28.32 0.06 0.35

[0.05 30.68 36.48 -0.17 0.28

Distance to rivers (m) 0 to 200 18.41 17.96 0.03 0.19 2.28 2.32 0.02 0.02

200 to 400 24.54 16.21 0.42 0.28

400 to 600 15.34 14.35 0.07 0.20

600 to 800 15.34 12.97 0.17 0.22

[800 26.38 38.52 -0.38 0.13

Distance to roads (m) 0 to 1000 31.29 11.52 1.00 0.36 2.14 2.32 0.08 0.12

1000 to 1800 9.20 7.77 0.17 0.16

1800 to 2600 12.88 6.46 0.69 0.27

2600 to 3400 5.52 5.62 -0.02 0.13

[3400 41.10 68.63 -0.51 0.08

NDVI \-0.084 0.00 0.00 0.00 0.00 1.56 2.00 0.22 0.16

-0.084 to -0.020 19.02 25.40 -0.29 0.25

-0.020 to 0.043 69.33 64.61 0.07 0.36

[0.043 11.66 9.99 0.15 0.39

STI \5 42.95 32.01 0.29 0.33 1.96 2.00 0.02 0.02

5 to 10 20.25 19.74 0.03 0.25

10 to 15 13.50 12.45 0.08 0.26

[15 23.31 35.80 -0.43 0.16
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map for the IOE model are given in Table 2. The calcu-

lated weight values for different classes of the causative

factors show the importance of the respective classes in the

slope instability. From the Wj value, it is seen that the

rainfall has the highest impact in the landslide suscepti-

bility, followed by lithology, altitude, NDVI, distance to

roads, and slope angle, while others are less significant in

the landslide susceptibility of the region. From the result

(Pij), it is seen that the slope angle of classes 0�–8� and 8�–
16� has the high values of (Pij). In the case of aspect, south-

facing slope is susceptible to landsliding. In the case of

altitude, landslide density is highest at the elevation rang-

ing from 1600 to 2200 m followed by from 1000 to

1600 m. In the case of general curvature, the (Pij) values

for each class were similar. This indicates that these classes

have no obvious effect on the occurrence of landslides. In

terms of plan curvature and profile curvature, most of the

existing landslides are distributed across the -0.05 to 0.05

class and \-0.05 class, respectively. In the case of the

relationship between landslide occurrence and distance to

drainage, the (Pij) value was highest at the distance

between 200 and 400 m indicating a high probability of

landslide susceptibility. The distance to roads shows that

the (Pij) value decreases as the distance to roads increases.

The (Pij) value for NDVI showed that the class of[0.043

has the most effect on the occurrence of landslides with

high value of 0.39. Relation between STI and landslide

probability showed that\5 class has highest value of (Pij).

In rainfall, the highest (Pij) value (0.60) was located in the

rainfall classes of 400–500 mm/year. In the case of

lithology, it can be seen that most of the existing landslides

are distributed the lithological unit of the carbonate, clastic

Table 2 continued

Factors Classes Percentage of

landslide (%)

Percentage of

domain (%)

SI (Pij) Hj Hjmax Ij Wj

Rainfall (mm/year) \300 3.68 22.57 -1.81 0.02 1.41 2.32 0.40 0.59

300 to 400 18.41 25.62 -0.33 0.10

400 to 500 24.54 5.51 1.49 0.60

500 to 600 53.37 25.36 0.74 0.28

[600 0.00 20.94 0.00 0.00

Lithology A 12.88 34.41 -0.98 0.07 1.84 3.00 0.39 0.26

B 0.61 2.83 -1.53 0.04

C 9.82 15.21 -0.44 0.12

D 66.26 20.23 1.19 0.61

E 7.36 14.35 -0.67 0.10

F 3.07 8.57 -1.03 0.07

G 0.00 3.32 0.00 0.00

H 0.00 1.09 0.00 0.00

Fig. 3 Landslide susceptibility

map derived from the SI model
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rocks, glutenite, limestone, rhyolitic porphyry, and basaltic

porphyrite. The findings based on entropy approach show

that rainfall, lithology, and altitude, are the most important

factors which explain better the landslide occurrence and

distribution in study area. However, it should be noted that

the landslide contributing factors may vary from region to

region, such that the rating scheme followed in this study

area may be not suitable anywhere else (Bijukchhen et al.

2013).

In this study, the final result of index of entropy (IOE)

model is a LSI map, in which the LSI values vary from

0.22 to 4.64. Based on the natural breaks method in Arc-

GIS, the landslide susceptibility map was reclassified into

five classes: very low, low, moderate, high, and very high

(Fig. 4). Among the five susceptibility zones, 22.77 % of

the study area was designated as a very low susceptible

zone, and low, moderate, high and very high susceptible

zones represent 41.19, 19.79, 10.46 and 5.79 %, respec-

tively. In addition, 23.61 and 36.91 % of the total land-

slides falls in the very high and high susceptibility zones,

respectively. Moderate, low, and very low susceptible

zones represent 17.17, 22.32, and 0.00 % of the landslides,

respectively (Fig. 5b).

Validation of the landslide susceptibility maps

In order to determine the reliability of the evaluation

results, it is important to perform validation of spatial

results in a structured manner (Ahmed et al. 2013). To do

this validation, the area under curve (AUC) method was

used in this research. This method works by creating

specific rate curve which explains percentage of known

landslides that fall into each defined level of susceptibility

rank and displays as the cumulative frequency diagram

(Intarawichian and Dasananda 2011). The specific rate

curves can be divided into success-rate curve and predic-

tion-rate curve (Chung and Fabbri 2003). The success rate

curve, considered as a degree of fit measure, is based on a

comparison of the susceptibility map with the landslides

used in modeling (Pradhan and Kim 2014; Chung and

Fabbri 2003). In addition, the prediction rate curve is a

good indicator of the predictive power of the susceptibility

Fig. 4 Landslide susceptibility

map derived from the IOE

model

Fig. 5 Histograms representing the distribution of observed landslides falling into various susceptibility classes of different landslide

susceptibility zonation maps: a statistical index model; b index of entropy model
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map. The prediction rate curve can be created by the val-

idation landslide inventory (Pradhan and Kim 2014; Chung

and Fabbri 2003). The rate curves show the cumulative

percentage of the area of the susceptibility classes on the

x axis and the cumulative percentage of observed landslide

occurrences in different susceptibility classes on the y axis.

The area under the curve (AUC) can be used to determine

prediction accuracy of the susceptibility map qualitatively

in which larger area means higher accuracy achieved (In-

tarawichian and Dasananda 2011; Mathew et al. 2009; Lee

2005b). In this study, the rate curves were obtained by

comparing the landslide training data (163 landslides) and

validation data (70 landslides) with the susceptibility maps

and the areas under the curve were calculated.

The success rate and prediction rate curves were shown

in Fig. 6a, b, respectively. From calculation of the AUC for

SI and IOE models, it was found that AUC for the success

rate curves are 0.8251 and 0.8280, respectively. Namely,

the training accuracy of the susceptibility maps is 82.51

and 82.80 %, respectively. The areas of prediction rate

curves are 0.7790 and 0.7741, which means that the overall

prediction rates are 77.90 and 77.41 %. The results showed

that the SI and IOE models exhibited similar performance.

Meanwhile, both the models are successful estimators, and

the two models employed in this study have reasonably

good accuracy in predicting the landslide susceptibility of

the study area.

Conclusions

In this study, the statistical index and index of entropy

models were employed and compared for landslide sus-

ceptibility assessment at the Gongliu County of Xinjiang

Uygur Autonomous Region, China. Both the methods were

employed using slope angle, slope aspect, altitude, general

curvature, plan curvature, profile curvature, distance to

rivers, distance to roads, NDVI, STI, rainfall, and lithology.

The selection of the 12 conditioning landslide factors,

based on consideration of relevance, availability, and scale

of data that was available for the study area, is relative and

subjective, and can be improved in future research. In this

study, a total of 233 landslides were identified and mapped.

Out of which, 163 (70 %) were randomly selected for

generating a model and the remaining 70 (30 %) were used

for validation proposes. The susceptibility maps produced

by SI and IOE models were divided into five different

susceptibility classes such as very low, low, moderate,

high, and very high. The area under the rate curve show

that the SI model has a success rate of 82.51 % and pre-

dictive accuracy of 77.90 %, and IOE model has success

rate of 82.80 % and predictive accuracy of 77.41 %. It is

clear that both models showed almost similar results. The

output results of the present study showed that the choice

of suitable predisposing factors together with the statistical

index and index of entropy methods and the application of

geographical information systems are able to successfully

identify this area that are susceptible to landslides. How-

ever, it should be noted that both the models were devel-

oped on some basic assumptions such as topography,

geology, and stream etc. If the data of factors causing the

landslides, such as extreme rainfall, earthquake shaking

can be considered, then a more accurate analysis could be

done.

The findings and results of the present study can help the

decision makers, managers, urban planners, engineers, and

land-use developers can for preliminary slope management

and land-use planning. Also, this methodology can be used

to assess landslide susceptibility in other areas of Xinjiang,

as well as in other similar regions where the same geo-

logical and topographical feature prevails.
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