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Abstract Machine learning models combined with time

series decomposition are widely employed to estimate

streamflow, yet the effect of the utilization of different

decomposing methods on estimating accuracy is inade-

quately investigated and compared. In this paper, the main

objective is to research the predictability of monthly

streamflow using support vector machine model coupled

with discrete wavelet transform (DWT) and empirical

mode decomposition (EMD). The influence of the noise

component of the decomposed time series on the forecast

accuracy is also discussed here. Performance is evaluated

through an application on Jinsha River, which is located in

the upper reaches of Yangtze River in China. Results

indicate that both time series decomposition techniques

EMD and DWT contribute to improving the accuracy of

streamflow prediction, and deeper comparative analysis

shows models coupled with DWT have better prediction

capabilities than models coupled with EMD. Furthermore,

the high frequency component of the original series is

indispensable for high-precision streamflow prediction,

which is obvious in flood season.

Keywords Discrete wavelet transform � Empirical mode

decomposition � Support vector machine � Monthly

streamflow forecasting

Introduction

Due to the fact that providing accurate and reliable future

streamflow information plays an important role in water

allocation, flood-control and disaster relief, developing

excellent streamflow forecasting methods are significant and

has attracted more and more attention of hydrology

researchers in this field (Dehghani et al. 2015; Rahman et al.

2014; Wang et al. 2011). For daily or hourly run-off pre-

diction, researchers have developed relatively mature

methods such as distributed conceptual models with physical

mechanisms. These models use rainfall forecasting as input

to simulate the interception, infiltration and formation of

run-off and achieve good run-off forecasting results. Com-

pared with short-term run-off forecasting, reliable long-term

run-off forecasting is much more difficult to accomplish for

the lack of satisfying rainfall forecasting information. To

solve this problem, researchers tend to use some data-based

artificial intelligence models, which do not seek complex

nature of run-off process and do not rely on high-precision

rainfall forecasting to approach hydrological processes.

Artificial neural network (ANN) and support vector regres-

sion (SVR) are very widely used artificial intelligence

models. These models have the capacity of representing

highly non-linear correlations of input and output, however,

they are still found to be inadequate when dealing with non-

stationary data (Sehgal et al. 2014).

Hydrological processes are non-stationary and random

(Yarar 2014). When simply analyzing and simulating the

original run-off series by these models, the details of

change are ignored so that forecasting accuracy is reduced.

Providing useful decompositions of original non-stationary

time series on various resolution levels and extracting the

significant information based on the series structure is a

feasible way to make improvements in predictive ability of
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a model. For this reason, in the present investigation, time

series decomposition has been combined with the artificial

intelligence models for predicting monthly streamflow.

Hence, the choices of time series decomposition methods

and prediction models are the most important issues in this

study.

The decomposition of time series is a statistical method

that deconstructs a time series into notional components.

Various decomposition techniques based on different

principles are recommended for time series prediction. One

of the widely used decomposition techniques is discrete

wavelet transform (DWT), which is very helpful for non-

stationary processes. Labat (2005) made a detailed

description of the mechanism of wavelet transform. It

decomposes time series into both time and frequency

domains and can produce trend, periods, and random

component of original series. Since DWT analyzes time

series in different scales independently, it is possible to

reveal change of run-off on multi-resolution level. Due to

these attractive properties, Budu (2013) combined feed-

forward neural networks with wavelets preprocessing

techniques to predict the daily inflow proved that the

wavelets hybrid ANN model performed better compared to

artificial neural network. Sahay and Srivastava (2014)

proposed a wavelet transform-genetic algorithm-neural

network model (WAGANN) for forecasting one-day-ahead

monsoon river-flows and WAGANN models are superior

to models using original flow-time series (OFTS) for

inputs. Tiwari and Adamowski (2014) developed two types

of hybrid wavelet-artificial neural network (WANN) to

forecast weekly and monthly water demand with limited

data availability, the results showed that the proposed

methods were able to improve the accuracy and reliability

of water demand forecasting by incorporating the capa-

bility of wavelet transformation. Another decomposition

approach used for dealing with non-linear and non-sta-

tionary time series is Empirical mode decomposition

(EMD). EMD is a signal processing tool that decomposes a

time series into intrinsic modes without fixing any a priori

bounds (Huang et al. 1998). EMD method decomposes data

from non-stationary and non-linear processes into simple

oscillatory functions through the Hilbert transform, and

that will yield a meaningful instantaneous frequency.

Contrary to wavelet transform, EMD works in temporal

space directly rather than in the corresponding frequency

space, and it is based on the principle of local-scale sepa-

ration and doesn’t need any predetermined basis functions

(Huang et al. 1998; Lee and Ouarda 2010). Thus, it is

empirical, intuitive, direct, and adaptive, with a posterior-

idefined basis derived from the data. Decomposing the data

through EMD and then building hybrid models to forecast

streamflow were explored by Napolitano et al. (2011),

Huang et al. (2014) and Wang et al. (2015).

The foregoing research mainly focused on developing

all kinds of forecasting models combined with prepro-

cessing decomposed techniques to achieve better perfor-

mance; it is hard to find comparative investigation of

different decomposition methods. Karthikeyan and Kumar

(2013) adopted ARMA model based DWT and EMD to

predict non-stationary time series and then compared the

performance of two kinds of decomposing methods, but the

influence of the highest-frequency components of DWT

and EMD is not involved in their work. Analysis of high-

frequency components is important to find out if they are

just noise or if they capture important aspects of the signal

dynamics. Therefore, a relatively complete comparative

investigation needs to be made to discuss the effect of

decomposition methods as well as highest frequency

components on streamflow forecasting.

Selection of prediction models is another key step.

Artificial intelligence models have achieved success in

hydrological applications (Chen et al. 2014; Kasiviswa-

nathan and Sudheer 2013; Sattari et al. 2012). Artificial

neural network (ANN) has been widely applied to rainfall–

runoff forecast, flood estimation and drought forecast due

to its characters of adaptivity, self-organization, and self-

learning ability (Hsu et al. 1995; Sattari et al. 2012). In

recent decades, a new machine learning method called

support vector machine (SVM) has been developed for

classification and simulation. The training objective of

SVM is to simultaneously minimize both the empirical risk

and the model complexity so that local minima and over-

fitting problems will be avoided and the training method of

SVM is expressed as a convex quadratic programming

problem on the high dimensional space which makes the

training rapidly solved (Lin et al. 2009). Lin et al. (2009)

used SVM to forecast reservoir inflow during typhoon-

warning periods and the results indicated that SVM model

performed better than back-propagation artificial neural

network model. Guo et al. (2011) forecasted monthly

streamflow based on improved SVM model and found that

the SVM showed better generalization ability and higher

prediction accuracy than ANN. Wei et al. (2013) adopted a

dynamic particle filter-support vector regression method

and obtained good predictions. Inspired by these attractive

performances, support vector regression (SVR) is selected

as prediction model in this investigation.

Therefore, in this study, time series decomposition

techniques DWT and EMD are separately combined with

the model of support vector regression (SVR). The effect of

EMD and DWT on streamflow forecasting is compared and

the influence of high frequency components on model

performance is analyzed. Two kinds of models, i.e., EMD-

SVR and DWT-SVR are developed. For the purpose of

comparison, in addition to the above-mentioned decom-

position-based models, stand-alone SVR model is also
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developed. The constructed models are evaluated for

forecasting streamflow for one-month-lead-time in the

upper reaches of Yangtze River, China.

Methodology

Discrete wavelet transform

Wavelet analysis can reveal localized time and frequency

information of non-stationary time series, so it is suitable for

streamflow process, which is highly non-linear and includes

a lot of random factors. Discrete wavelet transform (DWT)

produces a series of approximations (low-pass version) to

the original signal and details (high-pass version) at different

resolution levels. The principle of DWT is as follows:

Suppose that wavelet function w(t) is the mother wavelet

satisfying
Rþ1
�1 wðtÞdt ¼ 0, then successive wavelets wa,b(t)

can be obtained through compressing and expanding w(t) at
scale a and location b:

wa;bðtÞ ¼ jaj�1=2w
t � b

a

� �

ð1Þ

For the discrete time series f(t) with integer time steps,

DWT in the dyadic decomposition scheme is defined as:

Wwf ðj; kÞ ¼ 2�j=2
XN�1

t¼0

f ðtÞ �wð2�jt � kÞ ð2Þ

where Ww f(j, k) is the wavelet coefficient of the discrete

wavelet with a = 2j, b = 2jk, �wðtÞ is the complex conju-

gate functions of w(t).
Ww f(j, k) reflects the characteristics of f(t) in frequency

and time domain at the same time. When the frequency

resolution of wavelet transform is low and the time domain

resolution is high, j becomes small. When the time domain

resolution is low and the frequency resolution is high,

j becomes large (Wang and Ding 2003).

Empirical mode decomposition

Empirical mode decomposition (EMD) produces Hilbert–

Huang transform (HHT) by coupling with Hilbert spectral

analysis (HSA) (Huang and Wu 2008). HHT acts similar to

wavelet analysis, while the differences are that HHT is a

posteriori and its theoretical basis is empirical.

The essence of EMD is to analyze characteristic time

scales and recognize the intrinsic oscillatory modes

empirically and finally, decompose the time series into a

sum of different time modes accordingly. Each of these

oscillatory modes is represented by an Intrinsic Mode

Function (IMF). HHT is consistent with physically mean-

ingful definitions of instantaneous frequency and amplitude

(Huang and Wu 2008), and it obtains the physical meaning

related to the full non-linear system through individual

components in the linear system rather than a physically

linear expansion. In this way, HTT has the ability to

acquire the important features of non-stationary and non-

linear series (Lee and Ouarda 2011).

EMD is implemented through an adaptively iterative

process called ‘‘sifting’’, which is the core of the algorithm.

The sifting process serves to not only eliminate riding

waves but also smoothen uneven amplitudes. For certain

series x(t), the sifting processes of EMD are described by

Huang et al. (1998).

After decomposition, the original signal x(t) can be

written as a sum of IMFs Ci(t) and a residual rn(t):

XðtÞ ¼
XN

i¼1

CiðtÞ þ rnðtÞ ð3Þ

Support vector regression (SVR)

Support vector machine, which is known as classification and

then extended to regression, was proposed by Vapnik (1995).

Support vector regression (SVR) is the method solving the

problem of regression with SVM. Detail description of SVR

can be found in many open literature (Lin et al. 2009). The

following is a brief description of SVR.

Suppose N known data points for training are{(Xi, di)}i
N,

Xi is m-dimensional input vector and di is 1D desired

output at sample point i. The aim of SVR is to find a

regression function in the form of Eq. (4).

yi ¼ Wu Xið Þ þ b 8i ¼ 1; 2; . . .;N ð4Þ

where u(X) is a non-linear mapping, W is hyperplane, and

b is offset.

It is worth mentioning that a penalty function is used in

SVR (Guo et al. 2011):

jdi � yij � e; not allocating a penalty

jdi � yij[ e; allocating a penalty

(

ð5Þ

When the estimated value is within the e- insensitive

tube, the loss value will be zero. Parameters of above

regression function can be acquired by minimizing the

following objective function:

min
1

2
Wk k2þC

XN

i¼1

Leðyi; diÞ
" #

ð6Þ

Leðyi; diÞ ¼ maxð0; jyi � dij � eÞ ð7Þ

where C represents the regularized constant that weighing

the model complexity and the empirical error. A relative

importance of the empirical risk will increase when the

value of C increases.
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Then the method of Lagrange multipliers is introduced

to solve the above optimization problem in its dual form:

max
XN

i¼1

ðaþi � a�i Þyi � e
XN

i¼1

ðaþi þ a�i Þ
"

� 1

2

XN

i¼1;j¼1

ðaþi � a�i Þðaþj � a�j ÞKðXi;XjÞ
# ð8Þ

where ai
?, ai

- are the Lagrange multipliers and K(Xi, Xj)is a

non-linear kernel function, which can map the lower

dimension input into a higher dimension linear space.

Radial basis kernel function is used in this study:

KðXi;XjÞ ¼ exp � jjXi � Xjjj2

2r2

 !

; r 2 R ð9Þ

Split the data into 
calibration and 

validation

DWT

EMD

SVR

SVR

SVR

Decompose the original 
data

Remove 
D1

Remove 
IMF1

SVR

Remove the nosiy component 
from subseries

D1,D2,D3,A1

IMF1~IMF5,r

Original data

Choose inputs for 
models

Fig. 1 Working structures of

various models

Fig. 2 Location of Jinsha River

basin and Xiangjiaba hydrologic

station
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Hybrid decomposing- SVR model

Decomposing-SVR model is a hybrid SVR model coupled

with time series decomposition technique. Two types of

decomposing technique i.e. DWT and EMD are adopted in

this study. Construction of hybrid model is as follows. First,

based on the auto-correlation function and the cross-corre-

lation function of observed monthly streamflow and pre-

cipitation, appropriate inputs for models are chosen. Then

observed streamflow and precipitation time series are

decomposed into their sub-time series by DWT and EMD,

respectively. For DWT, the sub-time series D1, D2 and D3

represent detail components corresponding to 2-, 4- and

8-months scale or periodicity, and A3 represents approxi-

mation component of 8-months scale. For EMD, the sub-

time series IMF1 * IMF5 represent different oscillatory

modes and r represents a residual after decomposition.

Finally, hybrid models DWT-SVR and EMD-SVR are

constructed by combining all the decomposed subseries with

SVR models. D1 and IMF1 are called the ‘noise’ compo-

nents, which are the most fluctuating and uncorrelated in

original hydrology time series. To find out the influence of

high-frequency components on streamflow forecasting,

DWT*-SVR and EMD*-SVR models are established by

removing D1 and IMF1 from the decomposed series. The

working structures of DWT-SVR, DWT*SVR, EMD-SVR,

EMD*-SVR and single SVR are given in Fig. 1.

Application and results

Study area and data division

Jinsha River watershed is taken as the study area in this

research. Jinsha River is in the upper reaches of Yangtze

River and it originates in the northwest of Yunnan plateau.

The total length is 2316 km and the water catchment area

is 340,000 km2. Run-off volume of the river is abundant

with an average annual flow of 149.8 billion m3. It features

a big vertical drop of 3300 meters and hydropower

resources of Jinsha River are rich, about 1.12 billion kW.

25 hydropower stations are in planning and 4 huge
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hydropower plants are already under construction. Monthly

streamflow forecasting of Xiangjiaba, which is located in

the basin outlet of Jinsha River, is researched in this study.

Location of Jinsha River basin and Xiangjiaba station is

shown in Fig. 2.

Data consist of run-off records from Xiangjiaba

hydrometric station, and rainfall records from 32 mete-

orological stations in Jinsha River basin. To reduce the

number of the model inputs and the complexity of the

model structure, the rainfall used is the mean of the

above 32 rainfall records. 48 years (January 1961 to

December 2008) of the streamflow and rainfall data is

plotted in Fig. 3. Data from the year of 1961–1997

(444 months) are used for model training and remaining

data from 1998 to 2008 (132 months) are used for model

validation.
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Selection of model inputs

Selection of model inputs is an important phase in model

calibration and it extremely affects the precision of the

model. Generally, for the sake of simplicity, streamflow is

the only input factor in many researches (Dehghani et al.

2015; Wu and Chau 2010; Yilmaz and Muttil 2013). In this

paper, the influence of precipitation on the streamflow

forecasting will be revealed by adding precipitation to the

model. A result about the auto-correlation function and the

cross-correlation function of streamflow and precipitation

is shown in Fig. 4. Based on the analysis, the most corre-

lated variables Qt-1, Qt-11, Qt-12 and Pt-1, Pt-2, Pt-12 are

selected as input variables of models, where Qt-1, Qt-11, Qt-

12 stand for streamflow at 1, 11, 12 months ago, respec-

tively; Pt-1, Pt-2, Pt-12 stand for precipitation at 1, 11,

12 months ago, respectively.

Decomposition of the original data

The original data are, respectively, decomposed by DWT

and EMD. EMD doesn’t need any predetermined basis

functions, therefore five IMFs and one residual are gener-

ated directly from the initial series, which are displayed in

Fig. 5. As for DWT decomposing procedures, subseries are

obtained using fast Mallat algorithm on three decomposi-

tion levels, which is recommended by Aussem and Mur-

tagh (1998) and Nourani et al. (2009). Selecting an

appropriate mother wavelet is critical to obtain a better

wavelet hybrid model. Maheswaran and Khosa (2012)

pointed out that wavelets with wider support and higher

vanishing moments are more suitable for irregular and

oscillating hydrology series. Hence, an irregular mother

wavelet, the Daubechies wavelet with five vanishing

moments (db5), which has very high number of vanishing

moments for a given support width, is selected. Three

decomposition levels series of approximations (A) and

details (D) through the high-pass and low-pass filter coef-

ficients of the chosen db5 are displayed in Fig. 6, and each

subseries may represent a special level of the temporal

characteristics of the original time series. It can be seen

from Figs. 5 and 6 that the high frequency decomposed

components IMF1 and D1 are the most non-linear and

disorder.

Model development

SVR, EMD-SVR, DWT-SVR, EMD*-SVR, DWT*-SVR

discussed in ‘‘Methodology’’ section are evaluated for

forecasting one-month-ahead streamflow in the Jinsha

River of China. Based on different input combinations,

eight models SVR-Q, SVR-QP, DWT-SVR-Q, DWT-SVR-

QP, EMD-SVR-Q, EMD-SVR-QP, DWT*-SVR-QP and

EMD*-SVR-QP are developed eventually in this research.

SVR-Q has original streamflow with leading time of 1, 11,

12 months as inputs, DWT-SVR-Q has D1, D2, D3, A3

series (Fig. 5) produced by DWT decomposition of origi-

nal streamflow as inputs. DWT-SVR-QP has D1, D2, D3,

A3 series (Fig. 5) produced by DWT decomposition of

original streamflow and precipitation as inputs. DWT*-

SVR-QP has D2, D3, A3 series produced by DWT

decomposition of original streamflow and precipitation as

inputs. For EMD-SVR-Q, EMD-SVR-QP and EMD*-

SVR-QP, the difference to above is that inputs are taken

from subseries produced by EMD rather than DWT. The

desired output of all models is one-month-ahead stream-

flow. All models and the corresponding inputs are provided

in Table 1. In Table 1, Qt-1 and Pt-1 denote original

streamflow and precipitation at time t-1 respectively; Qt-1

(IMF1–IMF5, r) denote EMD components IMF1, IMF2,

IMF3, IMF4, IMF5 and residue, and Qt-1 (D1–D3, A3)

denote DWT components D1, D2, D3 and A3.

Based on the input–output pairs in training period,

models will be separately optimized. When the

Table 1 Models and their

corresponding inputs
Model Input variables

SVR-Q Qt-1, Qt-11, Qt-12

SVR-QP Qt-1, Qt-11, Qt-12, Pt-1, Pt-2, Pt-12

EMD-SVR-Q Qt-1 (IMF1–IMF5, r), Qt-11 (IMF1–IMF5, r), Qt-12 (IMF1–IMF5, r)

EMD-SVR-QP Qt-1 (IMF1–IMF5, r), Qt-11 (IMF1–IMF5, r), Qt-12 (IMF1–IMF5, r),

Pt-1 (IMF1–IMF5, r), Pt-2 (IMF1–IMF5, r), Pt-12 (IMF1–IMF5, r)

EMD*-SVR-QP Qt-1 (IMF2–IMF5, r), Qt-11(IMF2–IMF5, r), Qt-12 (IMF2–IMF5, r),

Pt-1 (IMF2–IMF5, r), Pt-2 (IMF2–IMF5, r), Pt-12 (IMF2–IMF5, r)

DWT-SVR-Q Qt-1 (D1–D3, A3), Qt-11 (D1–D3, A3), Qt-12 (D1–D3, A3)

DWT-SVR-QP Qt-1 (D1–D3, A3), Qt-11 (D1–D3, A3), Qt-12 (D1–D3, A3),

Pt-1 (D1–D3, A3), Pt-2 (D1–D3, A3), Pt-12 (D1–D3, A3)

DWT*-SVR-QP Qt-1 (D2, D3, A3), Qt-11 (D2, D3, A3), Qt-12 (D2, D3, A3),

Pt-1 (D2, D3, A3), Pt-2 (D2, D3, A3), Pt-12 (D2,D3, A3)
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optimization phase is done, all models will be applied to

forecast monthly streamflow using the data from the his-

torical series in validation period. The data are decomposed

in advance by EMD or DWT based on different needs. For

single SVR models, original series are directly used as

inputs, for DWT-SVR hybrid models, original series will

be decomposed by DWT and for EMD-SVR hybrid mod-

els, original series will be decomposed by EMD.

To improve the efficiency of training, model inputs and the

desired output are conveniently standardized and scaled to the

range [0, 1]. Model parameters are optimized by cross-vali-

dation (CV). CV is a standard technique for training SVR

model. Typical fivefold cross-validation is adopted here.

Performance evaluation

The evaluation indicators of root mean square errors

(RMSE), mean absolute errors (MAE), mean absolute per-

centage error (MAPE), correlation coefficient (R) and run

time (RT) are employed to evaluate the accuracy and time

cost of models. RMSE assesses the goodness of the fit

related to high streamflow values whereas MAE measures a

more balanced perspective of the fitness at moderate

streamflows. R shows the degree which two variables are

linearly related to. RT stands for time cost of model.

RMSE, MAE and MAPE are defined as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼1

Yobs
i � Yest

ið Þ2
vu
u
t ð10Þ

MAE ¼ 1

N

XN

i¼1

Yobs
i � Yest

i

�
�

�
� ð11Þ

MAPE ¼ 1

N

XN

i¼1

Yobs
i � Yest

i

Yobs
i

�
�
�
�

�
�
�
�� 100% ð12Þ

where N denotes the number of datasets, Yobs
i represents the

observed monthly streamflow. Yest
i represents the estimated

monthly streamflow.

Results analysis

Results of SVR models, SVR models combined with EMD

and SVR models combined with DWT in validation period

(January 1998 to December 2008) are shown in Figs. 7, 8

and 9, respectively. RMSE, MAE, MAPE, R and run time

(RT) in the calibration and validation period are, respec-

tively, given in Tables 2, 3 and 4. In view of indices RMSE,

MAE, MAPE and R, Table 2 indicates that SVR-QP model,

in which precipitation and streamflow as inputs, has a better

accuracy than the SVR-Q model that only adopts streamflow

as inputs. Table 3 shows that the performance of EMD-

SVR-QP is superior to EMD-SVR-Q and proves again that

the use of precipitation can improve modeling precision.

Then EMD-SVR-QP and EMD*-SVR-QP are compared, it

is found that removing the high frequency component IMF1

is inappropriate for a better accuracy. Results of DWT-SVR

models are given in Table 4 and the same conclusions can

be made for DWT-SVR models. In view of RT indices, it

can be concluded from Tables 2, 3 and 4 that introducing

precipitation data into model inputs will greatly influence

the time cost in model calibration. Generally, more inputs

lead to more cost of run time. However, once models have

been calibrated, run time in model validation or forecast will

be almost same.
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estimations of single SVR

models in the validation period
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Fig. 9 Monthly streamflow

estimations of SVR models

combined with DWT in the

validation period

Table 2 RMSE, MAE, MAPE,

R and RT of the single SVR

models

Model Calibration Validation

RMSE MAE MAPE (%) R RT(s) RMSE MAE MAPE (%) R RT(s)

SVR-Q 1305 706 13 0.88 23.00 2114 1185 20 0.74 0.02

SVR-QP 1257 708 13 0.88 20.80 1693 908 16 0.84 0.02

Table 3 RMSE, MAE, MAPE, R and RT of the EMD-SVR based models

Model Calibration Validation

RMSE MAE MAPE (%) R RT(s) RMSE MAE MAPE (%) R RT(s)

EMD-SVR-Q 512 324 8 0.98 32.06 1278 840 19 0.9 0.02

EMD-SVR-QP 384 244 7 0.99 42.27 1213 748 17 0.91 0.02

EMD*-SVR-QP 895 468 9 0.94 42.09 1373 863 18 0.91 0.02
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Table 4 RMSE, MAE, MAPE, R and RT of the DWT-SVR based models

Model Calibration Validation

RMSE MAE MAPE (%) R RT(s) RMSE MAE MAPE (%) R RT(s)

DWT-SVR-Q 349 224 7 0.99 24.67 1015 715 18 0.94 0.02

DWT-SVR-QP 365 233 7 0.99 33.96 951 689 15 0.95 0.03

DWT*-SVR-QP 875 491 10 0.94 32.72 1275 874 19 0.91 0.02
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Then a comprehensive analysis needs to be made to

reveal the effect of different decomposing techniques on

model accuracy based on Table 2, 3 and 4. Compare SVR-

QP, EMD-SVR-QP and DWT-SVR-QP, all of which are

optimum models in each group, it can be acquired that the

models combined with decomposition techniques perform

much better than single SVR model and DWT-SVR-QP

improves the accuracy of prediction more highly than

EMD-SVR-QP in both calibration and validation periods.

Therefore, using time series decomposing techniques

contributes to improving performance of forecasting, and

decomposing technique DWT is more suitable than EMD

for monthly streamflow modeling.

Furthermore, due to the reason that streamflow in flood

season severely fluctuates, high-precision forecasting in

that period is very challenging. An evaluation of the flood

season (May–October) streamflow forecasting is discussed

here. Results of SVR-QP, EMD-SVR-QP and EMD*-SVR-

QP, DWT-SVR-QP and DWT*-SVR-QP in the validation

period are illustrated in Fig. 10. It can be recognized that

estimations of EMD-SVR-QP and DWT-SVR-QP

approximate the observed streamflows better than single

SVR model and hybrid models removing high frequency

components. 20 % is considered as a reasonable and

acceptable relative error in this study. Percentage of

acceptable predictions, which is called qualified rate, is

shown in Table 5. The results indicate that DWT-SVR-QP

raises the qualified rate from 67 % of SVR-QP to 85 %. It

can be seen from the table that DWT-SVR-QP achieves the

greatest forecasting ability for flood season streamflow.

Removing high-frequency components from original sub-

series leads to an obvious reduction in forecast perfor-

mance. The reason may be that streamflows in the flood

season are extremely fluctuant and the high-frequency

components contain the important information which is

indispensable to estimate fluctuations.

Conclusions

Accuracy of monthly streamflow forecasting models cou-

pled with different decomposition techniques was investi-

gated in this paper. SVR, EMD-SVR, and DWT-SVR

based models were, respectively, obtained by single sup-

port vector regression, SVR, combined with empirical

mode decomposition, and SVR combined with discrete

wavelet transform. To research the influence of precipita-

tion on the forecast accuracy, all models were implemented

with two kinds of inputs depending on whether antecedent

precipitation was included. All models were applied to

Xiangjiaba to perform one-month-ahead streamflow fore-

casting. Results can be summarized as follows:

1. All of the models that add antecedent precipitation in

inputs exhibit a significant improvement, so a more

excellent model can be built when precipitation

information is taken into account.

2. Removing the high-frequency component from the

subseries fails to improve the forecasting ability,

especially for the forecasting in flood season. This is

because sub-time series of first or second decomposi-

tion levels show major information on extreme flows.

Therefore high-frequency component is indispensable

to monthly streamflow forecasting.

3. Comparison results of SVR-QP, EMD-SVR-QP and

DWT-SVR-QP models show that SVR-QP produces

the worst performance, EMD and DWT both could

significantly increase accuracy of monthly streamflow

forecasting. Meanwhile, it can be acquired that DWT

outperforms EMD in terms of the evaluation indices of

RMSE, MAE, MAPE, R and RT.

4. For the flood season forecasting, SVR models com-

bining EMD and DWT both raise the qualified rate

based on the results from May to October. DWT-SVR-

QP is superior to EMD-SVR-QP with a highest

qualified rate of 85 %.

In conclusion, results in this paper indicate that models

coupled with decomposition techniques perform better than

the single models and decomposition technique DWT

provides a superior alternative to EMD in monthly

streamflow forecasting. Among all the developed models,

DWT-SVR-QP which combining discrete wavelet trans-

form and support vector regression, has the best perfor-

mance and is recommended as an alternative to Xiangjiaba

monthly streamflow forecasting.
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