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Abstract This study investigates the application of infor-

mation value (InV) and logistic regression (LR) models for

producing landslide susceptibility maps (LSMs) of the

Zigui–Badong area near the Three Gorges Reservoir in

China. This area is subject to anthropogenic influences

because the reservoir’s water level cyclically fluctuates

between 145 and 175 m. In addition, the area suffers from

extreme rainfall events due to the local climate and has

experienced significant and widespread landslide events in

recent years. In this study, a landslide inventory map was

initially constructed using field surveys, aerial photographs,

and a literature search of historical landslide records. Eight

causative factors, including lithology, bedding structure,

slope, aspect, elevation, profile curvature, plane curvature,

and fractional vegetation cover, were then considered in

the generation of LSMs by using the InV and LR models.

Finally, the prediction performances of these maps were

assessed through receiver operating characteristics (ROC)

that utilized both success-rate and prediction-rate curves.

The validation results showed that the area under the ROC

curve for the InV model was 0.859 for the success-rate

curve and 0.865 for prediction-rate curve; these results

indicate the InV model surpassed the LR model (0.742 for

success-rate curve and 0.740 for prediction-rate curve).

Overall, the two models provided nearly similar results.

The results of this study show that landslide susceptibility

mapping in the Zigui–Badong area is viable with both

approaches.

Keywords Landslide susceptibility models � The Three

Gorges Reservoir � GIS � Logistic regression � Information

value model

Introduction

More than 3800 landslide locations have been reported in

the area near the Three Gorges Reservoir along the

Yangtze River in China (Liu et al. 2009), which poses a

serious threat to the socioeconomic stability of the region.

The instability of bank slopes is a serious and

inevitable problem due to the significant increases and

periodic fluctuations in the water level of the reservoir.

Therefore, landslide prediction is critical for landslide

prevention and mitigation in this area.

Landslide susceptibility mapping (LSM) is a complex

task (Brabb 1991). Numerous approaches for producing

landslide susceptibility maps (LSMs) have been developed

that can be grouped into three broad categories: statistical,

soft computing, and analytic methods (Pradhan 2013). The

application of analytic methods is most difficult when the

study area is large. For this reason, the use of statistical and

soft computing methods has steadily increased. Moreover,

the implementation of these methods in geographical

information systems (GIS) is a relatively easy task.

Over the last decade, several studies have examined

indirect LSM by using a statistical approach (Guzzetti et al.
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1999; Lee and Pradhan 2007; Nefeslioglu et al. 2008; Bai

et al. 2008, 2009, 2010; Akgun and Turk 2010; Pradhan

2010; Pradhan et al. 2011; Akgun et al. 2011; Bathrellos

et al. 2012, 2013; Papadopoulou-Vrynioti et al. 2013;

Youssef and Maerz 2013; Chen et al. 2015). Various

methods have been proposed, including the information

value (InV) (Ramakrishnan et al. 2005; Vijith et al. 2009;

Balasubramani and Kumaraswamy 2013; Sarkar et al.

2013) and the logistic regression (LR) methods (Yesilnacar

and Topal 2005; Bathrellos et al. 2009; Oh et al. 2011;

Pradhan and Lee 2010; Intarawichian and Dasananda

2011). More recently, Shahabi evaluated three LSM mod-

els (Shahabi et al. 2014): the analytical hierarchy process,

the frequency ratio, and the logistic regression models.

Nourani compared susceptibility maps with results from

previous analyses by adopting frequency ratio, LR, and

artificial neural network models (Nourani et al. 2014). Che

presented a comparative study of seed cells, InV, and

generalized linear regression procedures for LSM (Che

et al. 2012). A number of other statistical techniques for

predicting LSM have been evaluated by other researchers

(Rozos et al. 2011, 2013; Devkota et al. 2013; Kayastha

et al. 2013; Ozdemir and Altural 2013; Pourghasemi et al.

2013, 2014; Pradhan 2013; Regmi et al. 2014).

The literature mentioned above covers numerous studies

that apply the InV and LR methods for LSM. Despite the

popularity of these two methods, their efficacy has yet to be

comparatively assessed when the methods are employed

for landslide mapping; they were previously employed

separately in landslide susceptibility studies.

This paper applies the InV and LR methods to the same

study area and compares the results for the first time. The

objective of this study was to access and compare the

performance of the InV and FR models and provide a

detailed landslide susceptibility analysis of the Three

George Reservoir area.

Description of the study area

The Three Gorges lie in the mountains separating the

Sichuan and Jianghan Basins along the middle reaches of

the Yangtze River. In response to episodic tectonic uplift

during the Quaternary Period, the gorges were formed by

river incisions into the massive limestone mountains of the

Early Paleozoic to Mesozoic Eras (J1 Jialinjiang Group)

(Chen et al. 1995; Li et al. 2001). The elevation ranges

from 800 to 2000 m. The terrain consists of a succession of

limestone ridges and gorges with intergorge valleys com-

prised primarily of interbedded mudstone, shale, and thinly

bedded limestone. Landslides tend to occur in failure-prone

lithological formations that are concentrated in the inter-

gorge valleys (Fourniadis et al. 2007).

The study area is located in Hubei Province, which

includes Zigui and Badong counties, to the west of the

Xiling Gorge (Fig. 1). The site lies between latitudes of

30.02�N and 30.93�N and longitudes of 110.30�E and

110.87�E and covers an area of 396 km2. The geomor-

phology of the area is characterized by a rugged topogra-

phy with hill ranges varying from 800 to 2000 m. The

Yangtze River broadly crosses the study area in a WNW–

ESE direction. The climate in the area is typically sub-

tropical and monsoonal, with hot and humid summers but

cold and dry winters. The average annual precipitation is

1100 mm. The rainfall is generally concentrated in spring

and summer, and the summer average can be as high as

200–300 mm per month (He et al. 2008).

The geological base of the study area is composed of

crystalline, pre-Sinian rocks with a Sinian–Jurassic sedi-

mentary cover (Wu et al. 2001). The Huangling anticline to

the northeast of Zigui county forms a structure of

approximately 73 km in length, primarily oriented NNE–

SSW, and its core consists of pre-Sinian metamorphic and

magmatic rocks (Fig. 2).

Materials and methods

Landslide inventory

Landslides were identified based on the interpretation of

1:10,000-scale color aerial photographs. A series of field

surveys were conducted to confirm the sizes and shapes of

the landslides, define the types of movements and the

materials involved, and review historical and bibliograph-

ical data, including geological, geomorphologic, and

landslide maps. A total of 202 landslides were mapped and

subsequently digitized and rasterized in ESRI’s ArcGIS

software with a grid cell size of 28.5 9 28.5 m. The grid

size reflects the resolution of the digital elevation model

(DEM) and the remote sensing data used. Other vector data

layers, such as bedding structure and lithology, were also

rasterized with this grid size. The study area was divided

into 549,127 mapping units (grid cells), including 28,717

cells for landslides. The mapped landslides covered an area

of 23.33 km2, representing 5.23 % of the study area. The

smallest landslide that could be identified from the aerial

photographs and subsequently recognized in the field had

an area of 0.0021 km2, whereas the largest landslide, the

Fanjiaping landslide located on the southern side of the

Yangtze River, was approximately 1.5 km2.

Landslide causative factors

Several researchers have examined the correlations

between natural landslide occurrences in the Three Gorges
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area and various parameters such as elevation, slope angle,

slope aspect, curvature, land cover, lithology, bedding

structure, and lineaments based on remote sensing and GIS

data (Bai et al. 2010; Fourniadis et al. 2007; Liu et al.

2004).

Based on previous research (Bai et al. 2010; Four-

niadis et al. 2007; Peng et al. 2014; Liu et al. 2004) and

our field reconnaissance, a total of 8 causative factors

were considered in this study: lithology, bed rock–slope

relationship, slope, aspect, elevation, profile curvature,

plan curvature, and fractional vegetation cover. The

continuous variables were converted into four classes by

using the natural breaks method in the ArcGIS V9.3

software platform. The details of each factor are pre-

sented below.

Lithology

As a part of geomorphologic studies, the landslide phe-

nomenon is related to the lithology of the land. Because

different lithological units have different landslide sus-

ceptibility values, they are important in providing data for

susceptibility studies; it is therefore essential to properly

group lithological properties (Dai et al. 2001; Duman et al.

2006). The geological map of the study area was prepared

by the Hubei Province Geological Survey (HPGS) at a

1:50,000 scale and digitized in GIS (Hubei Province

Geological Survey 1997). The study area possesses various

types of lithological units. The lithology map of the area is

shown in Fig. 3.

Bedding structure

Geological structures exert a strong influence on slope

stability because different degrees of landsliding relate to

the angular relationships between bedding attitudes, slope

aspects, and slope angles (Meentemeyer and Moody 2000;

Wen et al. 2004; Wu et al. 2004). When a bedding plane

appears on a slope’s free face, a relatively stable condition

can be presumed if the dip angle is greater than the slope

angle; an unstable setting is formed if the dip angle is less

than the slope angle. Geological structures provide a pri-

mary control on the position of slippery surfaces, and in the

majority of landslides in the Three Gorges area, the failure

surfaces were closely associated with a pre-existing planes

of weakness (Wu et al. 2001).

Fig. 1 Location map of the study area. a Sitemap of the Three Gorges area of the Yangtze River, China. b Digital elevation model (DEM)

overlaid with landslides
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Bedding structure can be classified as over-dip slopes,

under-dip slopes, dip-oblique slopes, transverse slopes, ana-

clinal-oblique slopes, and anaclinal slopes. The relationship

between the bed dip direction and angle, as well as informa-

tion on the slope angle and aspect, is shown in Table 1. These

data were used to generate the bedding structure map (Fig. 4)

Fig. 2 Regional geological and tectonic framework map of the study area (Peng et al. 2014)

Fig. 3 Lithology map of the study area. (1 mudstone, shale, and Quaternary deposits, 2 sandstones and thinly bedded limestones, 3 limestones

and massive sandstones)

867 Page 4 of 16 Environ Earth Sci (2016) 75:867

123



Slope

The slope angle is a major parameter in landslide suscep-

tibility mapping because it is directly related to landslides

(Lee and Min 2001; Cevik and Topal 2003; Lee et al.

2004). The slope map was derived from DEM with a

30 9 30 m grid size. The original slope angles vary

between 0� and 78.41�, and the values were reclassified

into 4 categories: (1) 0� to 10�, (2) 10� to 25�, (3) 25� to

36�, and (4) 36� to 78.41� (Fig. 5).

Aspect

Similar to slope, aspect is also a major factor in landslide

susceptibility mapping (Guzzetti et al. 1999; Cevik and

Topal 2003; Lee et al. 2004). In this study, the aspect of the

study area was classified as flat (-1�), north (0�–22.5� and

337.5�–360�), northeast (22.5�–67.5�), east (67.5�–112.5�),
southeast (112.5�–157.5�), south (157.5�–202.5�), south-

west (202.5�–247.5�), west (247.5�–292.5�), and northwest

(292.5�–337.5�) (Fig. 6).

Table 1 Classification of the

bedding structure relationship
Type Definition

Over-dip slopes |a - b| 2 [0�, 30�) or |a - b| 2 [330�, 360�), c[ 10� and d[ c

Under-dip slopes |a - b| 2 [0�, 30�) or |a - b| 2 [330�, 360�), c[ 10� and d\ c

Dip-oblique slopes |a - b| 2 [30�, 60�) or |a - b| 2 [300�, 330�)
Transverse slopes |a - b| 2 [60�, 120�) or |a - b| 2 [240�, 300�)
Anaclinal-oblique slopes |a - b| 2 [120�, 150�) or |a - b| 2 [210�, 240�)
Anaclinal slopes |a - b| 2 [150�, 210�)

a is the slope aspect, b is the bed dip direction, c is the bed dip angle, and d is the slope angle

Fig. 4 Bedding structure map of the study area

Fig. 5 Slope map of the study area
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Elevation

Elevation is also a relevant landslide conditioning factor

used in this study. The elevation map was prepared from

1:10,000-scale digital topographic maps surveyed by Three

Gorges Headquarters with a spatial resolution of 28.5 m.

The original elevations vary between 80 and 2000 m and

are grouped into four classes: (1) 80–330 m, (2)

330–620 m, (3) 620–1000 m, and (4) 1000–2000 m

(Fig. 7).

Profile curvature

The profile curvature is the curvature that corresponds to a

normal section that is tangential to a flow line; it shows the

flow acceleration and erosion/deposition (negative val-

ues/positive values) rate while providing a basic indication

of geomorphology (Yesilnacar, and Topal 2005). In addi-

tion, the profile curvature controls the change of velocity of

mass flowing down the slope (Talebi et al. 2007). A profile

curvature map was produced with the original profile cur-

vature values varying between -33.47�/100 m and 31.99�/

100 m, and the values were reclassified into four classes:

(1) -33.47 to -1.123�/100 m, (2) -1.123 to 0.161�/
100 m, (3) 0.161 to 1.702�/100 m, and (4) 1.702 to 31.99�/
100 m (Fig. 8).

Plan curvature

The term curvature is theoretically defined as the rate of

change of slope gradient or aspect, typically in a partic-

ular direction (Wilson and Gallant 2000). The curvature

value can be evaluated by calculating the reciprocal value

of the radius of curvature of a particular direction (Ne-

feslioglu et al. 2008). Thus, whereas the curvature values

of broad curves are small, tight curves have higher values.

For this reason, this parameter constitutes one of the

conditioning factors controlling landslide occurrences. A

plan curvature map was produced with original plan

curvature values varying between -11.96�/100 m and

17.04�/100 m, and the values were reclassified into four

classes: (1) -11.96 to -1.497�/100 m, (2) -1.497 to

-0.360�/100 m, (3) -0.360 to 0.437�/100 m, and (4)

0.437 to 17.04�/100 m (Fig. 9).

Fig. 6 Aspect map of the study area

Fig. 7 Elevation map of the study area
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Fractional vegetation cover

Fractional vegetation cover (FVC) is an important factor

influencing the occurrence and movement of landslides

because changes in the FVC often result in modified land-

slide behavior (Glade 2003; Chen et al. 2009). The FVC can

reduce the frequency of landslides due to the vegetation

canopy and ground cover, but it is one of the most difficult

parameters to estimate over broad geographical areas. In this

paper, the FVC was calculated from CBERS (China-Brazil

Earth Resources Satellite) data acquired in April 2004 with a

path/row of 04/65. The calculation was performed using a

back-propagation neural network (BPNN) (Chen et al.

2011a, b). A fractional vegetation cover map was produced

and reclassified into four classes: (1) 0–16 %, (2) 16–35 %,

(3) 35–60 %, and (4) 60–100 % (Fig. 10).

Fig. 8 Profile curvature map of the study area

Fig. 9 Plan curvature map of the study area

Fig. 10 Fractional vegetation cover map of the study area
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Methodology

Information value model

The information value (InV) method involves the selection

of a set of instability factors. The information value Ii of each

causative factor Xi is determined by Yin and Yan (1988)

Ii ¼ log
Si=Ni

S=N
ð1Þ

where Si is the number of landslide pixels with the pres-

ence of causative factor Xi, Ni is the number of pixels with

causative factor Xi, S is the total number of landslide pix-

els, and N is the total number of pixels in the study area.

A negative value of Ii indicates that the presence of a

certain causative factor is irrelevant in landslide develop-

ment. A positive value of Ii indicates a relevant relationship

between the presence of a certain causative factor and

landslide distribution. The stronger the relationship, the

higher the score (Yan 1988).

The total information value I can then be obtained by

I ¼
Xn

i¼1

log
Si=Ni

S=N
ð2Þ

The InV method is an indirect statistical approach that has

the advantage of assessing landslide susceptibility in an

objective way. The method allows for a quantified predic-

tion of susceptibility by means of a score, even on terrain

units not yet affected by a landslide. Each causative factor is

crossed with the landslide distribution; as with all bivariate

statistical methods, weighted values based on landslide

densities are calculated for each parameter class. The cor-

relations between the input variables are not accounted for.

Logistic regression model

To indicate the presence and absence of a landslide in the

logistic regression (LR) method, the dependent variable is

coded as ‘‘1’’ and ‘‘0,’’ respectively. The logistic model

representing the maximum likelihood regression model can

be expressed in its simplest form as follows:

P ¼ 1

1 þ e�z
ð3Þ

where P is the probability of event (landslide) occurrence,

which varies from 0 to 1 on an s-shaped curve and is

defined as the landslide susceptibility index (LSI) in this

paper. The parameter z is defined in the following equation

(linear logistic model) with values between �1 and þ1:

z ¼ B0 þ B1X1 þ B2X2 þ � � � þ BnXn ð4Þ

where B0 is the intercept of the model and n is the number

of independent variables. The parameter Bi (i = 0, 1, 2,…,

n) represents the slope coefficients of the logistic regres-

sion model, and Xi (i = 0, 1, 2,…, n) represents the inde-

pendent variables. The linear model formed is a logistic

regression representing the presence or absence of land-

slides (under present conditions) with respect to the inde-

pendent variables (pre-failure conditions).

Based on Eqs. (3) and (4), the logistic regression

equation can be written in the following extended form:

P ¼ 1

1 þ e�B0þB1X1þB2X2þ���þBnXn
ð5Þ

Logistic regression is useful in predicting the presence or

absence of a characteristic because it allows for the cre-

ation of a multivariate regression relation between a

dependent variable and several independent variables

(Atkinson and Massari 1998; Süzen and Doyuran 2004;

Hosmer and Lomeshow 2000; Süzen 2002; Lee 2005). The

coefficients determined in LR can be used to estimate the

ratios for each of the independent variables.

Results and discussion

Application of information value model

To understand the determinants of the landslide, the

information value of the each possible factor responsible

for the landslide was computed by the information value

method (Table 2). The final landslide susceptibility map

obtained by the InV model is shown in Fig. 11.

The majority of landslides occurred in sandstone and

thinly bedded limestone with an information value of 0.27

and contained within 51.67 % of the landslide area. Lime-

stone and massive sandstones have a low contribution to

landslide occurrences (-0.034 of information value within

44.82 % of landslide area), whereas mudstone, shale, and

Quaternary deposits have the lowest contribution to land-

slide occurrences (-0.834 of information value with 3.51 %

of landslide area) among these three lithology categories.

Bedding structure is an important causative factor rep-

resenting the angular relationship between topography and

strata attitude. The maximum information value of bedding

structure was 0.107, and the minimum was -0.401 in the

study area. This implies that under-dip slopes have a higher

possibility of landslide occurrence with 22.84 % of the

landslide area, whereas over-dip slopes have the lowest

possibility of landslide occurrence because they contain

2.54 % of the landslide area.

The information values of slope vary from -0.650 to

0.226. In the study area, approximately 62.5 % of the

landslides occurred below 25�. Over half of the landslides

(58.4 %) occurred between slopes of 10�–25�. Overall, no

definite correlation was found between slope angle and
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landslide occurrence, although the relationship was posi-

tive for slopes up to 36�.
Among the aspect categories, the maximum information

value was found on the north-facing slope (0.229) and the

minimum on the southwest faces (-0.226). Therefore, the

maximum number of landslides was concentrated in the

north and northeast slope directions.

As for the elevation factors, more than two-thirds

(71.42 %) of the landslides occurred within 330 m of ele-

vation. Beyond this height, the occurrence of landslides

Table 2 Information values calculated for each categories of causative factors, based on information value method; coverage area, and area of

the existing landslides in that category

Causative factors Categories Si Ni Si/Ni Area

(%)

Landslides area

(%)

Information

value

Lithology Mudstone, shale, and Quaternary

deposits

1008 131,507 0.00766 23.95 3.51 -0.834

Sandstones and thinly bedded

limestones

14,837 150,992 0.982635 27.50 51.67 0.274

Limestones and massive sandstones 12,872 266,628 0.48277 48.55 44.82 -0.034

Bedding structure Over-dip slopes 730 35,127 0.020782 6.40 2.54 -0.401

Under-dip slopes 6558 98,011 0.066911 17.85 22.84 0.107

Dip-oblique slopes 5631 95,195 0.059152 17.34 19.61 0.054

Transverse slopes 8657 159,290 0.054347 29.01 30.15 0.017

Anaclinal-oblique slopes 3985 81,919 0.048646 14.92 13.88 -0.031

Anaclinal slopes 3156 79,584 0.039656 14.49 10.99 -0.120

Slope (�) 0–10 1184 65,613 0.018045 11.95 4.12 -0.462

10–25 16,773 190,708 0.087951 34.73 58.41 0.226

25–36 9724 204,244 0.047610 37.19 33.86 -0.041

36–78.41 1036 88,562 0.011698 16.13 3.61 -0.650

Aspect Flat 0 34,817 0.000000 6.34 0.00 0.000

North 6507 73,443 0.088599 13.37 22.66 0.229

Northeast 4999 70,594 0.070813 12.86 17.41 0.132

East 2719 56,438 0.048177 10.28 9.47 -0.036

Southeast 2270 57,374 0.039565 10.45 7.90 -0.121

South 3855 62,089 0.062088 11.31 13.42 0.075

Southwest 1881 60,571 0.031054 11.03 6.55 -0.226

West 2283 70,368 0.032444 12.81 7.95 -0.207

Northwest 4203 63,433 0.066259 11.55 14.64 0.103

Elevation (m) 80–330 20,510 170,890 0.120019 31.12 71.42 0.361

330–620 7842 186,406 0.042069 33.95 27.31 -0.094

620–1000 365 134,329 0.002717 24.46 1.27 -1.284

1000–2000 0 57,502 0.000000 10.47 0.00 0.000

Profile curvature (�/100 m) -33.47 to -1.123 563 32,286 0.017438 5.88 1.96 -0.477

-1.123 to 0.161 20,060 337,061 0.059514 61.38 69.85 0.056

0.161 to 1.702 7817 161,237 0.048481 29.36 27.22 -0.033

1.702 to 31.99 277 18,543 0.014938 3.38 0.96 -0.544

Plan curvature (�/100 m) -11.96 to -1.497 191 12,031 0.015876 2.19 0.67 -0.518

-1.497 to -0.360 2987 67,314 0.044374 12.26 10.40 -0.071

-0.360 to 0.437 23,875 387,014 0.061690 70.48 83.14 0.072

0.437 to 17.04 1664 82,768 0.020104 15.07 5.79 -0.415

Fractional vegetation cover

(%)

0–16 17,883 232,230 0.077006 42.29 62.27 0.168

16–35 8971 179,666 0.049932 32.72 31.24 -0.020

35–60 1746 101,028 0.017282 18.40 6.08 -0.481

60–100 117 36,203 0.003232 6.59 0.41 -1.209
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gradually decreases, and the elevation factors have

insignificant contributions beyond 620 m.

The profile curvature and plan curvature factors play

similar roles. The highest information value of profile

curvature categories was 0.056 and occurred between

-1.123 and 0.161 (�/100 m), whereas one of the plan

curvature categories was 0.072 and occurred between

-0.360 and 0.437 (�/100 m).

In this study, fractional vegetation cover was negatively

correlated with landslide occurrences. The highest rating

was found where fractional vegetation cover was \16 %

and the influence was negligible for vegetation cover

[80 %.

Application of logistic regression model

The LR analysis method and GIS techniques were

employed in this study to extract an evaluation of LS in the

study area. Eight landslide causative factors were consid-

ered and described in the previous section.

The landslide causative factors used in this study are

also displayed in Table 2. Experts in the field generally

recommend that researchers use approximately equal pro-

portions of landslide-present (1) and landslide-absent (0)

pixels in LR (Ayalew and Yamagishi 2005); this analysis

features 4808 landslide-present pixels and 4800 randomly

selected landslide-absent pixels. The 4808 landslide

occurrence cells account for 0.5 % of the total study area.

The class values of the dependent (landslide-present and

landslide-absent points) and independent variables (land-

slide causative factors) were determined at 9608 points to

create the input table for LR modeling. The model coeffi-

cients were estimated using the statistical analysis software

SPSS V22.0 (Table 3). Based on the obtained results,

Eq. (4) can be rewritten as follows:

z ¼ Lc þ BSc þ Ac � 4:127 � S� 16:316 � E � 0:247

� PrC þ 0:226 � PlC � 1:875 � FVC þ 3:786

ð6Þ

where Lc, BSc, and Ac are the logistic regression coefficient

values listed in Table 3; S is the slope value; E is the

elevation value; PrC is the profile curvature value; PIC is

the plan curvature value; and FVC is the fractional vege-

tation cover value.

Finally, the landslide susceptibility index (LSI) map is

obtained by using the raster calculator in ArcGIS 9.3 and is

based on Eq. (5) (Fig. 12).

It can be observed in Table 3 that plan curvature plays a

prominent role in the landslide susceptibility of the area

because it has a positive B value (0.226). The slope, ele-

vation, profile curvature, and fractional vegetation cover

have a negative effect in landslide formation because they

all have a negative B coefficient. As for lithology, the

limestone and massive sandstone deposits (B = 0.861) are

the most susceptible to sliding. The mudstone, shale, and

Quaternary deposits (b = -0.020), along with the sand-

stone and thinly bedded limestone (-0.822), have negative

B coefficients and are thus less susceptible to landslides. As

for the bedding structure, the transverse slopes

(b = 0.425), dip-oblique slopes (b = 0.410), anaclinal

slopes (b = 0.339), anaclinal-oblique slopes (b = 0.316),

and under-dip slopes (b = 0.029) have a high probability

of landslide susceptibility as they have a positive b coef-

ficient, while over-dip slopes (b = -0.680) have less

probability because they have a negative B coefficient. As

for aspect, the slopes trending toward the southeast

(b = 0.397), northeast (b = 0.350), and east (b = 0.077)

have susceptibility levels in decreasing order, whereas the

remaining aspect categories play a negative role in the

landslide susceptibility of the region.

Fig. 11 Landslide susceptibility maps obtained from InV model
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Table 3 Coefficient of logistic regression model

Causative factors Categories Ba S.E.b Waldc Dfd Sig.e Exp(B)f

Lithology (LC) Mudstone, shale, and Quaternary deposits -0.020 0.496 0.002 1 0.967 0.980

Sandstones and thinly bedded limestones -0.822 0.120 47.175 1 0.000 0.439

Limestones and massive sandstones 0.861 0.064 182.968 1 0.000 2.365

Bedding structure (BSC) Over-dip slopes -0.680 0.453 2.255 1 0.133 0.507

Under-dip slopes 0.029 0.184 0.024 1 0.876 1.029

Dip-oblique slopes 0.410 0.107 14.595 1 0.000 1.507

Transverse slopes 0.425 0.108 15.345 1 0.000 1.529

Anaclinal-oblique slopes 0.316 0.098 10.412 1 0.001 1.371

Anaclinal slopes 0.339 0.111 9.298 1 0.002 1.404

Slope (S) -4.127 0.285 209.197 1 0.000 0.016

Aspect (AC) Flat -3.166 0.624 25.720 1 0.000 0.042

North -3.416 1.332 6.576 1 0.010 0.033

Northeast 0.350 0.103 11.653 1 0.001 1.419

East 0.077 0.105 0.545 1 0.461 1.081

Southeast -0.099 0.114 0.760 1 0.383 0.906

South -0.511 0.121 17.942 1 0.000 0.600

Southwest 0.397 0.113 12.454 1 0.000 1.488

West -0.923 0.124 55.487 1 0.000 0.397

Northwest -0.597 0.116 26.729 1 0.000 0.550

Elevation (E) -16.316 0.405 1627.088 1 0.000 0.000

Profile curvature (PrC) -0.247 1.658 0.022 1 0.882 0.781

Plan curvature (PlC) 0.226 2.088 0.012 1 0.914 1.253

Fractional vegetation cover (FVC) -1.875 0.229 66.924 1 0.000 0.153

Constant 3.786 1.273 8.846 1 0.003 44.097

a B = logistic coefficient
b S.E. = standard error of estimate
c Wald = Wald Chi-square values
d Df = degree of freedom
e Sig. = Significance
f Exp(B) = exponentiated coefficient

Fig. 12 Landslide susceptibility maps obtained from LR model
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Validation of the landslide susceptibility maps

The values obtained from the InV and LR models range from

-5.667 to 1.492 and 0 to 0.9991, respectively. The mean and

standard deviation values in the two LSMs obtained from the

InV and LR models are -0.7387, 1.1498, 0.1356, and

0.3595, respectively. To improve the readability of the map,

the natural breaks method in ArcGIS was used to divide the

two probability maps into four susceptibility zones: very

low, low, medium, and high (Figs. 13, 14).

The results of the two LSMs were validated by com-

paring them with the existing landslide locations and using

the success-rate and prediction-rate methods (Chung and

Fabbri 2003). The success-rate results were obtained by

comparing the pixels from the 4808 pixels of landslide

locations and the 4800 pixels of randomly selected non-

landslide locations with the two landslide susceptibility

maps. The success-rate curves of the two LSMs obtained

from the InV and LR models are shown in Fig. 15.

However, the success-rate method may not be suit-

able for assessing the prediction capacity of the landslide

models (Brenning 2005). The prediction rate can explain

how well the landslide models and landslide conditioning

factors predict landslides (Pradhan and Lee 2010; Chung

and Fabbri 2003; Brenning 2005). Therefore, in this study,

the prediction-rate results were obtained based on the

comparison of the landslide grid cells from the 4808 pixels

of landslide locations and the 4800 pixels of randomly

selected non-landslide locations that were not used in the

training phase with the two LSMs. Figure 16 shows the

prediction-rate curve results of the two LSMs obtained

from the InV and LR models.

The accuracy of these two susceptibility maps was

checked by using receiver operating characteristics (ROC).

The ROC curve is a useful method of representing the

quality of deterministic and probabilistic detection and

forecast systems (Swets 1988). It can be equivalently rep-

resented by plotting the fraction of true positives out of the

positives versus the fraction of false positives out of the

negatives for a binary classifier system, as its discrimina-

tion threshold is varied (Table 4). By tradition, the plot

shows the false-positive rate (1-specificity) on the x-axis

(Eq. 7) and the true-positive rate (the sensitivity or 1-the

false negative rate) on the y-axis (Eq. 8).

Fig. 13 Landslide susceptibility zone map obtained from InV model

Fig. 14 Landslide susceptibility zone map obtained from LR model
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X ¼ 1 � specificity ¼ 1 � TN

TN þ FP

� �
ð7Þ

Y ¼ Sensitivity ¼ TP

FN þ TP

� �
ð8Þ

The area under the ROC curve (AUC) characterizes the

quality of a forecast system by describing the system’s

ability to correctly predict the occurrence or non-occur-

rence of predefined ‘‘events.’’ The model with a greater

AUC is considered to be the best. If the area under the

ROC curve (AUC) is close to 1, then the result of the test is

excellent. Conversely, an AUC result closer to 0.5 indicates

a fairer test result. Both the success rate and prediction rate

of the models were used for assessing the prediction

capability of the models.

When the ROC curves of these two methods were

considered together, their overall performances are

observed to be slightly different. According to the obtained

AUC in Figs. 15 and 16, the InV model demonstrates

slightly higher accuracy performance (0.859 in success rate

and 0.865 in prediction rate, both with an estimated stan-

dard error of 0.004) than the LR model (0.742 in success

and 0.740 in prediction rate, both with an estimated stan-

dard error of 0.005). These results indicate that the InV

model is a relatively good method of determining LSM in

the study area and is appropriate for LSM based on the

0.865 accuracy for this area in prediction performance.

Conclusions

Over the last three decades, regional landslide suscepti-

bility assessment has been a pressing research topic

because it is a difficult and nonlinear problem. Although

some studies have individually applied the InV or LR

methods to generate LSM, these methods had not been

directly and quantitatively compared. In this study, the InV

and LR methods were applied in the same study area, and

their performances were compared.

The results of the two LSMs obtained from both models

were validated by comparing them with the known land-

slide locations using the success-rate and prediction-rate

methods. The suitability of each model was evaluated by

the area under the ROC curve. The results showed that the

two methods employed in the present study gave promising

results with more than 70 (AUC) prediction performances.

Fig. 15 Success-rate curve and areas under the curves (AUC) for the

susceptibility maps produced by InV model and LR model in this

study

Fig. 16 Prediction-rate curve and areas under the curves (AUC) for

the susceptibility maps produced by InV model and LR model in this

study

Table 4 Parameters for the

calculation of ROC curve

(modified from Swets 1988)

Landslide locations Non-landslide locations

Landslide occurrence based on calculated function True positive (TP) False positive (FP)

Safe areas based on calculated function False negative (FN) True negative (TN)
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The prediction rate was higher than the success rate for the

InV model, whereas the success rate was higher than the

prediction rate for the LR model. The success-rate and

prediction-rate results produced by the InV and LR meth-

ods were 0.859, 0.742, 0.865, and 0.740, respectively. The

comparison results of this study indicate that the InV model

has the higher prediction accuracy for the study area. The

input, calculation, and output processes of the InV are

relatively simple and easy to understand, whereas the LR

model requires a preliminary conversion of data. The

results obtained in this study also showed that the InV

model can be used as a simple tool for the assessment of

LSM when a sufficient number of data are collected.

Landslide susceptibility maps obtained from InV and

LR should be assessed carefully by a landslide expert to

identify cases where the model is overtrained and the

prediction results are misleading. The results obtained in

this paper show that the models followed in the present

study exhibit reasonably satisfactory performance. As a

final conclusion, the analyzed results obtained from the

study can aid planners and engineers in future development

and land-use planning for the Zigui–Badong area of the

Three Gorges Reservoir in China.
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