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Abstract Potential toxic elements (PTEs) in urban soils

are of great environmental concern because of their

potential long-term effects on human health. A systematic

soil geochemical survey was performed across central

urban districts of Guangzhou, the largest city in southern

China. Surface soil samples (0–10 cm) were collected from

426 sites in order to evaluate the environmental quality of

this urban area. Geostatistical and multivariate analysis

(principal component, clustering, and correlation) were

applied to generate spatial distribution maps of PTEs

concentrations as well as identify possible sources of

metals. The results showed that PTEs ranged widely in

value; Arsenic, Hg, Pb, Cu Zn, Cd, Ni, and Mn ranged

from 1.4 to 144, 0.01 to 12.2, 18.5 to 4903, 5.0 to 417, 10.1

to 1795, 0.03 to 2.41, 2.5 to 77.6, and 21.2 to 1286 mg/kg,

respectively. Iron ranged from 6.1 to 61.8 g/kg. Soils were

enriched with Cd, Cu, Hg, Mn, Pb and Zn as compared

with soil background values of Guangzhou. Spatial distri-

bution maps indicated similar distribution patterns of Cd,

Cu, Pb and Zn. Urbanization history and industrial activi-

ties affected the accumulation of PTEs. Relatively higher

concentrations of As, Cd, Cu, Hg, Pb and Zn were found in

districts with a longer history of urbanization and industrial

activities, such as the Liwan district along the Pearl River

in western Guangzhou. This area was the most highly

contaminated, whereas the Tianhe, a district with a limited

time of development, was the least contaminated. Multi-

variate statistical analysis showed distinctly different

associations among the studied metals; suggesting that Fe,

Ni and Mn were predominantly derived from a natural

(geological) source; As, Cu, Hg, Pb and Zn from anthro-

pogenic sources; and Cd from both sources. Present PTEs

levels were also compared with those reported from other

urban areas around world, and results indicate that further

studies on assessing both the human and ecosystem risks

associated with urban contaminated soils will be necessary.

Keywords Multivariate analysis � Geostatistical

analysis � Potential toxic elements (PTEs) � Spatial

distribution maps � Source identification � Urban soil

Introduction

Urban soil is an important component of urban environ-

ment and minimizing potential toxic element (PTE) content

and bioavailability in urban soils is essential to the health

of inhabitants in densely populated urban areas (Lu 2000;

Lu et al. 2003; Ajmone-Marsan and Biasioli 2010). The

transfer of PTEs from the soil to humans can be direct,

such as soil consumption, or indirect through human con-

sumption of plants or animals. Soil ingestion and inhala-

tion, and dermal contact absorption had been recognized as

important exposure routes of contaminants to humans in

urban environment, especially for children up to the age of

six (Ljung et al. 2006; Lu et al. 2011; Luo et al. 2011;

Mielke et al. 1999; Poggio et al. 2009). For example, a
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robust nonlinear association has been identified between

the blood Pb levels of children and the soil Pb levels in

urban environments (Mielke et al. 2007).

Evaluation of the environmental impact of contaminants

in soils starts with a determination of their concentration

and spatial distribution. This is especially important in

urban areas considering the complex, spatially heteroge-

neous soil features (Bityukova et al. 2000; Zhang et al.

2005). Environmental and health concerns have resulted in

a large number of studies on PTEs in the urban soils of

many cities around the world (Andersson et al. 2010;

Calace et al. 2012; Imperato et al. 2003; Iqbal et al. 2012;

Lu et al. 2003; Manta et al. 2002; Ruiz-Cortés et al. 2005;

Wong et al. 2006; Zhang 2006). These studies show that

urban soils are generally more contaminated than their

rural soils due to extensive anthropogenic activities.

Understanding spatial distribution and sources of metals

in soils is an initial step to implement mitigation strategies

for reduction of concentrations that will minimize human

exposure and protect populations at risk (Davis et al. 2009;

Johnson and Demetriades 2011). Mapping based on geo-

graphical information systems (GIS) and geostatistical

methods are useful approaches to describe these spatial

distributions. The main benefit of geostatistics is the

unbiased estimation of variables for spatial objects at

unsampled locations (Maas et al. 2010). GIS-based geo-

statistical techniques, such as kriging, have been widely

used to describe the spatial distribution and hotspots of

elevated concentrations of heavy metals in urban soils

(Cattle et al. 2002; Davis et al. 2009; Guagliardi et al.

2012; Hamzeh et al. 2011; Lee et al. 2006; Li et al. 2004,

2013; Malik et al. 2010; Rodrı́guez-Salazar et al. 2011;

Zhang 2006). Multivariate statistical techniques, such as

principal component analysis (PCA) and cluster analysis

(CA) enable the pollutant composition in different samples

to be compared and also provides a fingerprint for identi-

fying the origins of the pollutant metal. This technique has

also been applied widely to identify the sources of heavy

metals in urban soils (Chen et al. 2012; Davis et al. 2009;

Guagliardi et al. 2012; Iqbal et al. 2012; Manta et al. 2002;

Malik et al. 2010; Li and Feng 2012; Sun et al. 2010; Wang

et al. 2012; Yang et al. 2011; Zhang 2006).

The urban environment in China has been strongly

modified by human activities, especially during the rapid

urbanization and industrial growth in the past few dec-

ades. Numberous investigations on PTEs in Chinese

urban soils have been reported in recent years (Chen

et al. 2010, 2012; Cui et al. 2011; Lee et al. 2006; Li and

Feng 2012; Li et al. 2004, 2013; Lu and Bai 2010; Lu

et al. 2003; Luo et al. 2008; Shi et al. 2008; Sun et al.

2010; Wang et al. 2012; Yang et al. 2011; Zhao et al.

2014). There have also been a few reports on urban soils

in Guangzhou, Lu et al. (2007, 2011) studied chemical

fractionation of Cd, Cu, Ni, Pb, Zn, Fe and Mn, and

evaluated bioaccessibility and exposure risk of As and

Pb. Bi et al. (2013) and Cai et al. (2013) investigated the

metal pollutions in soil, dust and tree leaves in different

urban functional zones.

However, no comprehensive study has been performed

on the metal content of soils across Guangzhou and no

published systematic geochemical maps of these urban

soils exist. In order to identify problem areas and the

sources of metals in these soils, a large-scale field survey of

trace elements was conducted and evaluated with geosta-

tistical and multivariate statistical analysis. Four hundred

and twenty six sites across five administrative districts

were sampled and analysed for selected trace metals (As,

Cd, Cu, Fe, Hg, Mn, Ni, Pb, Zn). The objectives of this

research were to (1) determine the concentration of selec-

ted trace metals in the central urban areas of Guangzhou,

(2) assess the variability and spatial distribution patterns of

these elements, and (3) to identify metals whose concen-

trations may be influenced by anthropogenic activities and

identify possible sources.

Materials and methods

Soil sampling

The study area is Guangzhou, the capital city of Guang-

dong province, located in southern China (Fig. 1). More

details on the location were described Lu et al. (2007).

Several parent materials were identified in the study area,

including granite, sandstone and Pearl River alluvium.

Urban soils in this city are generally human-altered and/or

human-transported and classified as Udults and Udepts

(Soil Survey Staff 2014). These soils were generally

modified for construction and greening purposes, with

modification of the natural surface layer including cut, fill,

and mixing of soil materials derived from other sources. A

total of 426 sampling sites were selected in several centre

administrative districts (Tianhe, Yuexiu, Liwan, Baiyun

and Haizhu) of Guangzhou. Land uses included urban

parks, residential areas, industrial areas, schoolyards etc.

(Fig. 1). Sampling sites were selected using the grid

methods. During the field sampling, the concrete sampling

density and sites were adjusted under actual field condi-

tions. Composite soil samples (collected from 0 to 10 cm)

were obtained by mixing subsamples from five random

points within 2 m2 in each sampling site, and samples

subsequently stored in polyethylene bags. The exact loca-

tion (longitudes and latitudes) of each sample site was

measured by GPS instrument.
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Soil analysis

Bulk soil samples were air-dried and hand crushed to pass a

2-mm nylon sieve to remove debris, stones and pebbles.

Sub-samples were then ground with an agate grinder to

pass a 0.15 mm nylon sieve. Soil pH was measured in a

suspension of 1:2.5 (w/v) ratio of soil to distilled water

using a glass electrode. Soil organic matter (SOM) was

determined by K2Cr2O7 oxidation method (Nelson and

Sommers 1996).

Concentrations of Cd, Cu, Fe, Mn, Ni, Pb and Zn were

determined by digesting the soil with a mixture of con-

centrated HNO3, HF and HClO4. Elemental analysis was

performed using flame atomic absorption spectrometry

(AAS) (Hitachi Z-5300) for Cu, Fe, Mn, Ni, Pb and Zn, and

graphite furnace AAS (Hitachi Z-5700) for Cd. Soil As was

measured by hydride generation atomic fluorescence

spectrometry (HG-AFS 230, Beijing) following digestion

with HCl and HNO3. Soil Hg was measured by cold vapor

atomic absorption (F732-V, Shanghai) following digestion

of the soil sample with a mixture of H2SO4, HNO3 and

KMnO4.

All glass and plastic-ware was soaked in 5 % (v/v)

nitric acid overnight and rinsed thoroughly with deionized

water before use. Quality assurance and quality control

(QA/QC) was assured by means of duplicated samples

(about 10 % of all samples) and the use of standard ref-

erence material (ESS-3, GSBZ50013-88) from the China

National Environmental Monitoring Center (CNEMC).

The relative standard deviations (RSD) were generally

less than 10 %. Recoveries of the standard reference

material (ESS-3) for all studied metals were between 92

and 105 %.

Geostatistical analysis and mapping based on GIS

A primary application of geostatistics to soil science has

been successful for the estimation and mapping of soil

attributes in unsampled areas (Goovaerts 1999). This

method uses the semi-variogram to quantify the spatial

variation of a regionalized variable. The semi-variogram, c
(h), measures the mean variability between two points x

and x ? h, as a function of their distance h.

cðhÞ ¼ 1

2NðhÞ
XNðhÞ

i¼1

ZðxiÞ � Zðxi þ hÞ½ �2 ð1Þ

where Z (xi) is the value of the variable Z at location xi, and

N (h) is the number of pairs of sample points separated by

the lag distance h. Based on the fitted semivariogram

models, the ordinary kriging provided by the software of

ArcGIS� (version 9.0) for Windows was used to estimate

concentrations of metals in unsampled sites and generate

the spatial distribution maps of the As, Cd, Cu, Hg, Pb and

Zn. Since the distribution of As, Cd, Cu, Hg, Pb, and Zn

concentration data were heavily skewed, it was necessary

to transform the data prior to analysis. The Box–Cox

transformation was effective in drawing the data sets

towards normality with small skewness values, and all

transformed data sets passed the Kolmogorov–Smirnov test

for normality (K–S p[ 0.05).

Multivariate statistical analysis

Basic statistics (minimum, maximum, mean, median, stan-

dard deviation (SD), coefficient of variation, skewness and

kurtosis) and multivariate analysis were performed using a

Fig. 1 Location map of Guangzhou (a) and soil sampling sites in Guangzhou (b)
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statistical software package SPSS� version13 for Windows

(SPSS 13.0). Concentration range for each metal calculated

proportionately (maximum value as a multiple of the mini-

mum value). Principal component analysis (PCA) was

interpreted in accordance with the hypothetical source of

metals (lithogenic, anthropogenic, or mixed). Varimax

rotation was applied because orthogonal rotation minimizes

the number of variables with a high loading on each com-

ponent and facilitates the interpretation of results. Cluster

analysis (CA) has often been coupled to PCA to confirm

results and provide grouping of variables (Lee et al. 2006).

In our study, CA was performed according to the Ward’s

linkage method, and clustering results were shown in a

dendrogram that provided a visual representation of the

steps in the hierarchical clustering solution and values of the

distances between clusters (correlation coefficient distance).

Results and discussion

Metals concentrations and other properties in urban

soils

Soils in this study ranged widely in pH from 2.55 to 9.33

(median 7.12). Acid soils (pH\ 6.5) accounted for about

28.4 % of the samples, while neutral soils (pH of 6.5–7.5)

and alkaline soils (pH[ 7.5) accounted for 44.4 and

27.2 %, respectively (Table 1). These data indicated urban

soils in Guangzhou had a tendency to be more alkaline

(less acidic) than natural soils in the area that are generally

acidic to strongly acidic (GDSGSO 1993). The SOM ran-

ged from 2.56 to 199 g/kg, with a mean value of 25.4 g/kg,

suggesting the organic matter varied greatly among urban

soils due to influence of organic waste additions.

Trace elements in surface soils varied widely in con-

centration, reflecting the variety in lithological types as

well as anthropogenic impacts like traffic-related emis-

sions, industrial emission, waste disposal, soil excavation,

transport and redistribution (Table 1). Arsenic, Hg, Pb, Cu

Zn, Cd, Ni, and Mn ranged from 1.4 to 144, 0.01 to 12.2,

18.5 to 4903, 5.0 to 417, 10.1 to 1795, 0.03 to 2.41, 2.5 to

77.6, and 21.2 to 1286 mg/kg, with mean values of 17.4,

0.61, 87.6, 35.8, 107, 0.32, 18.7, 218 mg/kg, respectively.

Iron ranged from 6.1 to 61.8 g/kg with a mean of 27.9 g/

kg. Based on mean concentrations, elements were arrayed

in the following decreasing order: Fe[Mn[Zn[Pb[
Cu[Ni[As[Hg[Cd. Concentration range showed

that Hg had the largest range (1223), while Fe had the

smallest range (10). Descriptive statistics of metal con-

centrations in these urban soils showed their distribution

was skewed by a small number of samples with high

concentration. Only Fe approached a normal distribution

(skewness = 0.56), with other metals positively skewed

towards the lower concentration, i.e. there are many sites

that had a low concentration of the particular metal, for

example, As, Cu, and Pb had skewness values of 4.17, 5.34

and 19.5, respectively. This trend was also confirmed by

the fact that median concentrations of these metals were

much lower than their means. Results indicated a strong

anthropogenic influence on metal concentrations.

Table 1 Summary of element concentration with basic statistic parameters for the urban soil in Guangzhou (n = 426)

As

(mg/kg)

Cd

(mg/kg)

Cu

(mg/kg)

Fe

(g/kg)

Hg

(mg/kg)

Mn

(mg/kg)

Ni

(mg/kg)

Pb

(mg/kg)

Zn

(mg/kg)

pH SOM

(mg/kg)

Minimum 1.4 0.03 5.0 6.1 0.01 21.2 2.5 18.5 10.1 2.55 2.6

Maximum 14.4 2.41 417 61.8 12.2 1286 77.6 4903 1795 9.33 199.5

Mean 17.4 0.32 35.8 27.9 0.61 218 18.7 87.6 107 25.4

Standard deviation (SD) 15.0 0.29 41.4 7.9 1.0 136 10.3 238 116 18.9

Coefficient of variation (CV) 0.87 0.91 1.16 0.28 1.64 0.63 0.55 2.72 1.09 0.74

Median 14.1 0.23 25.3 27.0 0.34 185 16.2 63.8 78.8 7.12 21.8

Skewness 4.17 3.27 5.34 0.56 5.53 2.18 2.03 19.5 8.18

Kurtosis 25.9 15.2 37.1 0.61 47.2 10.4 6.92 395 108

SBV1
a 17.4 0.083 13.6 29.0 0.157 158.6 22.03 42.88 58.1

SGVb 20 30 – – 15 – 75 450 –

SQVc 12 10 63 – 6.6 – 50 140 200

SGd 55 12 190 – 10 – 210 530 720

a Soil Background Value in Guangzhou (CRGSBV 1982)
b UK soil guideline values for residential without plant uptake (Environment Agency 2002)
c Canadian Soil Quality Guidelines for Residential/Parkland (CCME 2007)
d Dutch Soil Guidelines for Intervention value (VROM 2000)
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Soils sampled from the five administrative districts

(Baiyun, Haizhu, Liwan, Tianhe, and Yuexiu), composing

the core of Guangzhou were studied (Table 2). Results

showed that metal enrichment in Guangzhou urban soils

reflected their urbanization history and degree of industrial

development. The Liwan district had the highest level of

As, Cd, Cu, and Ni. This area has a long history (more than

2000 years), and is a well-developed industrial and com-

mercial area located in the western part of Guangzhou

along the northeast bank of the Pearl River. Haizhu, the

island district in south central Guangzhou, had the highest

mean Pb (202 mg/kg) and Mn (291 mg/kg) concentrations

and lesser, but statistically similar amounts of Cd and Cu

compared to the Liwan district. Yuexiu district, the com-

mercial and cultural centre of Guangzhou, had the highest

mean Hg and As (0.93 and 22.4 mg/kg, respectively). The

Baiyun district lies to the north and is regarded as the

northern suburbs, while the Tianhe district is on the east

side of the city and became a district in 1980. These two

districts had the lowest metal concentrations, a likely

consequence of their lower degree and time of

urbanization.

Mean concentrations of As, Fe and Ni were the similar

or lower than the corresponding background value of soils

in Guangzhou (CRGSBV 1982), whereas Cd, Cu, Hg, Pb

and Zn were higher, clearly demonstrating an anthro-

pogenic contribution for the elevated metals. The data

collected in this study were evaluated with risk assessment

guidelines from other countries. When the upper end of the

range for each metal were examined, As, Cu, Hg, Ni, Pb,

and Zn all exceed one or more guidelines. The mean of

metals for Guangzhou as a whole is less than the UK Soil

Guideline values for Residential without plant uptake

(Environment Agency 2002), Canadian Soil Quality

Guidelines for Residential/Parkland (with exception of As)

(CCME 2007), and Dutch Soil Guidelines for Intervention

value (VROM 2000). The mean As content in Liwan and

Yuexiu districts exceeded the UK guidelines, as well as the

mean Pb content of the Haizhu district exceeding the

Canadian guidelines. Values imply that the environmental

and human health risks posed by heavy metals in the urban

soils of Guangzhou city may deserve further attention.

Correlation analysis among metals and soil

properties

The Pearson correlation coefficients for metals in these

soils indicated that SOM was significantly positively cor-

related with As, Cd, Cu, Hg, Mn, Ni, Pb and Zn concen-

tration (p\ 0.01), while pH had little correlation to metal

concentration (Table 3). These results suggest either the

importance of SOM in the retention of these metals in

surface soil horizons or possibly that the heavy metals had T
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anthropogenic origins in the soil through waste organic

materials.

The correlation among metals may provide some

information on source and pathways of the metals, while

high correlation coefficients between metals could indicate

similar sources (Manta et al. 2002; Yang et al. 2011).

Significant correlation of Fe with As, Cd, Cu, Mn, Ni, Pb

and Zn (p\ 0.01) confirms that Fe oxyhydroxide coatings

on soil particles are efficient adsorbents (Wilson et al.

2012). A significantly positive correlation at p\ 0.01 was

found among Cd, Cu, Pb and Zn, suggesting similar factors

influencing retention and/or common natural or anthro-

pogenic origins. For example, the positive correlation

between Hg and As reflects similar influential factors and

common origins. Lead, on the other hand, showed poorer

correlations with Hg and As. This suggests a difference in

factors impacting retention and/or different sources for Pb.

Spatial distribution pattern of metals

Mapping of soil geochemical distribution allows under-

standing of the spatial distribution and enables identifica-

tion of areas that may contain hazardous concentrations

(hotspots). Knowledge of spatial distribution of a contam-

inant is essential for site assessment and any subsequent

risk assessment (Guagliardi et al. 2012; Johnson and

Demetriades 2011; Li et al. 2013). Metal concentrations

were first interpolated with the ordinary kriging method.

The variogram surface was used to check the directional

features of each metal prior to fitting the semivariogram

models. As expected, clear directional features (the vari-

ogram values increase differently at different directions)

were observed for all selected metals. Experimental semi-

variograms suggested that the theoretical Gaussian model

was in reasonable agreement with the data for As, Cu, Pb

and Zn, whereas Hg and Cd data were best fitted to

Spherical and Exponential models, respectively. The range

of these elements shows that Hg had shorter effective range

than As, Cu, Zn, Cd and Pb, indicating that this element

had poorer spatial structure and more variation caused by

extrinsic factors.

The city has a long-history of coal combustion by urban

inhabitants as well as industrial production and the spatial

distribution map of heavy metal concentrations reflected

urban history and human activity intensity (Fig. 2). The

maps showed a similar spatial distribution for Cu, Zn, Pb

and Cd and these elements had highest concentrations in

the western part of Guangzhou (Liwan, Yuexiu, and

Haizhu districts). These maps provided a spatial refinement

and reconfirmation of the statistical analysis, in which

strong association were found among these metals

(Table 3). Other elements were also highest in the western

part of the city. For example, both As and Hg had isolated

hot spots in western Yuexiu district, likely reflecting the

industrial and commercial history of that district. The most

polluted hotspot in the study area was located in Liwan and

Yuexiu districts, part of the old city center established

about 2000 years ago. A former coal-burning power plant,

steel and iron plant, chemical and manufacturing factories,

etc. were distributed in these areas, and former municipal

waste dumping area was also located at the surrounding

area of these districts. Thus, the urban environment was

most seriously modified in these areas by industrial and

human activities.

Principal component analysis (PCA) and cluster

analysis (CA)

Principal component analysis has frequently been used to

identify underlying dimensions or factors that may describe

Table 3 Pearson correlation coefficients among potential toxic element s and soil properties in urban soils (n = 426)

SOM pH As Cd Cu Fe Hg Mn Ni Pb Zn

SOM 1 -0.083 0.327** 0.427** 0.456** 0.081 0.354** 0.182** 0.371** 0.154** 0.398**

pH 1 -0.154** 0.032 -0.004 -0.058 -0.051 0.085 -0.013 0.012 0.064

As 1 0.237** 0.143** 0.203** 0.190** 0.107* 0.286** 0.061 0.134**

Cd 1 0.530** 0.258** 0.192** 0.401** 0.607** 0.256** 0.603**

Cu 1 0.156** 0.218** 0.233** 0.471** 0.321** 0.616**

Fe 1 0.009 0.315** 0.499** 0.260** 0.223**

Hg 1 0.074 0.173** 0.064 0.160**

Mn 1 0.485** 0.236** 0.348**

Ni 1 0.117* 0.344**

Pb 1 0.763**

Zn 1

** Correlation is significant at the 0.01 level (2-tailed)

* Correlation is significant at the 0.05 level (2-tailed)
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relationships among sets of interrelated variables. Results

of PCA can give an indication to the origin of various

elements based on known relationships between relative

elemental concentrations and mineralogy of geological

material. Unusual combinations of elements can indicate

anthropogenic sources. Principal component analysis lin-

early transforms an original set of variables into a sub-

stantially smaller set of uncorrelated new variables that

represent most of the information of the original data set

(Lewis-Beck 1994). A small set of uncorrelated variables is

much easier to understand and use in further analysis than a

larger set of correlated variables (Lewis-Beck 1994). A CA

was performed on chemical parameters of both data sets,

using the weighted-pair group average based on correlation

coefficients (Pearson coefficient). This method is the most

appropriate to determine correlation between variables.

The distance axis represents the degree of association

between groups of variables, i.e. the lower the value on the

axis, the more significant the association. In general, the

results of CA agreed very well with those of PCA, and CA

can be used as an alternative method to confirm results.

The PCA loadings of metals as well as cumulative

percentage of variance in urban soils are shown in Table 4,

the three-dimensional relationships among metals based on

the three principal components are illustrated in Fig. 3, and

the corresponding CA (as a dendrogram or cluster tree) is

shown in Fig. 4. Results showed that the three extracted

components had eigenvalues larger than 1 before and after

the matrix rotation. As a consequence, metals were

grouped into a three-component model that accounted for

about 66 % of total variance. In the rotated component

matrix, the first principal component (PC1) explained

26.03 % of the total variance and exhibited a high positive

factor loading on Cu, Zn, Pb and Cd. The second principal

component (PC2) had 23.39 % of the total variance and

exhibited a high positive factor loading on Ni, Fe, Mn and

Cd. The third principal component (PC3) (16.29 % of the

total variance) showed a high positive factor loading on Hg

and As.

The strong relationship in PC1 among Zn, Pb, and Cu

may reflect anthropogenic contamination of urban soils,

including vehicle emission and industrial activities (Calace

Fig. 2 The distribution maps of As, Cd, Cu, Hg, Pb, and Zn concentrations in urban soils
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et al. 2012; Li et al. 2004; Tahmasbian et al. 2014). These

elements are not generally concentrated in geologic mate-

rials and were obviously higher than the soil background

values in Guangzhou (Table 1). These metals were there-

fore related to the impact of urbanization and industrial-

ization and had anthropogenic sources. The association of

Zn, Pb and Cu suggested the presence of vehicle emissions

resulting from gasoline combustion and traffic-related

sources. Vehicle emissions have been considered to be a

Table 4 Total variance explained and component matrix for the heavy metals

Component Initial eigenvalues Extraction sums of squared loadings Rotation sums of squared loadings

Total % of variance Cumulative (%) Total % of variance Cumulative (%) Total % of variance Cumulative (%)

PC1 3.50 38.88 38.88 3.50 38.88 38.88 2.34 26.03 26.03

PC2 1.30 14.49 53.37 1.30 14.49 53.37 2.11 23.39 49.42

PC 3 1.11 12.34 65.71 1.11 12.34 65.71 1.47 16.29 65.71

PC 4 0.88 9.80 75.51

PC 5 0.75 8.32 83.84

PC 6 0.65 7.18 91.01

PC 7 0.42 4.69 95.71

PC 8 0.27 2.94 98.70

PC 9 0.12 1.30 100.00

Metals Component matrix Rotated component matrix

PC1 PC2 PC3 PC1 PC2 PC3

As 0.347 0.456 0.308 -0.077 0.304 0.570

Hg 0.287 0.135 0.745 0. 135 -0.151 0.784

Cu 0.715 -0.181 0.259 0.635 0.204 0.407

Zn 0.812 -0.506 0.032 0.926 0.208 0.121

Pb 0.581 -0.634 -0.155 0.851 0.093 -0.172

Cd 0.790 0.082 0.102 0.489 0.484 0.410

Ni 0.742 0.468 -0.101 0.167 0.781 0.378

Fe 0.512 0.349 -0.484 0.076 0.779 -0.075

Mn 0.593 0.202 -0.337 0.246 0.667 0.018

Extraction method: PCA; rotation method: Varimax with Kaiser normalization

Fig. 3 Principal component analysis loading plot for the three rotated

components

Fig. 4 Dendrogram of the cluster analysis of urban soils based on

their element concentrations (n = 426)
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principal source of Pb in soil in urban environments

(Calace et al. 2012; Dao et al. 2014; Hamzeh et al. 2011; Li

et al. 2004; Wilcke et al. 1998; Yang et al. 2011). Higher

concentration of Zn can be attributed to the wear and tear

of tires and brake linings; vehicular tires have about 1 %

Zn (Councell et al. 2004). The Zn, Pb, Cu concentrations

were higher in soils sampled from old city center. Some

urban parks in Guangzhou were former landfill sites for

both municipal and industrial wastes. The result of CA was

in total agreement with the PCA results. Thus, the elements

in PC1 could be generally concluded to be from anthro-

pogenic sources.

The PC2 was dominated by Ni, Fe and Mn along with a

strong cluster in CA. These three metals represent a natural

geochemical association of major rock-forming elements in

soil and may reflect natural sources from parent materials

(Ljung et al. 2006; Lu 2000; Wilcke et al. 1998). This may

be derived from the fact that Fe in soils of this study was

near the background Guangzhou value and its concentra-

tion in soils had normal distribution (Table 1). Therefore,

PC2 suggests that these metals were mainly contributed by

the geological source.

The PC3 loaded by Hg and As also constituted a strong

cluster and likely had anthropogenic origins. These two

elements are common products coal combustion and waste

incineration (Yang et al. 2011). Atmospheric Hg can

accumulate in surface soil by wet and dry deposition. Also,

Hg has been used in many industrial and domestic prod-

ucts, and historical use of Hg also plays an important role

for the accumulation of Hg in soils (Chen et al. 2010).

Cadmium had relatively high loadings in both PC1 and

PC2. It is probable that this element resulted from both

geologic and anthropogenic origins as this element may

have many environmental pathways such as rock weath-

ering, wind blown dust, agriculture and traffic. In fact,

industrial discharges may contribute significantly to the

accumulation of Cd in urban soils and the application of

fertilizer can caused accumulation of Cd (Li et al. 2004;

Lee et al. 2006).

Comparison of metal concentrations with other

urban soil studies

The range and mean/median of metal concentrations in

surface horizons from Guangzhou were compared with

similar data from other 49 cities around the world in order

to evaluate the soil quality of our study area (Table 5). In

general, Cu, Pb and Zn were the most frequently investi-

gated as potential toxic elements in these other studies;

arsenic and Hg were the least investigated. Metal concen-

trations had wide ranges in these studies and Guangzhou

topsoils were intermediate in concentration compared with

other cities around world. The mean/median concentration

of As in Guangzhou urban soils was similar to or higher

than soils in most cities with the exception of Shengyang

(China), Xuzhou (China) and Athen (Greece). The surface

soil in Xuzhou (China) had the highest mean As concen-

tration. The mean/median concentration of Cd in this study

was comparable with or lower than soils in most cities

except for Beijing (China), Changchun (China), Tianjin

(China), Trondheim (Norway), Murcia (Spain) and Pen-

sacola (USA). The mean/median concentration of Cu in

Guangzhou soils was lower than or similar to other cities

with the exception of Ottawa (Canada), Hong Kong

(China), Weinan (China), Jakobstad (Finland), Turku

(Finland), Novi Sad (Serbian), Murcia (Spain) and Pen-

sacola (USA). The mean/median Hg concentration was

similar to or higher than soils in other cities except for

Palermo (Italy). The mean/median Ni concentration was

lower than soils in other most cities, and soil in Torino

(Italy) had the highest Ni concentration up to 790 mg/kg.

The mean/median Zn concentration was similar to or lower

than those in other most cities with the exception of

Annaba (Algeria), Murcia (Spain) and Pensacola (USA).

It should be noted that comparisons between studies are

relative and reported means and ranges are all based on

methodology of the particular study. The diversity of soil

sampling locations (including industrial area, urban park,

roadsides, commercial area, playground, residential area,

etc.), number of samples (ranging from 21 to 2182), sam-

pling depth (0–5, 0–10, 0–15, or 0–20 cm) and extraction

method used for soil analysis (including aqua regia (HCl/

HNO3, 3:1), concentrated HF, HNO3 and HClO4, concen-

trated HNO3 and HClO4, HNO3 and H2O2 and HNO3 in

various concentrations) in the literature can be a serious

constraint in the comparison of published data. In fact,

although the term ‘‘total’’ is often used in these studies,

data can be assumed to have a 20–30 % of variation from

the others due to the different extraction techniques adop-

ted (Ajmone-Marsan and Biasioli 2010). In view of the

high value of the urban soil as an environmental resource

and the threat to human health it poses, it is highly desir-

able that an effort towards harmonization of methodologies

is made so that the issue of urban soil contamination can be

tackled at the global level (Ajmone-Marsan and Biasioli

2010).

Conclusions

A comprehensive soil survey was conducted to investigate

PTEs in soils of Guangzhou urban areas, the usefulness of

geostatistical approach and multivariate analysis for map-

ping their spatial distributions and identifying possible

sources were evaluated. These soils showed a wide range

and diverse correlations of PTE concentrations, and human

Environ Earth Sci (2016) 75:329 Page 9 of 15 329
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activities have led to high accumulation of metals. Spatial

distribution maps of As, Cd, Cu, Hg, Pb, and Zn displayed

several hotspots of metal pollution that may pose potential

risks to residents. Multivariate analysis revealed Fe, Ni and

Mn were predominantly derived from natural sources; As,

Cu, Hg, Pb and Zn from anthropogenic sources; and Cd

from mixed sources. Compared with other studies around

the world, present metal concentrations in Guangzhou soils

can be considered at an intermediate level.

Although this study was clearly limited in its analyses of

the processes and factors influencing metal concentrations

in urban soils, it contributed to the very limited database

available on metals in urban soils of Guangzhou, provided

a basis for hazard assessment, and established a baseline

for future monitoring and management of these metals in

this area.

Furthermore, the work also highlights the need for fur-

ther studies on assessing both the human and ecosystem

risks associated with urban contaminated soils, setting up

Chinese soil guideline values for urban environments, and

taking measures to remediated contaminated urban soils.
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